
 

 

  
Abstract—Direct numerical simulations of the flowfield structures 
and the properties of the particle dispersion in the quasi-2D turbulent 
mixing layer (hydrogen-air) are performed by solving the time-
dependent, compressible Euler equations. The 3D numerical code 
using the high-order essentially non-oscillatory (ENO) scheme is 
developed. The dispersion of the particles is studied by following 
their trajectories in the mixing layer with the Lagrangian method. In 
detail, the effect of the initial mass fraction of hydrogen and the 
number of particles on the growth of vortices and their thickness are 
studied. The simulation reveals that the capturing of the particles by 
the vortices essentially depend on the density of particles. 
 

Keywords—supersonic shear flow, mixing layer, particle dispersion,  
multi-species flow , ENO-scheme. 

  

I. INTRODUCTION 
N many practical problems gas flows containing particles 

are involved. Particle-laden flows play an important role in 
high-speed technologies such as solid rocket propulsion 
systems and high-speed fuel combustors. The flow physics in 
such devices is very complex due to shock dynamics, 
turbulence and particle dispersion in mixing layers. 

Understanding the dynamic behavior of particles in vortex 
system is important. Free mixing layers have been extensively 
studied over the past decades. Direct numerical simulation 
(DNS) is a reliable tool and has been successfully used for 
compressibility effects in the turbulent shear layer [1], spatial 
mixing layers [2], single-phase and two-phase flows [3]. The 
particle dispersions  in  the mixing layers for the different 
Stokes numbers have been obtained in [4].  In that study it has 
been shown that  DNS is capable to reveal detailed 
mechanisms of vortex structure formulation in mixing layer. In 
spite of that there are a few investigations of a compressible 
multispecies shear layer flow with the dispersion of particles.    

This work is our first stage of the simulation in a 
comprehensive study of the flow-particle interactions in a 
three-dimensional multispecies turbulent medium.  

The purpose of this paper is particle – multi-species flow on 
the basis Eulerian-Lagrangian of representation are 
numerically simulated. The third order essentially non-
oscillatory (ENO) scheme is adopted to solve the system of 
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Euler equations for the supersonic planar mixing layer. A 
Lagrangian approach is used to trace the particles which move 
in gas flow.  

 

II. PROBLEM DESCRIPTION 
The inflow physical parameters profile across the non-

premixed hydrogen (fuel) and air stream at the leading edge of 
the splitter plate is assumed to vary smoothly according to a 
hyperbolic-tangent function (Fig. 1).  Particles enter at the 
splitter plate, i.e. particles distribution is in the mixing layer. 
The effect of the particle on the fluid and the particle-particle 
interaction are neglected (one-way coupled). 

 
 

 
Fig. 1 an illustration the flow configuration 

 

III. THE MATHEMATICAL MODEL AND GOVERNING 
EQUATIONS 

 

A. Euler Equation For Multi-Species Gas 
The two-dimensional system of Favre-averaged Navier-

Stokes equations for multi-species flow is 
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where the vector of the dependent variables and the vector 

fluxes are given as 
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Here, the viscous stresses, thermal conduction, and diffusion 
flux of species are: 
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where kY  is the mass fraction of k th species, Nk ...1= , where 
N  is the number of components in a gas mixture. ,τ q  and kJ   
are the viscous stress tensor, the heat flux and the diffusion 
flux, respectively. 

Pressure, total energy and specific entalphy of the thk  
species are defined by 
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The specific heat at constant pressure for each component 

pkc  is: 
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The specific heat at constant pressure for each component 

pkc  is: 
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where the molar specific heat pkC  is given in terms of the 

fourth degree polynomial with respect to temperature, 
consistent with the JANAF Thermochemical Tables [5]. 

