
 

 

 

Abstract— Wind turbine installation for electricity production is 

growing all around the world. The large energy demand, in fact, 

together with the environmental issue, leads to the promotion of 

renewable energy sources, with low (or zero) polluting impact. Wind 

turbines represent a sustainable solution, especially in areas with 

strong wind speeds and low density of obstacles. Anyway, there is a 

problem of annoyance related basically to noise production and 

landscape degradation. Regarding noise, it is almost evident that the 

greater is the wind speed, the larger is the noise emission, because of 

higher rotation speed of the blades and higher aerodynamic noise. Of 

course higher wind speed corresponds also to larger electricity 

production, thus a compromise must be found between energy and 

noise. For this reason, models able to exploit the relation between 

wind speed and noise map in the surrounding area of any wind farm, 

represent a strong tool to help policy makers in monitoring operating 

wind farms and in designing turbines placements. 

In this paper, the wind turbine noise issue is faced by different point 

of view. After presenting the noise maps in a wind farm in Italy, 

produced in the framework of a predictive software, in different wind 

speed and directivity conditions, a seasonal ARIMA model is 

presented. This model is used to predict wind speeds, to be given as 

input of the software for noise map drawing. This method will show 

that, starting from the time series of wind speeds in the wind farm 

area, strong information about the noise levels map can be obtained 

by means of accurate modelling of the area under investigation.   

 

Keywords—Wind turbines, Acoustical noise level, Predictive 

Model, ARIMA model, Noise map.  

I. INTRODUCTION 

NERGY production is one of the most important problems 

of this century, that is characterized by the large use of 

fossil fuels and by global warming. To cope this problem 

alternative solutions have been sought, such as green and 

renewable energies. In this complex scenario of the 

sustainable development, the wind turbine power source is an 

important component.  

Wind power has been used for different purposes through 

the ages, but only recently the wind turbines are developed 

specifically to generate electricity. According to the Global 

Wind Energy Council report of 2009, approximately at the end 

of 2008 there were 120800 MW of wind energy capacity 

installed around the world [1]. The new global total for wind 
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power production at the end of 2015 was 432419 MW [2]. 

During 2015 12800 MW of wind power were installed in the 

EU, that represents an increase of 6.3% on 2014 installation. 

This strong growth implies also the raise of environmental 

problems due to the installation of wind farms. The most 

relevant effects are the landscape visual disturbance and the 

noise annoyance. The latter is usually referred to few sensitive 

receivers, since the turbines are generally installed in country 

side and/or in the higher part of hills or mountains close to 

villages. For these reasons, very often a careful noise 

investigation prior the installation is not performed, leaving 

the problems to possible legal procedures started by the 

inhabitants of the area. More about noise effects on human 

health can be found in [3, 4]. 

Several studies in literature regard wind turbine noise 

problem. One of the aim is to help producers and policy 

makers in the site choice, giving them tools to predict the 

noise that could be produced by different positions and 

configurations of wind farm. Persson Waye and Öhrström [5] 

proposed an experimental study in order to support the 

hypothesis that different sound properties can be related not 

only to the operating condition of the wind farm, but also to 

the perception and annoyance for wind turbine noise. 

 

 
Fig. 1: EU member state market share for new wind energy capacity 

installed during 2015 (MW) [2]. 
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A relevant result of this experiment, which consisted in 

recording and compare the noise produced by five wind 

turbines in terms of reported perception and annoyance, was 

that the different turbines gave different annoyance 

perception, although the equivalent A-weighted SPL were the 

same. These subjective sound characteristic can be very 

relevant for perception and annoyance, especially at low 

background noise levels. More subsequent studies enforced 

this result and suggested that the presence of sound 

characteristics subjectively described as lapping, swishing, 

and whistling are responsible for the differences in perception 

and annoyance between the sounds [6]. In [7-10], some of the 

authors implemented a simple analytical model, able to give 

the propagation of the acoustic intensity level as a function of 

the horizontal distance from the tower, resulting in a 

Lorentzian function, with a maximum level in correspondence 

of the tower (minimum distance source-receiver) and an 

inflection point. In the same papers, the authors also pursued 

the drawing of noise maps of the wind farm installed in 

Postiglione (Italy), highlighting some of the peculiarities of 

the area under study. The noise maps drawing technique has 

been adopted with success by some of the authors also in other 

scenarios, mainly related to transportation infrastructures (see 

for instance [11-19]). 

