
Scheduling jobs with two release times and tails on
a single machine

Elisa Chinos,
Nodari Vakhania

Centro de Investigación en Ciencias, UAEMor, Mexico

Abstract— We consider a basic single-machine
scheduling problem when jobs have release and delivery
times and the objective is to minimize maximum job late-
ness. This problem is known to be strongly NP-hard and
its special case when there are only two allowable release
times remains to be NP-hard. In this paper we study the
latter problem and derive conditions when it can be effi-
ciently solved.

Keywords— scheduling single-machine; heuristic; al-
gorithm; release time; delivery time; due-date.

I INTRODUCTION

In the broadest sense, the term scheduling can be under-
stood as the assignment of machines or processors over
time for a set of jobs or to solve the problem of finding the
optimal temporal allocation of certain resources or certain
tasks.

Therefore a problem of scheduling there are always
three distinct components: the tasks or activities that you
want to perform, the resources available for their imple-
mentation, and the aims or objectives that you want to
achieve and which allow us to identify those which are
best among several possible schedules.

Different characteristics of jobs and machines together
with different optimality criteria, originate a variety of
scheduling problems.

The general scheduling problem studied in this paper is
the following: we have n jobs i(i = 1, ...,n) and single ma-
chine available at the time 0. Each job i become available
at its release time or head ri, needs continuous process-
ing time pi on the machine, and need an additional deliv-
ery time or tail qi, after the completion on the machine
(qi needs no machine time in our model). The heads and
tails are non-negative integral numbers while a process-
ing time is a positive integer. A feasible scheduled S as-

signs to each job i a starting time t j(S), such that t j(S)≥ r j

and t j(S)≥ tk(S)+ pk, for any job k included earlier in S;
the first inequality says that a job cannot be started before
its release time, and the second one reflects the restriction
that the machine can handle only one job at the time. The
completion time of job i, c j(S) = t j(S)+ p j; the full com-
pletion time of i in S, C j(S) = c j(S)+q j. Our objective is
to find an optimal schedule, i.e., a feasible schedule S with
the minimal value of the maximal full job completion time
|S|= max jC j (called the makespan).

According to the conventional three-field notation in-
troduced by Graham et al. [6] the above problem is abbre-
viated as 1|r j,q j|Cmax: in the first field the single-machine
environment is indicated, the second field specifies job
parameters, and in the third field the objective criteria is
given.

The problem has an equivalent formulation 1|r j|Lmax in
which delivery times are interchanged by due-dates. The
due-date d j of job j is the desirable time for the comple-
tion of job j. Whenever that job is completed on the ma-
chine behind its due-date, it is said to be late. In this set-
ting the maximum job lateness Lmax, that is, the difference
between the job completion time and its due-date, is to be
minimized.

Given an instance of 1|r j,q j|Cmax, one can obtain an
equivalent instance of 1|r j|Lmax as follows. Take a suit-
ably large constant K (no less than the maximum job deliv-
ery time) and define due-date of every job j as d j = K−q j.
Vice-versa, given an instance of 1|r j|Lmax, an equivalent
instance of 1|r j,q j|Cmax can be obtained by defining job
delivery times as q j = D−d j, where D is a suitably large
constant (no less than the maximum job due date). It is
straightforward to see that the pair of instances defined
in this way are equivalent; i.e., whenever the makespan
for the version 1|r j,q j|Cmax is minimized, the maximum
job lateness in 1|r j|Lmax is minimized, and vice-versa (see

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 302

Bratley et al. [1] for more details). Because of this equiv-
alence, we can use both above formulations interchange-
ably.

Our generic problem is known to be strongly NP-hard
(Garey and Johnson [4]). For exact implicit enumera-
tive algorithms see for instance, McMahon & Florian [10]
and Carlier [2]. An efficient heuristic method that has
been commonly used for problem 1|r j,q j|Cmax is the so-
called Earliest Due-Date (EDD) heuristic proposed long
time ago by Jackson [9] (see also Schrage [12]). Jack-
son’s heuristic iteratively, at each scheduling time t (given
by job release or completion time), among the jobs re-
leased by time t schedules one with the the largest de-
livery time (or smallest due-date). For the sake of con-
ciseness Jackson’s heuristic has been commonly abbrevi-
ated as EDD-heuristic (Earliest Due-Date) or alternatively,
LDT-heuristic (Largest Delivery Time). Since the number
of scheduling times is O(n) and at each scheduling time
search for a minimal/maximal element in an ordered list
is accomplished, the time complexity of the heuristic is
O(n logn).