The system of the equations (1) is written in the 
conservative, dimensionless form. The air flow parameters are 

∞∞∞∞∞∞∞ RWhTwu ,,,,,,ρ , hydrogen jet parameters are 

0000000 ,,,,,, RWhTwuρ . In terms of dimensionless variables, 

2
∞∞uρ  is the scale, ∞∞ WTR /0  is the enthalpy scale, 0R  is the 

molar specific heat scale and δ   (the thickness of the splitter 
plate) is the spatial distance. 

 

B. Particle Equation in the Lagrangian Frame 
The following assumptions are made for the dispersed 

phase: 
- all particles are rigid spheres; 
- particle-particle interactions are neglected; 
- the effect of particles on the fluid is negligible. 

With these assumptions the Lagrangian transport of the 
particles through a continuous carrier gas flow is characterized 
by the following governing equations after applying the Favre 
filter. The particles are tracked individually in a Lagrangian 
manner. The Lagrangian particle equations for the position and 
the velocity are given by:  
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where px



 and pu


 are respectively the position and 

velocity vectors for a particle represented by the subscript p ;  
'u  is the turbulent  fluctuating component and pD  is the drag 

force with the particle radius pr  is given by 
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The drag coefficient DC  is taken in accordance with the 

solid sphere drag correlation [6]: 
 









>

≤





 +

=
1000e         R          0,424,    

1000ReRe
6
11

Re
24

C

p

p
32

p
pD

    ,
 

 

and 
μ

u'uu2ρ
Re p

p



−+
=  is the particle Reynolds 

number, µ  is the gas viscosity. 
The equation for the particle energy is described by 

following 
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where g  is the gravity force acting on the particle, pm  is 

the particle mass, 
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
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ppp rm πρ  is the density of the 

solid particles, ( ) ppconv cK Prµ= is the convective heat 

transfer coefficient between the gas and the particle.  
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IV. INITIAL AND BOUNDARY CONDITIONS 
At the entrance: 

- for multi-species gas: 

0
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0=x ,   1H≤0 <z . 
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TR
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γ

= , 0w2 = , ∞pp2 = , ∞TT2 = ,

∞2 kk YY =  at 0=x ,   21 H≤≤H zδ+ . 

- for particles: 

p0ρρ =p , p0TTp =   at 0=x , δ5Hz 1 −=  and  δ5Hz 1 += . 

In the region of δ+11 H≤≤H z  all physical variables are 
varied smoothly from the hydrogen (fuel) flow to the air flow 
using a hyperbolic-tangent function of any variable φ , so the 
inflow profiles are defined by 

( ) ( ) ( )θφφφφφ /5.0tanh-5.05.0(z) 1212 z++=  at 0=x ,  
Hz ≤≤0 .  

where ),,,,,( kYTpvu=φ  θ  is the momentum thickness. 
The pressure is assumed to be uniform across the mixing layer. 
On the lower and upper boundaries the  condition of symmetry 
is imposed. At the outflow, the non-reflecting boundary 
condition is used [7]. 

In order to produce the roll-up and pairing of vortex rings, 
an unsteady boundary condition for velocity field is used at the 
inlet plane [2], i.e. 
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The random phase equation had the following form 
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where )uu(U 0−= ∞∆  is the difference of  the two stream 

velocities which measures the strength of shearing. 
)z(Gaussian  is a Gaussian function which has a peak value of  

the unity at z=0 and the σ2±  width is matched to the 
vorticity layer thickness at the entrance. Coefficient  001.0=A  
is the forcing amplitude. The factorw∆   is taken as [7]. The  
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 is the frequency of 

perturbation. 
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V. METHOD OF SOLUTION 
The numerical solution of the equations system (1) is 