In this paper, after presenting the sources in a wind turbine 

(section II), the authors describe the implementation of a wind 

farm in Italy in a noise predictive software (section III and 

IV). The resulting models give interesting information about 

the noise map and propagation in a country side area. In 

addition, the directivity of the source is implemented in the 

software, giving new results and map features. 

The main parameter that drives the prediction is wind 

speed. This value, in fact, fixes the power level of the turbine 

and influences the emissions of the wind farm. When it is not 

possible to measure this parameter or when the wind farm is 

still under designing, a forecasting model of the wind speed is 

needed. Classical deterministic models are not always 

adequate to describe the behavior of highly random 

phenomena such as wind. For instance, in [20-27], 

deterministic Time Series Analysis (TSA) models are 

successfully implemented by the authors for various purposes, 

such as acoustical noise, CO concentrations, electricity 

absorption forecasts and missing data imputation. Regarding 

wind speed prediction, literature presents different models (for 

instance [28-31]). In this paper, to have reliable predictions of 

wind speed, a stochastic linear model is proposed, based on 

the analysis of a univariate time series given by the hourly 

average wind speed in the region of interest. This model, 

briefly described in section III and applied in section V, will 

furnish the input values for noise mapping by means of 

software application. This “prediction chain” can be adopted 

to predict noise maps, having as input basically just the time 

series of wind speed, the geometry and the features of the area 

under investigation. Of course, the proposed technique can be 

implemented both in operating wind farm, to assess noise 

impact on existing buildings, or to design the best placement 

for turbines, minimizing the noise at the surrounding 

receivers. 

II. NOISE SOURCES IN A WIND TURBINE   

There are many types of noise that can be generated by 

wind turbine operation: tonal, broadband, low frequency, and 

impulsive. They are caused by turbine components, interaction 

of wind turbine blades with atmospheric turbulence, 

interaction of wind turbine blades with disturbed air flow 

around the tower of a downwind machine. In addition, they 

could be originated when the turbine blade encounters 

localized flow deficiencies due to the flow around a tower. 

Thus, the noise can be classified into mechanical noise and 

aerodynamic noise, according to the source.  

The mechanical noise is generated by the mechanical 

components of the wind turbines during their operation. The 

sources of this noise are mainly: gearbox, generator, yaw 

drives, cooling fans, auxiliary equipment. The hub and tower 

could act as loudspeakers, transmitting the mechanical noise 

and radiating it. The noise is directly propagated from the 

component surface or interior, into the air. 

The aerodynamic noise is the largest noise produced by the 

wind turbine operation and is correlated to the rotors speed. It 

could by classified into two groups: inflow turbulence noise, 

airfoil self-noise. These noises depends on the atmospheric 

turbulence and on the interaction between blades and wind. 

A more detailed analysis of wind turbine noise can be found 

in [32]. 

 

 
Fig. 2: Schematic of flow around rotor blade [8].  

 

III. MATHEMATICAL AND SOFTWARE TOOLS 

In this section, the authors present the mathematical and 

software tools used to produce the final predictive model.  

A. Predictive software and preliminary model description 

The noise map of the wind farm is produced in the 

predictive software CadnaA® (produced by DataKustik) 

framework. In this subsection, the preliminary model 

presented in [7-10] is recalled, to highlight the resources of 

this software. This preliminary model describes the source 

“wind turbine” in different operating condition, varying the 

geometry of the source, its power level and directivity.   