Jackson’s heuristic gives the worst-case approximation
ratio of 2, i.e., it delivers a solution which is at most
twice worse than an optimal one. There are polynomial
time algorithms with a better approximation. Potts [11]
has proposed a modification of Jackson’s heuristic for the
problem 1|r j,q j|Cmax. His algorithm repeatedly applies
the heuristic O(n) times and obtains an improved approx-
imation ratio of 3/2. Hall and Shmoys [7] have elabo-
rated polynomial approximation schemes for the problem,
and also an 4/3-approximation an algorithm for its version
with the precedence relations with the same time complex-
ity of O(n2 logn) as the above algorithm from [11].

In a recent work [17], the maximum job processing time
pmax is expressed as a fraction κ of the optimal objective
value and a more accurate approximation ratio in terms
of that fraction is derived. It was shown that Jackson’s
heuristic delivers a solution within a factor of 1 + 1/κ of
the optimum. Such an estimation is useful, in practice,
since it may drastically outperform the worst-case ratio of
2, as it was suggested by the computational experiments
reported in the paper.

As to the special cases of our problem, if job release
times, processing times and delivery time are restricted in
such way that each r j lies in the interval [q− q j − p j −
A,q− q j −A], for some constant A and suitably large q,
then the problem can also be solved in time O(n logn),
see Hoogeveen [8]. Garey et al. [5] have proposed an
O(n logn) algorithm for the feasibility version with equal-
length jobs (in the feasibility version job due-dates are
replaced by deadlines and a schedule in which all jobs

complete by their deadlines is looked for). Later in [13]
was proposed an O(n2 logn) algorithm for the minimiza-
tion version with two possible job processing times.

For other related criteria, in [14] an O(n3 logn) algo-
rithm that minimizes the number of late jobs with release
times on a single-machine when job preemptions are al-
lowed. Without preemptions, two polynomial-time algo-
rithms for equal-length jobs on single machine and on a
group of identical machines were proposed in [16] and
[15], respectively, with time complexities O(n2 logn) and
O(n3 logn log pmax), respectively.

In this paper we consider a special case of the problem
1|r j,q j|Cmax with only two allowable job release times
that we abbreviate as 1|{r1,r2},{qi}|Cmax. This problem
was shown to be NP-hard recently in [3]. For this NP-
hard problem, we establish different structural properties
that lead us to its polynomial-time solution under the cor-
responding restrictions.

II PRELIMINARIES

In this section we give the basic definitions and notations
that we use later. Before that, we give a detailed descrip-
tion of Jackson’s heuristic. It distinguishes n scheduling
times, the time moments at which a job is assigned to the
machine. Initially, the earliest scheduling time is set to
the minimum job release time. Among all jobs released
by that time a job with the mini- mum due-date (the max-
imum delivery time, alternatively) is assigned to the ma-
chine (ties being broken by selecting a longest job). Iter-
atively, the next scheduling time is either the completion
time of the latest assigned so far job to the machine or the
minimum release time of a yet unassigned job, whichever
is more (as no job can be started before the machine gets
idle nether before its release time). And again, among
all jobs released by this scheduling time a job with the
minimum due-date (the maximum delivery time, alterna-
tively) is assigned to the machine. Note that the heuris-
tic creates no gap that can be avoided always scheduling
an already released job once the machine becomes idle,
whereas among yet unscheduled jobs released by each
scheduling time it gives the priority to a most urgent one
(i.e., one with the smallest due-date or alternatively the
largest delivery time).

We will use σ for the initial J-schedule, i.e., one
obtained by the application of Jackson’s heuristic (J-
heuristic, for short) to the originally given problem in-
stance, and Sopt for an optimal schedule.

A J-schedule may contain a gap, which is its maximal
consecutive time interval in which the machine is idle. We

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 303

assume that there occurs a 0-length gap (ci, ti) whenever
job i starts at its earliest possible starting time, that is, its
release time, immediately after the completion of job i;
here ti (ci, respectively) denotes the starting (completion,
respectively) time of job i.

