
  
Abstract—The paper aims at deriving transient solutions of non-
Markovian queuing system M/G/1 starting from ( ),0k  to 

( ), ,m n m n>  remaining below the barrier Y X= and does not 

include any idle time of server through lattice path approach. The 
explicit form of the density and other measures of the system 
performance are not known. Our approach is to approximate general 
service time with Coxian 2-phase distribution, C2 and represent the 
queuing process as a lattice path by recording the state of the system 
at the point of transitions. We use the lattice path combinatorics to 
count the feasible number of paths and corresponding probabilities. 
The above leads to the required density that has simple probabilistic 
structure and can be computed using R .The investigation of the 
influence of taking different values of a parameter on the behavior of 
the graphs of the density is also presented. 
 

Keywords—Coxian distribution, lattice path.  

I. INTRODUCTION 
N recent years, research focus in queueing models has been 
on developing the methods to compute performance 
measures of non-Markovian queueing  systems. We refer the 

readers to Takagi [1], [2], Neuts [3], [4], Gross and Harris [5], 
Kleinrock [6], [7] and Mohammadi and Salehi-Rad [8].  

Performance measures include the length of busy period 
(BP), pure incomplete busy period (PIBP) and incomplete 
busy period (IBP). These busy periods can be explained as 
follows. During transient phase, suppose that the queueing 
system is observed continuously from start time 0  to (current) 
time t . During this time interval of length t , the system may 
include alternately several busy and idle periods of the server. 
This length of time t  will be referred to as pure incomplete 
busy period (PIBP) if it does not include any idle time of 
server. PIBP can be represented as lattice path starting from 
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( ),0k  to ( ), ,m n m n> ; always remaining below the barrier 
Y X= does not include any idle time of server.  
 Until 1995, a vast majority of transient results available for 
non-Markovian queues were either in terms of Laplace-
Stieltjes transforms (LSTs) or other integral transforms that are 
much complicated, intractable and hard to compute. 

Therefore, lattice path technique has been developed to 
provide transient solutions in explicit form. Some authors have 
successfully derived the transient solutions for Markovian 
queueing system for / /1M M  (Sen and Jain [9], Bohm and 
Mohanty [10]), and for / /1bM M  (Sen and Gupta [11]). 

An innovation in tackling general service distribution is to 
approximate it by a Coxian phase-type distribution (Cox [12], 
Khosgoftar and Perros [13], Agarwal, Sen, and Borkakaty 
[14], [15], Harris, Marchal, and Botta [16] and Muto [17]. 
This approximation retains Markovian structure leading to 
simplistic assumption for subsequent analysis. 

The approximation of general service time distribution using 
2C , Coxian 2-phase distribution has been used to derive busy 

period density function for / /1M G  (Sen and Agarwal [18]), 
/ /1G G , / /1bGI G  queues (Agarwal, Sen, and Borkakaty 

[14], [15], ). Busy period density  of / /1M G queues, 
approximating general distribution by 3C , Coxian 3-phase 
distribution has been derived by Agarwal, Sen, and Borkakaty 
[14]. Several authors (Sen and Jain [9], Bohm and Mohanty 
[10], Sen and Gupta [11]) have computed the density functions 
of busy period of / /1M G queueing system using lattice path 
combinatorics (LPC) techniques. Explicit form of the density 
of  the PIBP of / /1M G  queues using lattice path (LP) 
approach are not known.  

The proposed methodology approximates a general service 
distribution by a Coxian 2-phase distribution and extends the 
LPC technique to compute the density of PIBP of 2/ /1M C  
model. Therefore, in this paper, we would mainly study and 
compute the closed form solution for such systems.  

The rest of the paper is organized as follows. In the 
introduction, we recapitulate the definition of lattice path and 
briefly explain its application to determine the density of PIBP 
of / /1M G  queueing system. Section 2 presents the 

2/ /1M C  model. Section 3 presents pure incomplete busy 
period of / /1M G . Section 4 presents the results on counting 
of paths and subsequent computation of transient probabilities. 

Lattice paths approach for transient solutions of 
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Finally, we present the numerical computation of density for 
PIBP in section 5. 

II. THE 2/ /1M C  MODEL 

The Coxian distribution as illustrated in Figure 1 is a Coxian 
2-phase distribution that describes duration until an event 
occurs in terms of a process consisting of latent phases. 