The software algorithm is based on “Angle Scanning” and 

inverse “ray-tracing” principles. The area under study can be 
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divided in many small surfaces in which a receiver is placed at 

a variable height (in our case is 2 m), obtaining the calculation 

grid. From each grid element, many rays with a full angle 

coverage (omni directive) are released and these rays, 

potentially after many reflections, intercept the noise source. 

The attenuation of the sound wave is given by the path length 

of the single ray. In addition, specific receivers can be inserted 

in the map, with the possibility to export the results in a 

worksheet.  

The first step consists in the software simulation of a single 

pointlike source, without directivity. This means that the 

source emits in the full solid angle. The parameters of the 

simulations are resumed in Tab.1 and the resulting noise map 

is reported in Fig. 3. 

 

 
Table 1: Simulation and calculation grid parameters. 

LW 98,0 dBA 

Height of the source 70 m 

Evaluation grid height 2 m 

Receivers height 4 m 

Distance between receivers 10 m 

 

 
Fig. 3: CadnaA® noise map (values are in dBA) for a pointlike 

source with Lw=98 dBA, height=70 m.  

 

 
Fig. 4: CadnaA® noise map (values are in dBA) for a pointlike 

source with Lw=98 dBA, height=70 m with high directivity.  

 

In order to obtain a more accurate noise map, the directivity 

of the source, due to the wind speed and direction, can be 

taken into account. Such a purpose is pursed giving, as an 

input in the source parameters, the directivity vector. Thus, a 

new simulation with the same parameters resumed in Tab. 1, 

is performed, assuming that the favourite direction of noise is 

west. The noise map obtained is shown in Fig. 4, in which is 

clearly shown the shift of the maximum point in the wind 

direction, with respect to the previous map. This result leads to 

the conclusion that, in addiction to orography and other 

features of the source and of the area, also the directivity is 

important to obtain accurate noise maps of the wind farm. 

B. ARIMA model 

The ARIMA models are Time Series Analysis (TSA) 

predictive models, largely adopted in many branches of 

scientific and economic literature. The authors already 

implemented deterministic TSA models for prediction of 

acoustical noise [20,21], CO concentration [22] and electrical 

energy absorption [23,24], such as for imputation of missing 

data [25-27]. In any case, the key point is the possibility to 

predict the observable with a low number of inputs and to any 

time in the future (with respect for instance to Artificial 

Neural Network). 

A very powerful class of stochastic linear model is the 

multiplicative seasonal ARIMA (Auto Regressive Integrated 

Moving Average), that will be adopted in this paper. In 

general, a multiplicative seasonal ARMA(p,q)x(P,Q)s model 

with seasonal period s, is defined as a model with AR 

characteristic polynomial 𝜙(𝑥)𝛷(𝑥) and MA characteristic 

polynomial 𝜃(𝑥)𝛩(𝑥), [33], where: 

 

{
𝜙(𝑥) = 1 − 𝜙1𝑥 − 𝜙2𝑥2 − ⋯ −  𝜙𝑝𝑥𝑝

𝛷(𝑥) = 1 − 𝛷1𝑥𝑠 − 𝛷2𝑥2𝑠 − ⋯ − 𝛷𝑃𝑥𝑃𝑠
    (1) 

 

{
𝜃(𝑥) = 1 − 𝜃1𝑥 − 𝜃2𝑥2 − ⋯ −  𝜃𝑞𝑥𝑞

𝛩(𝑥) = 1 − 𝛩1𝑥𝑠 − 𝛩2𝑥2𝑠 − ⋯ −  𝛩𝑄𝑥𝑄𝑠    (2) 

 

 

The ARMA model becomes ARIMA(p,d,q)x(P,D,Q)s once 

the d-th difference of the data is performed. This difference is 

done to achieve the stationarity of the series (see section V).  