calculated in two steps. The gas dynamic parameters ( tEwu ,,,ρ ) 
are solved in the first-step and the species ( 7,1, =kYk ) with 
mass source terms are solved in the second-step. The 
approximation of the convection terms is performed by the 
ENO scheme of  the third-order accuracy [8]. The ENO 
scheme is constructed on the basis of Godunov method, where 
piecewise polynomial function is defined by the Newton's 
formula of the third degree. For the  approximation of the 
derivatives of the diffusion terms, the second-order central-
difference operators are used. The system of the finite 
difference equations are solved by using matrix sweep method. 
Then it is necessary to define Jacobian matrix which represents 
difficult task in the case of the thermally perfect gas. This 
problem is connected by explicit representation of pressure 
through the unknown parameters. Here, the pressure is 
determined by using the following formula 
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where smsm eh=γ  is an effective adiabatic parameter of 

the gas mixture, ∑ ∫
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the enthalpy and internal energy of the mixture minus the heat 
and energy of formation; KT 2930 =  is the standard 
temperature of formation. The system of the original equations 
is solved by the use of the Euler method. 

The dispersion behavior of the particles is then computed by 
numerically solving equations (2). 

 

VI. RESULTS AND DISCUSSION 
The results of free mixing layer simulation with and without 

the particles is presented below. 
The simulations of the hydrogen-air flows are performed in 

the dimensionless rectangular domain of  350 in stream-wise 
direction and 80 in transverse direction. The splitter plate 
thickness is 3175.0=δ  cm. The initial momentum thickness 
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enters from the upper half  of domain and air enters from the 
lower one. The hydrogen flow parameters are 0.20 =M , 

2000T0 =  K, 101325p0 =  Pa and the air flow parameters are 
1.2=∞M , 2000T =∞  K, 101325p =∞  Pa. The initial mass 

fraction of the upper flow is  5.0Y
2H = , 5.0Y

2N =  and the lower 

flow is 2.0
2

=OY , 8.0
2

=NY . 
Isolines of hydrogen (H2) fraction is presented in Figure 2. 

Numerical result shows the pairing phenomenon between two 
adjacent vortices and formation of the new vortex which is 
moved downstream. This vortex enlargement process occurs 
randomly in space and time.  From figure it is seen the spacing 
between two adjacent vortices and the size of vortex are 
increasing with time as in homogenous shear layer [2]. 

Here, the particles are injected at the inflow boundary of the 
mixture layer δ5Hz 1 −=  and  δ5Hz 1 +=  at 0x = . For this 
case, the  mimixing layer simulation is started at time t=0 and 
the interval between two consecutive injections is 600=N   of 
iteration. One parcel of particles is entered to the flow field for 
each N . 

Figure 3 shows the particles' spread for the injection from 

different points z. It is seen that since the lower flow rate is 
less than the upper flow rate, the particles carried away by the 
gas flow tend to the higher speed. Accordingly, particles at 

z=20 (Fig.2a) and z=30 (Fig.2b) are moving faster than that at 
z = 40 (Fig.2c) and z = 50 (Fig.2d). 

Below is the analysis of the calculation results for the case 
when particles are injected simultaneously from the four 
points (Figure 4). The comparison of the flow patterns at 
different moments in time t = 350 (Fig. 4a), t = 800 (Fig. 4b) 
and t=1500  (Fig. 4c)  illustrate that the particles in the lower 
flow reach the output boundary of the considered area faster 
than that in the upper flow. Also, the area of the lower flow 
at t=1500 (Fig. 4c) is completely filled with particles faster 
than the upper flow area. 

Numerical calculation reveals density particle  influence 
on  their trajectory, namely the easy particles are captured by  
the vortical structures, whereas the heavy particles remain 

mostly  unaffected by the eddies. 
 

 

 

 

 

 
Fig. 2 distribution of hydrogen atom concentration at the three moments 

in time: a) t=350, b) t=800, c) t=1500 

a) 

 

 

 

 
 

 
 

Fig. 3 the particles spread for the injection from the different points:  
a) z=20, b) z=30, c) z=40, d) z=50 

b) 

c) 

a) 

b) 
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Fig. 4 the particles spread for the injection from the four points at the 

three moments in time: a) t=350, b) t=800, c) t=1500 
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