 

μ1 μ2

Phase 1 Phase 2

α1

β1 1

 
Fig. 1. Coxian 2-phase distribution 

A. Transitions  
For determining the transient solution, we consider time 

interval (0, )t . Observing the system at point of transitions, we 
let 0T  and 1 2, ,...T T  be the sequence of time points at which 
transitions take place. Let 0 1, ,...X X be the number of 
customers at time points 0 0T = , and 1 2, ,...T T , respectively, 
where 0X k=  from the initial condition. Then { }nX  is a 
Markov chain that has the transition probability matrix Q , 
where for all 0; 1, 2,n u≥ =   

    { }1( , ) |n nQ i j P X j X i+= = =  
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The holding time in each state is an exponential random 
variable with a parameter depending on the state given below: 

{ } ( )1
1 | t

n n nP T T t X i e λ µ− +
+ − > = =  if a customer is undergoing 

phase u  of service, 1, 2.u =  

B. Lattice Path Representation (LPR) 
Lattice path representation (LPR) starts with representing 

the behavior of the queueing process through a sequence of 
steps represented as lattice path. For example a lattice path can 
be constructed by representing an arrival into the system by a 
horizontal step, departure by vertical step and shift from phase 
1 to phase 2 by a diagonal step. 

Thus arrival of a customer during any phase of service, 
departure of a customer that can occurs at any phase of service 

and entry into phase 2 will be denoted by a horizontal unit 
step, a vertical unit step and a diagonal of 2 unit step, 
respectively. The vertical (horizontal) step  will be denoted by 
a solid line or a dotted line accordingly as departure (arrival) 
occurs during Phase 1 or Phase 2 of the service. 

C. Counting Lattice Paths 
For the purpose of counting of lattice paths (LPs), we first 

transform lattice path to a skeleton lattice path (SLP) by 
removing all diagonals. For SLP we define ‘Run’ as follows. 
Definition: Run (Agarwal, Sen and Borkakarty [14]): A 
sequence of consecutive horizontal (vertical) steps bounded on 
each side by a vertical (horizontal) step is called arrivals run 
denoted by AR (departures run denoted by DR). 

The sequence of horizontal steps starting from the origin 
and preceding the first vertical step as well as the sequence of 
verticals at the end following the last horizontal step are called 
the arrivals run (AR) and departures run (DR), respectively. 

Since we are approximating the service time by Coxian 2-
phase, 2C , therefore, while inserting the diagonals, the 
following restrictions will imply on inserting runs. 
• Two or more consecutive diagonal can not appear in any 
horizontal run. 
• In a vertical, run any number of diagonals may occur. 
• The first vertical step following a diagonal step has to be a 
dotted vertical step. 
• Two or more consecutive dotted vertical steps cannot occur. 
• A dotted vertical step can not immediately be preceded by a 
vertical step (departure after phase 2 cannot be preceded by 
departure after phase 1). 

Finally, for a given set of horizontal and vertical runs, we 
have to count the number of possible LPs that can be 
generated keeping in view the above restrictions on the 
insertions of diagonals. 

In a Lattice Path (LP), let k  initial number of customers at 
the start of busy period 

r number of AR, as well as DR ( )1 .r ≥  
p total number of diagonal inserted in AR 

and/or DR ( )0p ≥ ’ 
q total number of diagonal inserted in AR , 
p-q number of diagonal inserted in DR, 
li length of the ith AR ( )1,2,...,i r= , 

iL  length of the ith DR ( )1,2,...,i r= ,
 

L


 ( )1 2 1 2, ,..., ; , ,...,r rl l l L L L ,
 

*L


 ( )1 2 1 2 1, ,..., ; , ,...,r rl l l L L L − ,
 

i


 ( )1 2, ,..., qi i i , q AR in each of which a 
diagonal is inserted, 

il


 ( )1 2, ,..., ql l l , lengths of AR i


, 

ip


 ( )1 2
, ,...,

qi i ip p p distances from extreme left 

end points where diagonals are inserted in 
AR runs i



 including vertices at both ends of 
the runs). 
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To illustrate these notations, we refer to Fig. 2. 
 

k=1
m=15
n=12

p=4
q=2

r1=5
r2=5

no of arr =10
no of dep=8

arr  in phase 1=4
arr in phase 2=6

(15,12)

(1,0)  

Fig. 2. 2/ /1M C  model. Lattice path representation 

III. PURE INCOMPLETE BUSY PERIOD (PIBP) OF  / /1M G  
This section presents a brief description of the methodology 

used to determine the density of pure incomplete busy period 
(PIBP) of / /1M G  queueing system under transient state 
where PIBP indexed with t  and k  refers to a continuous 
period of service till time t , starting with k  customers.. 