This kind of models strongly depends on recent data (close 

to prediction period), both in parameters calibration and 

forecasting. This means that parameters evolve on time, 

according to changes in the process, and are able to recognize 

possible variations in the slope of the time series. This is the 

main difference between these models and the deterministic 

ones adopted in the previous papers by the authors, in which 

the coefficients were constant and did not allow to appreciate 

variations on time. 

IV. SIMULATIONS OF THE NOISE PRODUCED IN A WIND FARM 

In this section, a wind farm will be implemented in the 

predictive software CadnaA®. The software allows to 

simulate the entire area under study, implementing the real 
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orography and features of the terrain, the wind turbines (as the 

pointlike sources described in the previous section), together 

with any other relevant element, such as roads, buildings, 

foliage, etc.. After implementing the model, a noise map is 

produced, giving immediate information about the noise 

impact in the area, according to the different conditions 

considered in each simulation. 

A. Description of the wind farm 

The wind farm under study is located in Taverne Vecchie, 

in the town of Postiglione, province of Salerno (Italy). The 

map of the area, taken from Google maps© and then 

implemented in the software CadnaA, is shown in Fig. 5. 

The wind farm is composed by 12 turbines Vestas V52. The 

height of the hub is 65 m from ground level.  

The turbines are placed quite close to the town of 

Postiglione, that is a small village of about 2500 inhabitants. 

The area is rural and composed of small hills. Few roads, with 

quite low traffic flows, surround the wind farm. The noise 

produced by these roads can be negligible in the noise map 

drawing. 

B. Description of the simulation parameters 

As already stated in previous sections, each wind turbine is 

implemented into the software as a pointlike source. The value 

of the acoustic power assigned to each turbine is related to the 

wind speed in each hour. The acoustic source power as a 

function of the wind speed is reported in Fig. 6 [34]. The 

calculation is performed on a grid having 2x2 m
2
 elements. In 

each grid element, a virtual receiver, with height of 4 m, is 

placed and used to draw the map of the levels in the entire 

area. Of course, all the items in the map have been inserted 

with their relative height with respect to the terrain. The 

orography was implemented considering the height points 

given by the map of the area. Fig. 7 reports the 3D view of the 

wind farm. This figure shows the presence of turbines in the 

hill landscape and their relative heights. It is easy to notice 

how the orography of the terrain modifies the distance 

between sources and receivers, as will be highlighted by noise 

maps. 

C. Simulations of the noise map without source directivity 

The first simulations have been run neglecting the source 

directivity, i.e. assuming an isotropic emission of the wind 

turbines. In order to highlight the variation during a typical 

winter time day, hourly average wind velocities have been set, 

extracting information from online weather databases. Each 

wind speed corresponds to a source power level, as reported in 

Tab. 2. Once the power levels have been fixed, noise maps can 

be calculated for each different wind speed (i.e. for each 

different source power level). Results are reported in Figg. 8-

15. 

Looking at the resulting noise maps, it is evident that there 

is a strong influence of the orography of the terrain, that 

changes the distances between sources and receivers, 

according to the slope of the hill. In addition, it can be noticed 

that when the wind speed is basically constant, the noise map 

does not change. 

 
Fig. 5: Map of the area of Taverne Vecchie, Postiglione (Salerno, 

Italy) (Google Maps©). The turbines are highlighted by the light blue 

circles. 

 

 
Fig. 6: Source power level as  a function of the wind speed of a 

turbine Vestas V52, with height of the hub 65m [34].  

 

 
Fig. 7: 3D view of the wind farm area of Taverne Vecchie, 

implemented on CadnaA®. The blue crosses are the pointlike sources 

simulating the wind turbines.  

 
 Table 2: Simulation parameters. 

