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Abstract—We consider a problem of simulating strictly stationary
random sequences. A modification of an autoregression algorithm of
first order is proposed. It allows to simulate of stationary random
sequences with uniform distribution. Correlation properties of result-
ing random sequences are examined. Value R(1) of autocorrelation
function must be in [−0.625, 0.625]. As the uniform distribution is
the base for the inverse random sampling, simulated sequence can
be further transformed to get the random sequence with specified
distribution.
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I. INTRODUCTION

S IMULATING of random processes is used for model-
ing objects and phenomena of different nature, wherein

stationary processes have an important role for describing
time series with parameters such as the mean, variance and
correlation structure not changing over time and not following
any trends.

The objective of this work is to propose and examine the
method for simulating the strictly stationary random sequences
with uniform probability distribution. Request for strict sta-
tionarity allows for more appropriate and adequate modeling,
but makes the problem more complicated and intricate. The
proposed method is a modification of the autoregressive algo-
rithm that is based on the autoregressive model.

Autoregression model of n-th order AR(n)

Y (t) = a1Y (t− 1)+ a2Y (t− 2)+ . . .+ anY (t−n)+ bX(t)

can be used to describe wide-sense stationary random pro-
cesses if the complex roots of the characteristic polynomial
λn −

∑n
i=1 aiλ

n−i = 0 lie inside the unit circle.
If the distribution of the added random variable X(t) is

normal, then the process will also be normal and strictly
stationary. That happens because next member of the sequence
is determined as a linear combination of previous and an added
random variable, and it is known that the linear combination
of normally distributed random variables is also normally
distributed.

In [1] authors propose to transform strictly stationary normal
sequences using probability integral transform. The necessity
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to inverse non-elementary cumulative distribution function of
Gaussian random variable is a downside of that approach.

In [2] author proposes to simulate strictly stationary ran-
dom sequences using autoregression algorithm with stochastic
binary orthogonal coefficients. The downside of resulting
sequences is that the next value is either independent of all
the previous or equals to one of them, i.e. the joint probability
function may turn up unfit to model certain processes (see [5]).

In [3] the probability density function of added random
variable in AR(1) model is found for some distributions.

The topic of this article is a modification of an AR(1)
model which allows simulating of strictly stationary random
sequences with standard uniform distribution and specified
value of autocorrelation function R(1) in [−0.625, 0.625]. It
continues the work described in [4]. Simulated sequence can
be further transformed using inverse transform sampling to get
a specified distribution.

The sections of this work are dedicated to the description
and reasoning of the proposed method; analysis of the joint
probability distribution function of the consequential members
of the generated sequence and its correlation properties; recap
of algorithm and example; using the proposed method in
conjunction with inverse transform sampling method to get
the distribution of sequence members different form uniform.

II. DESCRIPTION OF METHOD

Linear combination Y ∗(t) = Y (t−1)+b·X(t) where b ≤ 1
of two uniformly distributed random variables Y (t − 1) and
X(t) has the probability density function (see fig. 1)

g∗(y) =


y
b , if y ∈ [0, 1] ,
1
b , if y ∈ (1, b] ,
1+b
b −

y
b , if y ∈ (b, b+ 1] ,

0, if y 6∈ [0, b+ 1] .

We define manipulating intervals of probability density
function (PDF) as a linear transformation that allows to change
this PDF to that of a uniform distribution in [0.5, b + 0.5],
which then can be easily transformed to standard uniform
distribution.

If y∗ ∈ [0; 0, 5], then y∗∗ = (1−y∗). If y∗ ∈ [b+0, 5; b+1],
then y∗∗ = (2b−y∗+1). That way the probabilities of random
variable Y ∗∗ belonging in [0, 1] and [b, b + 1] are changed
compared to that of Y ∗, and PDF g∗∗(y) is changed too.

Event Y ∗∗(t) ∈ [0, 0.5] ∪ [b + 0.5, b + 1] is impossible,
and therefore g∗∗(y) = 0 in this set. If y∗∗ ∈ [0.5, 1] then
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Fig. 1. Linear combination Y (t−1)+ b ·X(t) of two uniformly distributed
random variables where b ≥ 1

g∗∗(y) = g∗(y) + g∗(1 − y) = y
b + 1−y

b = 1
b as the

probability of random variable getting into this interval is
increased. Similarly if y∗∗ ∈ [b, b + 0.5], then g∗∗(y) =
g∗(y) + g∗(2b− y + 1) = b+1

b −
y
b +

b+1
b −

2b−y+1
b = 1

b .
After applying the described transformation we obtain a

random variable with PDF

g∗∗(y) =

{
1
b , if y ∈ [0.5, b+ 0.5] ,

0, if y 6∈ [0.5, b+ 0.5] .