Let ( )k
f t  denote the density function of PIBP of   

2/ /1M C  for 0t ≥ , where k  is the initial number of 
customers in the system.  Such a lattice path (corresponding to 
a PIBP during (0, )t  with k  initial customers in the system) 
will either end with a vertical step (departure), a horizontal 
step (arrival) or a diagonal step (shift to phase 2 of service). 

In this paper, we will illustrate only case 1. All other cases 
can be computed similarly. Table 1 illustrates the 
decomposition of lattice paths into disjoint groups. 

Next, the density of 2 ( )kf t  is estimated by first counting the 
number of lattice paths satisfying the properties of PIBP 
corresponding to the ending structure of the lattice paths (See 
Table 1, column 4). Next, the probabilities corresponding to 
such paths are computed using transition probabilities 
corresponding to M/C2 /1 model to arrive at 2 ( )kf t . 

 
 
 
 
 
 
 
 

Table 1. Structural Properties Events 
Phase Case Events Represen- 

tation 

Phase 1 

A No customer enters phase 2 
  

B Departure after phase 1 of 
service  

C 

Entry into phase 2 of 
service from phase 1 
following departure after 
phase 1 of service  

D 

Entry into phase 2 of 
service from phase 1 
following departure after 
phase 2 of service  

E Arrival during phase 1 of 
service  

F Entry into phase 2 of 
service from phase 1  

Phase 2 

G Departure after phase 2 of 
service  

H Arrival during phase 2 of 
service  

 

IV. RESULTS 

A. Density of No Customer Enters into Phase 2 of Service 

Theorem 4.1. Let ( )1
kf t   denote the density that the system 

2/ /1M C  starting initially with k customers still in service of 
length t  and no customer enters into phase 2 of service. Then 
we have  

( )

( )
( )

( )
1

11
0

1
1            , 0,

m
k m k n

t
nm k m n k

m n k m n k
f t

n m

et t
m n k

λ µ

λ βµ

∞ −

= =

+−
− + − −

 + − + −     = −    
     

× >
Γ + −

∑ ∑
      (1) 

Proof. This term corresponds to the case when no customer 
enters phase 2 service. The number of arrivals is m k− , and 
the number of departures is n . Therefore total number of 
transition during busy period is m n k+ − . Call this as 1N . 

Let 0T  and 1 2, ,...T T  be the sequence  of times at which the 
transitions occur. Let at time 0T , Poisson process starts with 

rate ( )1λ µ+ . The probability of an arrival occur is 
1

λ
λ µ

 
 + 

  

and  the probability of a departure occur is  1

1

βµ
λ µ

 
 + 

. 
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The probability density function of t  is  N1-Erlang with 
parameter ( )1λ µ+  given by 

( ) ( )
( )

11 1

1

1
1

1

( )
Nt N

N

e t
f t

N

λ µ λ µ− + −+
=

Γ
. 

   
The density for this case becomes 
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( ) ( )
( ) ( )
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×      + +   

+
×

Γ + −

∑ ∑

  

where 
m n k m n k

n m
+ − + −   

−   
   

  is the number of lattice paths 

starting from (k,0)) to (m,n) always remaining below the line 
Y X=  . (Sen and Jain, 1993). Hence, we get  (1). 

B. Density of the Last Event is Departure after A Customer 
Completes Phase 1 of Service 

In this paper we discuss the case where the incomplete busy 
period ends with a departure. Other cases of incomplete busy 
period that end with an arrival or diagonal can be obtained in a 
similar manner. For this aim, first, we develop a complete set 
of structural property for last departure event. Next, we 
develop the technique to enumerate the number of lattice paths 
satisfying specified structural property. Finally, the expression 
for the case of incomplete busy period of / /1M G  is derived. 
 
Theorem 4.2.  For non-negative integers ,k , ;m n  , ;p q  

( )1 ,r r ≥ 1 2, ,..., ;rl l l 1 2, ,..., ;rL L L  let ( )( ), ; , ; ,k n l m r LLP