Hours 

Wind 

speed 

[m/s] 

Lw 

[dBA] 
Hours 

Wind speed 

[m/s] 

Lw 

[dBA] 

01 AM 5.3 98.3 01 PM 9.2 104.3 

02 AM 6.1 102 02 PM 8.9 104.6 

03 AM 6.4 102.8 03 PM 8.3 104.6 

04 AM 7.2 104 04 PM 7.5 104.2 

05 AM 7.5 104.2 05 PM 6.4 102.8 

06 AM 8.1 104.4 06 PM 6.4 102.8 

07 AM 8.6 104.7 07 PM 5.6 100.1 

08 AM 9.2 104.3 08 PM 5 97.4 

09 AM 9.4 104 09 PM 5.3 98.3 

10 AM 9.4 104 10 PM 5 97.4 

11 AM 9.4 104 11 PM 5.3 98.3 

12 AM 9.4 104 12 PM 5.3 98.3 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 262



 

 

 
Fig. 8: Noise map of the wind farm area. Source Power Level: 98.3 

dBA. Hours: 01 AM, 9PM, 11PM, 12PM.  

 

 
Fig. 9: Noise map of the wind farm area. Source Power Level: 102.2 

dBA. Hours: 02 AM.  

 

 
Fig. 10: Noise map of the wind farm. Source Power Level: 102.9 

dBA. Hours: 03 AM, 5 PM, 6 PM.  

 

 
Fig. 11: Noise map of the wind farm area. Source Power Level: 104.2 

dBA. Hours: 05 AM, 01 PM, 04 PM.  

 
Fig. 12: Noise map of the wind farm area. Source Power Level: 104.7 

dBA. Hours: 07 AM, 02 PM.  

 

 
Fig. 13: Noise map of the wind farm area. Source Power Level: 104 

dBA. Hours: 04 AM, 09 AM, 10 AM, 11 AM, 12 AM.  

 

 
Fig. 14: Noise map of the wind farm area. Source Power Level: 104.6 

dBA. Hours: 3 PM.  

 

 
Fig. 15: Noise map of the wind farm area. Source Power Level: 100.1 

dBA. Hours: 7 PM.  
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New simulations have been executed, to perform a 

comparison with the noise maps produced in presence of 

directivity (see next subsection), considering a different wind 

speeds set, in a day of the week in which variation in the wind 

direction were recorded. The parameters used in the new 

simulations are resumed in Tab. 3. In this case, the wind 

direction has not been used.  

Resulting noise maps are reported in Figg. 16-19, and, in 

Fig. 20, the 3D view of the area is showed. 

It is interesting to notice that, of course, the higher levels 

are obtained close to the turbines and for higher wind speeds. 

In addition, outside the wind farm area, the noise rapidly 

decreases.  

 
Table 3: New simulation parameters. 

Hours 
Wind velocity 

[m/s] 
Direction LWA       [dBA] 

01am-02am 5.28 W 98.3 

03am-05am 5 WSW 97.4 

06am-08am 4.7 W 96 

09am-11am 5 W 97.4 

12pm-2pm 5.28 WNW 98.3 

3pm-5pm 3.6 WNW 93.4 

 

 
Fig. 16: Noise map of the wind farm area. Source Power Level: 98.3 

dBA.  

 

 
Fig. 17: Noise map of the wind farm area. Source Power Level: 97.4  

dBA.  

 

 
Fig. 18: Noise map of the wind farm area. Source Power Level: 96 

dBA.  

 

 
Fig. 19: Noise map of the wind farm area. Source Power Level: 93.4 

dBA.  

 

 
Fig. 20: 3D noise map of the wind farm area obtained in CadnaA®. 

The Source Power level is 97.4 dBA.  

 

D. Simulation with the directivity of the sources 

In this subsection, simulations with the directivity of the 

noise source are presented, assuming that this feature of the 

turbine depends on the wind direction. 

Let us recall that turbines have an internal engine able to 

orient the nacelle to maximize the rotor speed and, 

consequently the energy production. This means that the 

turbine rotates according to the wind direction.  

The parameters of the simulations with directivity are the 

same of Tab.3. 