If y∗∗ is further transformed that y = (y∗∗ − 0.5
b , then

Y (t) = Y has a standard uniform distribution.
Thus the following member of the sequence either equals

linear combination ( 1bY (t − 1) + X(t)) of two independent
uniform random variables or is a linear function of such a
combination.

III. ANALYSIS OF GENERATED SEQUENCES

A. Finding joint probability density function

Joint probability density function of Y (t− 1) and Y (t) is

g(y1, y2) =


1, if (y1, y2) ∈ A1,

2, if (y1, y2) ∈ A2 ∪A3,

0, if (y1, y2) 6∈ A1 ∪A2 ∪A3,

where sets A1, A2 and A3 are described as follows:
A1 =

{
(y1, y2) | y1 ∈ [0, 1] ∧ y2 > 0.5−y1

b ∧
∧y2 < b−0.5+y1

b ∧ y2 > y1−0.5
b ∧ y2 < b+0.5−y1

b

}
,

A2 =
{
(y1, y2) | y1 ∈ [0, 1] ∧ y2 > 0 ∧ y2 < 0.5−y1

b

}
,

A3 =
{
(y1, y2) | y1 ∈ [0, 1] ∧ y2 < 1 ∧ y2 > b+0.5−y1

b

}
(see fig. 2 for the support of that joint probability density
function).

This joint PDF was found the way similar to that finding
the one-dimensional PDF of g∗∗(y). First we found the joint
probability density function of Y (t−1) and Y (t) = Y (t−1)+
bX(t), b ≥ 1, and then altered it according to manipulations
being made.

B. Correlation properties

As we know the joint probability density function g(y1, y2)
of the two adjacent members of the simulated sequence, we
can calculate the correlation coefficient R(1) between them.

R(1) =

∫∞
−∞

∫∞
−∞ y1y2g(y1, y2)dy2dy1 − E[Y (t− 1)]E[Y (t)]√

D[Y (t− 1)]D[Y (t)]
.

1/b

1-1/b
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Fig. 2. Support of joint probability distribution function g(y1, y2)
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Fig. 3. Dependence of R(1) on parameter b

As each sequence member has a standard uniform distri-
bution, its expected value and dispersion are known E[Y (t−
1)] = E[Y (t)] = 0.5, D[Y (t − 1)] = D[Y (t)] = 1

12 , and
we also know the joint probability density function g(y1, y2).
Therefore after finding the integral’s value we get

R(1) =

(
1

4
+

1

12b
− 1

32b2
− 1

4

)
· 12 =

1

b
− 3

8b2
.

As the value of parameter b is chosen to be greater or equal
than 1, the maximum value of R(1) is 0.625. See figure 3 for
the dependence of R(1) on b.

That dependence is easily reversible, which is useful when
it is necessary to determine the value of parameter b needed
for the required value of R(1):

b =
1

2 ·R(1)
+

√
1

4 · (R(1))2
− 3

8 ·R(1)
.

As the one-dimensional PDF is symmetrical relative to the
point 0.5, taking the value (1 − y) instead of y as the next
member of the sequence won’t change the uniformity of the
distribution, but the sign of correlation coefficient will be
changed to the opposite.

As the simulated sequence is stationary, the rest of values
of autocorrelation function can be found as R(τ) = (R(1))|τ |

.
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IV. RECAP OF ALGORITHM

If |R(1)| ∈ (0, 0.625], then the algorithm of simulating the
random sequence with exponential correlation function and
standard uniform distribution of its members is as follows:

1. b := 0.5|R(1)|−1 +
√
0.25(R(1))−2 − 0.375|R(1)|−1.

2. y0 := U [0, 1].
3. y∗t := yt−1 + bxt.
4. If y∗t ∈ [0, 0.5], then y∗∗t := 1−y∗t . If y∗t ∈ [b+0.5, b+1],

then y∗∗t := 2b∗t + 1.
5. If R(1) > 0, then yt :=

y∗∗t −0.5
b , else yt := 1− y∗∗t −0.5

b .
6. Repeat steps 3–5.
Step 1 is finding the value of algorithm’s parameter cor-

responding to the required value of R(1). Step 2 is made
to get the first member of the sequence. Main part of the
algorithm is loop described in step 3–5. Manipulating intervals
of probability density function takes place in step 4. Step 5
includes check for negativity of R(1), if it is so, an additional
linear transformation takes place to meet such a requirement.

Thus the next member of the sequence is derived from
the previous as either linear combination of latter and an
independent uniformly distributed random variable or a linear
function of such a linear combination. It is denoted as yt in
step 5.

V. EXAMPLE

Let us simulate a sequence with uniform distribution and
R(1) = 0.42.