A block in a J-schedule is its consecutive part consisting
of the successively scheduled jobs without any gap in be-
tween preceded and succeeded by a (possibly a 0-length)
gap. J-schedules have useful structural properties. The
following basic definitions, taken from [13], will help us
to expose these properties.

Among all jobs in a J-schedule S, we distinguish the
ones which full completion time realizes the maximum
full completion time in S; the latest scheduled such job
is called the overflow job in S. We denote the overflow job
in S by o(S). The block critical of S, B(S) is the block
containing o(S).

Job e is called an emerging job in schedule S if e∈ B(S)
and qe < qo(S). The latest scheduled emerging job before
the overflow job o(S) is called live and is denoted by l.

We denote by E (S) the set of all emerging jobs in
schedule S.

The kernel of S, K(S) consists of the set of jobs sched-
uled in S between the live emerging job l(S) and the over-
flow job o(S), not including l(S) but including o(S) (note
that the tail of any job K(S) is no less than of o(S)). We
denote by r(K) the minimum job release time in kernel K.

It follows that every kernel is contained in some block
in S, and the number of kernels in S equals to the number
of the overflow jobs in it. Furthermore, since any kernel
belongs to a single block, it may contain no gap.

If a J-schedule S is not optimal then there must exist an
emerging job forcing the delay of the kernel jobs in K(S)
and that of the overflow job o(S) which must be restarted
earlier . We denote the amount of this forced delay by
∆l = cl(S)− r(K(S)). ∆l = 0 yields that σ is optimal (see
also Lemma 8 in [3]):

Observation 1 In any feasible schedule, the jobs of ker-
nel K(σ) may be restarted earlier by at most ∆l time units.

Proof. Immediately follows from the definition of ∆l and
from the fact that no job of kernel K(σ) is released earlier
than at time r(K(σ)).

In order to reduce the maximum job lateness (|S|) in S,
we apply an emerging job e for K(S), that is, we resched-
ule e after K(S). Technically, we accomplish this into two
steps: first we increase artificially the release time of e, as-
signing to it a magnitude, no less than the latest job release
time in K(S); then we apply the J-heuristic to the modified
in this way problem instance. Since now the release time

of e is no less than that of any job of K(S), and qe is less
than any job tail from K(S), the J-heuristic will give prior-
ity to the jobs of K(S) and job e will be scheduled after all
these jobs.

If we apply the live emerging job l, then it is easy to see
that there will arise a gap before the jobs of kernel K(S) if
no other emerging job scheduled in S behind kernel K(S)
gets included before kernel K(S) taking the (earlier) posi-
tion of job l. In general, while we apply any emerging job
e ∈ E(S), we avoid such a scenario by increasing artifi-
cially the release time of any such an emerging job which
may again push the jobs in kernel K(S) in the newly con-
structed schedule that we call a complementary to S sched-
ule and denote by Se.

III SOME USEFUL PROPERTIES FOR
POLYNOMIAL SOLUTION OF THE PROBLEM

In this section we give some conditions leading to the
efficient solution of our generic problem. These condi-
tions are derived as a consequence of the analysis of the J-
schedule σ immediately and hence provide an O(n logn)
time decision. Here and later we use some results from
reference [3] without stating and prove them (we rather
refer to the corresponding results explicatively).

For given k release times, r1 ≤ . . . ≤ rk, let
Ji (i = 1, . . . ,k) be the set of jobs released at the time ri.

Theorem 2 For a given instance of our generic problem
1|r j,q j|Cmax, the initial J-schedule σ is optimal if o(σ) ∈
J1.

Proof. By the condition, at any scheduling time behind
release times r2, . . . ,rk, job o(σ) was released. Then by J-
algorithm, for each job i scheduled in σ before job o(σ),
qi≥ qo(σ). Hence, σ does not contain an emerging job and
it is optimal (see Lemma 2 from [3]).

Assume K be any kernel which forms part of some J-
schedule S (K can be a kernel of other J-schedule distinct
from S). Then we will say that job e ∈ E (S) is scheduled
within kernel K if there is at least one job from that kernel
scheduled before and after job e in schedule S.

Lemma 3 If job e is scheduled within kernel K(σ) in
schedule S then |S|> |σ |.