In order to obtain a realistic noise map, wind speed data of a 

typical day of the winter months were used. The choice was a 

day with a moderate variation of the wind direction, to see 
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how noise maps change. It is important to underline that, 

usually large changes in the wind direction correspond to high 

values of the wind speed. In this cases the turbines do not 

operate, for preventing mechanical damages. 

Resulting noise maps are reported in Figg. 21-26, and, in 

Fig. 27, the 3D view of the area is showed.  

It is evident that the directivity change very much the noise 

map simulations, influencing the higher values zones position. 

Again, wind speed is the most influent parameter in noise 

production.  

 

 

 
Fig. 21: Noise map of the wind farm area. Source Power Level:  98.3 

dBA, with a preferred direction: West.  

 

 
Fig. 22: Noise map of the wind farm area. Source Power Level: 97.4 

dBA, with a preferred direction: WSW.  

 

 
Fig. 23: Noise map of the wind farm area. Source Power Level: 96 

dBA, with a preferred direction: W.   

 

 
Fig. 24: Noise map of the wind farm area. Source Power Level: 97.4 

dBA, with a preferred direction: West.  

 

 
Fig. 25: Noise map of the wind farm area. Source Power Level: 

98.3dBA, with a preferred direction: WNW.  

 

 
Fig. 26: Noise map of the wind farm area. Source Power Level: 93.4 

dBA, with a preferred direction: WNW.  

 

 

 
Fig. 27: 3D noise map of the wind farm area obtained in CadnaA®. 

The source power is 97.4 dBA with directivity.   
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V. PREDICTION OF WIND SPEED BY ARIMA MODEL 

In this section, a seasonal ARIMA model is adopted to 

predict the wind speed. Since this parameter is an essential 

input for noise map drawing, the more precise is the predictive 

model, the more effective will be the noise prediction. 

For calibrating the model, a dataset of wind speed in the 

area of the wind farm was needed. Due to the absence of a 

weather station with open access data, the simulation was 

done on data available on the web [35]. From this website, 

hourly wind speed data related to one week (from 1 p.m. of 

July 21 to 3 a.m. of July 28, that are 159 data) have been 

downloaded. Since these data were given in km/h and for 

ground level, they have been converted in m/s and 

transformed to value at 65 m (i.e. the height of the wind 

turbine nacelle). The latter transformation has been performed 

according to the wind speed power law formula [36]: 

 

𝑢 = 𝑢𝑟  (
𝑧

𝑧𝑟
)

𝛼

    ,             (3) 

 

in which u is the computed wind speed, z is the height at 

which the wind speed is required and zr is the reference height, 

i.e. the one in which the wind speed ur is given. 

The roughness has been chosen equal to 0.18, according to 

a country side terrain with very low density of buildings and 

obstacles. 

Once the wind speed dataset is ready, a calibration dataset 

of the first 135 periods has been set and used to build the 

model. The last 24 data have been kept apart, to be used in the 

validation phase (see Fig. 28, in which the solid black line 

represents the calibration data and the dashed red line is the 

validation dataset).  

Since the calibration data are not normally distributed, a 

one-step difference is performed to achieve a stationary and 

normal dataset. In addition, the autocorrelation function of the 

data is evaluated as a function of the lag. A daily seasonality 

has been exploited in the differenced data, since the 24 hours 

lag has a significant autocorrelation (see Fig. 29).  

 

 
Fig. 28: Wind speed data (hourly mean) in Postiglione during July 

2016 [32]. The dataset is divided in 135 calibration data (black solid 

line) and 24 validation data (red dashed line).  

 

 
Fig. 29: Correlogram of the wind speed series after performing the 

first order difference. The value of autocorrelation coefficient is 

plotted as a function of the lag. 

 

For these reasons, a seasonal ARIMA model, with 24 hours 

lag and first order difference, seems to be the appropriate 

choice. In order to choose the best model, a ranking of the 

possible models has been produced in the R framework, 

according to the AIC (Akaike Information Criterion) and BIC 

(Bayesian Information Criterion). The results are reported in 

Table 4, were the models are sorted by BIC value. 