As R(1) = 0.42 < 0.625, we can apply manipulating
intervals of PDF approach to get the desired sequence. Let
us find the parameter b

b =
0.5

0.42
+

√
0.25

0.422
− 0.375

0.42
≈ 1.9146.

We get the first member of the sequence y0 as a uniform
random variable in [0, 1], and then apply the algorithm from
section IV to get the sequence of desired length.

After 10000 iterations of the described algorithm we get
a sequence of numbers with sample mean 0.4951, sample
variance 0.0834, and sample correlation between adjacent
members 0.4241. Expected values for standard uniform dis-
tribution and chosen parameters are 0.5, 0.83(3) and 0.42
respectively.

When we plot the points with coordinates (yt−1, yt) we will
get the visualization of the joint PDF (see fig. 4). As we can
see it looks as we predicted in section III.

VI. USING INVERSE TRANSFORM SAMPLING

The general method for modeling a random variable with a
specified distribution is the inverse transform sampling. As
Y (t) has a uniform distribution of [0, 1] and if X̃ has a
cumulative distribution function F̃ (x), then the random vari-
able F̃−1(Y (t)) has the same distribution as X̃ . Correlation
coefficient will be greater in resulting sequence if it was
greater in the original sequence [6].

Joint cumulative distribution function of the adjacent trans-
formed variables X̃(t− 1) and X̃(t) is

F̃ (x1, x2) = G(F̃ (x1), F̃ (x2)).
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Fig. 4. Points (yt−1, yt), t = 1, 2, · · · , 10000 of simulated random
sequence, R(1) = 0.42

Therefore joint probability density function is

F̃ (x1, x2) =
∂2F̃ (x1, x2)

∂x1∂x2
= F̃ (x1)F̃ (x2)g(F̃ (x1), F̃ (x2)).

For the sequences obtained using described method

F̃ (x1, x2) =


f̃(x1) · f̃(x2), if (x1, x2) ∈ A1,

2f̃(x1) · f̃(x2), if (x1, x2) ∈ A2,

0, if (x1, x2) 6∈ A1 ∪A2,

where areas Ã1 and Ã2 are

Ã1 =
{
(x1, x2) | x1 ∈ [F̃−1(0), F̃−1(1)]∧

∧x2 > F̃−1
(
0.5−x1

b

)
∧ x2 < F̃−1( b−0.5+x1

b )∧
∧x2 > F̃−1(x1−0.5

b ) ∧ x2 < F̃−1( b+0.5−x1

b )
}
,

Ã2 =
{
(x1, x2) | x1 ∈ [F̃−1(0), F̃−1(1)]∧

∧x2 ∈ [F̃−1(0), F̃−1(1)] ∧ (x2 < F̃−1( 0.5−x1

b )∨
∨x2 > F̃−1( b+0.5−x1

b ))
}
.

So the correlation coefficient between the adjacent members
of the sequence is

R(1) =

(∫ F̃−1(0.5)

F̃−1(0)
x1f̃(x1)

(∫ F̃−1
(

b−0.5+x1
b

)
F̃−1(0)

x2f̃(x2)dx2+

+
∫ F̃−1( 0.5−x1

b )
F̃−1(0)

x2f̃(x2)dx2

)
dx1+

+
∫ F̃−1(1)

F̃−1(0.5)
x1f̃(x1)

(∫ F̃−1(1)

F̃−1 ( x1−0.5

b )
x2f̃(x2)dx2+

+
∫ F̃−1(1)

F̃−1
(

b+0.5−x1
b

) x2f̃(x2)dx2) dx1−
−E2[X̃(t)]

)
D−1[X̃(t)].

It is important to know the maximum values of R(1) that
can be obtained for certain distributions. They can be found
if we put b = 1.
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VII. CONCLUSION

Suggested method is a modification of an algorithm based
on AR(1) model. It allows simulating of strictly stationary ran-
dom sequences with standard uniform distribution and speci-
fied value of autocorrelation function R(1) in [−0.625, 0.625].

As the uniform distribution is a base for inverse transform
sampling method, the proposed approach approach may be
used to simulate random sequences with wide range of prob-
ability distributions, which is a merit of proposed approach.
Ease of implementation is also an advantage of the proposed
method.

Main disadvantage is the inapplicability for AR(n) models
with n > 1 as it this case the resulting sequence’s PDF won’t
correspond to uniform distribution. The other disadvantage is
inability to get R(1) > 0.625 or R(1) < 0.625.

Computer modeling confirms the theoretical calculations
and predictions of this paper.

Further work may include application of manipulating in-
tervals of PDF approach for simulating random fields, or use
of manipulating intervals of PDF in conjunction with the
autoregression algorithms with stochastic binary orthogonal
coefficients for getting the autoregression model with higher
order, but more suitable joint PDF than in the base method.
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