, where 

( )1 2 1 2, ,..., ; , ,...,r rL l l l L L L=


, denote the number of LPs  from 

( ),0k  to ( ), ,m n m n>  remaining below the line Y X= , each 

comprising of m p−  horizontal steps (including those from 

( )0,0  to ( ), ,m n m n> ), n p− vertical steps and p  diagonals, 

such that 

(a) m p− horizontal steps form r  runs of lengths 

1 2, ,..., rl l l , respectively, satisfying 

1 0 2, ,..., 0rl i l l≥ >  and 
1

r
ii

l m p
=

= −∑  

(b) n p− vertical steps form r  runs of lengths 

1 2, ,..., rL L L , respectively, satisfying 

1 2, ,..., 0rL L L >  and    
1

r
ji

L n p
=

= −∑  
 

(c) ( )1 0 1 1 1
, 1 , , 1, 2,..., 1,u u

i ii i
l Max i L l L u r

= =
≥ + > = −∑ ∑

1

r
ii

l m p
=

= −∑ 1

r
ii

L n p
=

= −∑  

(d) q diagonals representing into phase 2 are inserted 

each in any q out of r  horizontal runs (including 

the vertices at both ends of the runs), 

(e) The remaining p-q diagonals representing into 

phase 2 are inserted each at any p-q-r vertices 

available along the vertical runs, 

Then, for 1,r ≥  and ,m k>  

( )( )
7 8

, , ; , ; ,k m n p q r L
R R

n p r
LP

p q
− − 

=  − 
∑∑



                 (2) 

where 

( ){ }7 1 2 1 2, ,..., :1 ...q qR i i i i i i r= ≤ < < < ≤

( ){ }1 28 , ,..., : , 1, 2,...,
q s si i i i i iR p p p p p l s q= = ∆ ≤ ≤ = ,      

0,  if 1
,  if 1

s

s

i
k i

 >∆ =  =
 

Proof. Consider the skeleton path from (k,0) to (m-p,n-p). 

Suppose this skeleton consists of r  horizontal runs and 

r vertical runs of lengths li (i=1,2,…, r ), and Lj (j=1,2,…, r ), 

respectively. One unique path will be produced by this 

scenario. For the purpose of insertion, suppose q diagonals are 

inserted into runs numbered i1, i2,…, iq, respectively with 

lengths of li, l2,…, lq at distances 
1 2
, , ...,

qi i ip pp from the extreme 

left end points. The remaining p q−  diagonals will be 

inserted into any p q− vertices out of n p r− − . The number 

to do this is 
n p r

p q
− − 

 − 
. 

 Now summing 
n p r

p q
− − 

 − 
 over all possible q -tuples, (i1, 

i2,…, iq) and 
1 2
, , ...,

qi i ip pp , we get (2). 
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Lemma 2. Let ( ), , ;k m n pLP  the number of LPs  from ( ),0k  to 

( ), ,m n m n> , remaining below the line Y X= , each 

comprising of m p− horizontal steps (including those from 

( )0,0 to ( ),0k , n p− vertical steps and p diagonals, then 

summing (2) over ,  r q  and L we find 

( ) ( )
( )4 5 6

, , ; , , ; , ; ,
, ,

k m n p k m n p q r L
R R R

LP LP= ∑


                 (3)  

where 

 ( ){ }4 :1 max 1,1R r r n p k= ≤ ≤ − − +

( ) ( ){ }5 : max 0,2 min ,R q p n r q r p= − + ≤ ≤

( ){

}

6 1 1

1 2 1 2 1 2 1 2

1 1

: max , 1 ,

        ,..., ... ... ,

       ,

r r

r r
i ii i

R L l k L

l l L L l l l L L L

l m p L n p
= =

= ≥ +

+ > + + + + > + + +

= − = −∑ ∑



 

For the case 1,r ≥  and 0p = , we get 

 ( )( ), , ;0,0k m n

m n k m n k
LP

n m
+ − + −   

= −   
   

 

 

Theorema 4.3.  Let ( )2
kf t  denote the density that the system 

2/ /1M C  starting initially with k  customers still in service of 
length t  and the last event is departure after a customer 
completes phase 1 of service. Then we have 
 

( ) ( )

( )
( )

( )( )
( )( )

2

1 2 3 4 5 6 7 8

2 2
1 1 2

( )

1
2 1

0
          

!

2
           

2

s s

s s

tp n p m p k n p p
k

R R R R R R R R

x m n p k x

x

q
i is

q
i is

n p r
f t e

p q

t
x m n p k x

m n p k x l p

m n p k l p

λ µα β λ µ µ

µ µ

− +− − − −

+ − − + −
∞

=

− − 
=  − 

−
×

Γ + − − +

Γ + − − + − −
×

Γ + − − − −

∑

∑

∑
∑

(4) 
where 
 { }1 : 1R m k m= + ≤ ≤ ∞

 

 { }2 : 2 1   R n n m= ≤ ≤ −
 

  ( ){ } [ ]3 2:1 min , ,nR p p m k x= ≤ ≤ −    denotes the 

               largest integer contained in x .
  