Since the SARIMA(1,1,0)x(1,0,1) model minimizes both 

the AIC and BIC, it is reasonably the best choice for this 

dataset. 

Model parameters were estimated in the R framework, 

using the maximum likelihood method, and the results are 

reported in Table 5. 

 
Table 4: Table of the seasonal ARIMA models tested on the wind 

speed time series. The models are ordered by the best value of the 

BIC and AIC specification methods. N is the number of parameters.  
Rank p d q P D Q N BIC AIC 

1 1 1 0 1 0 1 3 221.99 213.39 

2 1 1 1 1 0 0 3 221.99 213.39 

3 0 1 0 0 0 2 2 225.46 219.72 

4 0 1 2 0 0 0 2 225.46 219.72 

5 0 1 0 1 0 2 3 229.23 220.63 

6 0 1 2 1 0 0 3 229.23 220.63 

7 1 1 0 0 0 2 3 229.23 220.63 

8 1 1 2 0 0 0 3 229.23 220.63 

9 0 1 1 0 0 2 3 230.32 221.72 

10 0 1 2 0 0 1 3 230.32 221.72 

11 0 1 1 1 0 2 4 234.13 222.66 

12 0 1 2 1 0 1 4 234.13 222.66 

 

 
Table 5: Estimated coefficients and standard errors for the 

SARIMA(1,1,0)x(1,0,1) model. The seasonal lag s is 24.  

 ar1 sAR1 sMA1 

Coefficients 0.4048 0.9961 -0.9338 

Standard Errors 0.0822 0.0358 0.2981 
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With these coefficients, a model diagnostic can be 

performed in the calibration dataset, in particular by means of 

residual analysis. The residual (error) is defined as: 

 

𝑒𝑡 = 𝐴𝑡 − 𝐹𝑡    ,             (4) 

 

in which At is the actual observed wind speed and Ft is the 

forecast. 

The statistics of residuals are resumed in Table 6 and the 

histogram is reported in Fig. 30. It is evident that the error 

distribution is normal, with mean zero and low standard 

deviation. These results are consistent with the theoretical 

assumptions of the model. 

Once the model has been calibrated and the parameters 

evaluated, prediction of wind speed can be performed in the 

following hours. These forecasts are compared with the 24 

validation data and the results of the comparison are reported 

in Fig. 31. It is evident that the prediction is affected by a 

delay. This is a common feature of autoregressive models, as 

reported in [33]. 

The statistics of the error in the validation phase, that can be 

assumed as model performance indicators, are resumed in 

Table 7. The mean of the error is -0.62 m/s, showing a slight 

overestimation of the forecast. Of course mean and standard 

deviation worsen with respect to calibration data residuals 

analysis, since in that case the data used for the error 

computation are the same used in the estimation of the 

parameters of the model. 

 

 
Table 6: Summary of statistics of the errors in the calibration data 

set, 135 data. 

Mean 

[m/s] 

Std.dev 

[m/s] 

Median 

[m/s] 

Min 

[m/s] 

Max 

[m/s] 
skew kurt 

0 0.48 0 -1.44 1.49 0.25 0.47 

 

 

 
Fig. 30: Frequency histogram of the errors calculated on the 135 

calibration data. 

 

 

 

 
Fig. 31: Wind speed in the 24 validation hours. The red dashed line 

shows the actual data, the green dotted line shows the prediction. All 

the data are hourly mean in meters per second.  

 

 
Table 7: Summary of statistics of the errors in the validation data set, 

24 data. 

Mean 

[m/s] 

Std.dev 

[m/s] 

Median 

[m/s] 

Min 

[m/s] 

Max 

[m/s] 
skew kurt 

-0.62 0.76 -0.8 -1.55 1.41 1.28 0.78 

 

 

A. Noise map of the area with predicted wind speed 

Once the wind speed has been predicted in a given time 

range (in our case 24 hours), the wind farm noise map can be 

evaluated according to the software model presented in section 

IV and to the wind conditions obtained with the SARIMA 

model.  