Proof.  To prove this term, let 1t  be the total time spent in 

phase 1 of service and 1t t−  the total time spent in phase 2 of 

service out of the total time t spent in the system.  

For fixed L


, total number of transitions during the busy 

period of length t is given by m n p k+ − −  as described 

below: 

Number of arrivals: m p k− −  

Number of departures after phase 1: 2n p−  

Number entries into phase 2: p  

Number of departures after phase 2: p  

The total number of transition in 1t , the time spent in phase 1 

of service, consists of arrivals and departures while customers 

are in phase 1 of service as well as entries into phase 2 of 

service as explained below: 

 Number of arrivals: m p k− − −  ( )s s

q
i is

l p−∑ since 

( )s s

q
i is

l p−∑  is the number of arrivals while 

customers are in phase 2 of service. 

   Number of entries into phase 2: p . 

   Number of departures: 2n p− . 

Hence, we obtain 1N , total number of transition during 1t  as 

below. 

( )1 2
s s

q
i is

N m n p k l p= + − − − −∑ . 

The probability density function of 1t  is 1N Erlang− with 

parameter ( )1λ µ+  given by 

( ) ( )
( )

11 1

1

1
1

1

( )
Nt N

N

e t
f t

N

λ µ λ µ− + −+
=

Γ
. 

The total number of transition in 2 1t t t= − , the time spent in 

phase 2 of service, consists of arrivals and departures while 

customers are in phase 2 of service as explained below: 

 Number of arrivals: ( )s s

q
i is

l k−∑ . 

 Number of departures: p . 

Therefore, 2N , total number of transition during 2 1t t t= −  will 

be  
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( )2 s s

q
i is

N l k p= − +∑ .  

The probability density function of 2t  is 2N Erlang−  with 

parameter ( )2λ µ+  given by 

( ) ( )
( )

22 2 2

2

1
1

2

( )
Nt N

N

e t
f t

N

λ µ λ µ− + −+
=

Γ
. 

For the second case, for combining the duration of phase 1 and 

phase 2 of service, we get   

( )

( )

( )

1 2 3 4 5 6 7

1

1

2

2

2

( , , , , , , )

2

1 1 1
1

1 1 10

2
1 1

2 2

           

           .

           

k
R R R R R R R

N n p p n pt

N

N p p

N

n p r
f t

p q

f t

f t t dt

α µ βµλ
λ µ λ µ λ µ

µλ
λ µ λ µ

− + −

−

− − 
=  − 

     
×      + + +     

   
× −    + +   

∑

∫    (5) 

Simplifying equation (5), we get  

( )
( )

( ) ( )
( ) ( ) ( )

1 2

1 2 3 4 5 6 7

22 2 1 1 1

2 2
1 1 2

, , , , , ,

11
1 1 1

1 2 0

1 1           .

N N np n p n p p
k

R R R R R R R

t
Nt t N

n p r
f t

p q

e e t t t dt
N N

λ µ µ µ

α β λ µ µ+ −− −

−− + − −

− − 
=  − 

× −
Γ Γ

∑

∫
 

Solving the integral part, we get (4).    

V. NUMERICAL COMPUTATIONS AND COMMENTS 
The number of lattice paths when the system ended with 

departure can be counted using (2). Furthermore the explicit 
form of density when no customer enters   phase 2 service is 
given   by ( )1 .

k
f t  We also obtained the explicit form of density 

when the system ending in departure after a customer 
completes phase 1 of service i.e. ( )2 .

k
f t  An R program has 

been developed for numerical computation of  equation (1) 
and (4).  

The program starts with generating  all possible lattice 
paths using the library AlgDesign, next only the paths 
satisfying conditions (a) to (e) presented in section  2.c are 
filtered. These paths form the set L and finally equation (4) is 
computed for the selected paths. 

For different value of λ  we notice from Fig. 3 that as t 
increases, the density function ( )2 .

k
f t  increases, then after 

attains maximum point, it decreases. The maximum value of 
density increases as the value of λ  increases. The rate of 
decrease in the value of density for smaller value of λ  is less 
than that for the larger value of λ .  
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Fig. 4 Density of the incomplete busy period system of 

2/ / 1M C  queue for different value of λ  taking 

1 2 11, 8, 10, 0.4, 0.6k µ µ α β= = = = =  
For different value of λ  we notice from Fig. 4 that as t 

increases, the density function of incomplete busy period 
decreases. The maximum value of density increases as the 
value of λ  increases. The rate of decrease in the value of 
density for smaller value of λ  is less than that for the larger 
value of λ .  
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