In this paper, the authors present the noise map related to 

the average wind speed in the time range that goes from 7 a.m. 

to 7 p.m., i.e. the “day” range defined in the EU directive [37]. 

This value is 4.46 m/s and, according to the procedure 

described in subsection IV.B, is related to a sound power 

source of 94.6 dBA. The resulting noise map is presented in 

Fig. 32. 

In addition, the noise map related to the maximum value of 

wind speed predicted by the model (5.76 m/s, measured at 2 

p.m.), and consequently related to the maximum value of 

sound power level (100.7 dBA), is presented in Fig. 33.  

Of course the maximum prediction of wind speed leads to 

higher noise values in the map. Still the orography influences 

the propagation and, again, a directivity could be 

implemented, to take into account wind direction.  

Let us also underline that, once the area is modelled in the 

software, the procedure presented in this paper can be applied 

anytime, to predict wind speed, and thus noise map, in the 

following 24 hours. This prediction can be used to tune the 

operating time of the turbines, in order to reduce the noise 

impact on surrounding buildings. 
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Fig. 32: Noise map of the wind farm area, with average wind speed 

predicted by the SARIMA model. Source Power Level: 94.6 dBA. 

 

 
Fig. 33: Noise map of the wind farm area, with maximum wind speed 

predicted by the SARIMA model. Source Power Level: 100.7 dBA. 

 

VI. CONCLUSIONS 

In this paper the authors faced the problem of the noise 

produced by a wind farm by means of predictive software 

approach and Time Series Analysis models for wind speed 

forecast. The modelling of a wind park placed in Postiglione 

(Italy) in the framework of the software allowed to run various 

simulations, with different wind speeds and directions. Results 

showed that the operation of the turbines produces a noise 

map that is clearly influenced by the position of each turbine 

with respect to the hill slope. In fact, even though wind speed 

is the most influent parameter in noise production, basically 

because it fixes the source power level, the orography of the 

terrain represents an important feature in the noise 

propagation, since it affects the distance between sources and 

receivers. The introduction of directivity of the source, related 

to wind direction and, consequently, to sound propagation, led 

to significant variations in the noise map. In particular the 

shape of the sound field is modified, introducing, as expected, 

a shift of the noise levels in the direction of the wind.  

In the second part of the paper, a stochastic linear model 

based on the analysis of an univariate time series composed by 

the hourly average wind speed in the region of interest is 

presented. In particular, a seasonal ARIMA model for wind 

speed prediction has been selected. The parameters have been 

evaluated on a calibration dataset of 135 wind speed data and 

the forecasts have been compared with 24 validation data. The 

diagnostic of the model, performed with a residuals analysis, 

confirmed the theoretical assumptions (zero mean and normal 

distribution) in the calibration dataset and showed good 

performances in terms of error statistics, in the validation 

phase. In this phase, a slight overestimation and a short delay 

(typical of autoregressive models) with respected to observed 

data were exploited by the forecasts. Let us also remind that 

the prediction time range is 24 hours, that is, in some sense, 

more powerful with respect to one step ahead prediction.  

Finally, the predicted wind speed values have been used as 

input in the software model described above, in order to 

produce noise maps related to the chosen wind conditions. 

The procedure described in this paper, merging wind speed 

and noise map predictions, is useful to evaluate the noise 

propagation in the area of the wind farm with any wind speed 

and direction condition and furnishes a tool to help policy 

maker in wind turbine placement choice or wind farm design. 

This study can be further developed, for instance 

considering wind speed distribution, such as the authors 

performed in [38] for vehicles speed affecting road traffic 

noise, or considering a Poisson process counting the number 

of exceedances of a given value of the wind speed (that could 

be the turn on value of the turbine), such as the authors did in 

[26,27,39,40] for noise threshold surpassing. 
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