Proof. First, it is easy to see that no job from kernel K(σ)
scheduled before job e can be the overflow job in schedule
S. Neither job e can be the overflow job in S as it is suc-
ceeded by at least one kernel job j ∈ K(σ) with q j ≥ qe.
Furthermore, no job k scheduled after kernel K(σ) can be

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 304

the overflow job in schedule S as the right-shift of such
a job in schedule S cannot be more than that of a more
urgent kernel job.

It follows that only a job from kernel K(σ) scheduled
after job e may be the overflow job in schedule S. But be-
cause of the forced right-shift imposed by job e, the job
from kernel K(σ) scheduled the last in schedule S can-
not complete earlier in schedule S than job o(S) was com-
pleted in schedule σ , i.e., c j(S) ≥ co(SJ). At the same time,
by the definition of kernel K(σ) job j is no less urgent
than job o(σ), i.e., q j ≥ qo(σ). Then C j(S) ≥ Co(σ) and
hence |S| ≥ |σ |.

Due to Lemma 3 and Lemma 2 from [3], in any sched-
ule better than σ , an emerging job is rescheduled behind
kernel K(σ).

IV TRACTABLE SPECIAL CASES OF PROBLEM
1|{r1,r2},{qi}|Cmax

In [3] we have shown that the version of our general prob-
lem with only two job release times, i.e., the problem
1|{r1,r2},{qi}|Cmax, is NP-hard. In this section, we es-
tablish some useful properties of an optimal solution to
this problem that can be verified in time O(n logn).

IV.1 SPECIAL CASES WHEN o(σ) ∈ J2

Due to Lemma 2, from now on, let us assume that o(σ) ∈
J2.

Observation 4 For problem 1|{r1,r2},{qi}|Cmax,
E (σ)⊂ J1 and for any emerging job e 6= l, qe ≥ ql .

Proof. The first statement follows from the fact that the
earliest scheduled job of kernel K(σ) in schedule σ be-
longs to set J2 which, in turn, follows from the J-heuristic.
The second claim also follows from J-heuristic which
schedules all jobs released at time r1 (in particular, the jobs
from E(σ)) in the non-increasing order of their tails (in
particular, up to time r2 before the jobs of kernel K(SJ)),
whereas job l is the latest scheduled one from set E(σ) in
schedule σ .

Recall that, for a given J-schedule S, the complemen-
tary schedule Sl always contains a gap before jobs of ker-
nel K(S), i.e., the earliest scheduled job of K(S) starts at its
release time in schedule Sl . In general, for any emerging
job e ∈ E(S), the complementary schedule Se may contain
a gap or not, depending on the length of that job (com-
pared to that of job l). We will see this in more details
later.

Observation 5 The order of the jobs scheduled after time
r2, and before and after job e (particularly that of the jobs
of K(σ)) is the same in both schedules σ and σe.

Proof. Note that since all jobs of kernel K(σ) and the jobs
scheduled after this kernel in σ were released by time r2,
J-algorithm should have been scheduled these jobs in the
non-increasing order of their tails in schedule σ . Then J-
heuristic will also schedule all the former jobs in the same
order in schedule σe, i.e., the jobs before job e and after
that job (also released by time r2), in particular, ones of
kernel K(σ) will be included in the same order in both
schedules.

Let now J[e] be the set of all jobs j scheduled after r2 in
σ such that qe < q j < qo(σ). It follows that all jobs from
set J[e] are scheduled immediately after kernel K(σ) and
before job e in σe. Besides,

Observation 6 J[e]⊂ J2.

Proof. First note that set J[e] has no job with the tail equal
to qe. Besides, K(σ) ⊂ J2 and qk > ql , for every job k ∈
K(σ). Furthermore, by J-algorithm, for every job j ∈ J1
scheduled in σ before K(σ), q j ≥ ql , and for every job i ∈
J1 scheduled after K(σ), qi ≤ ql , hence qi ≤ qe as qe ≥ ql
and the observation follows from the definition of set J[e].

Proposition 7 Without loss of generality, it might be as-
sumed that all the jobs j with q j = qe scheduled after ker-
nel K(σ) in σ are included behind job e in complementary
schedule σe.

Observation 8 In schedule σe, the jobs of kernel K(σ)
and those of set J[e] are left-shifted by the same amount,
whereas all jobs j with q j ≤ qe are right-shifted also by
the same amount.

Proof. Note that while constructing schedule σ , J-
algorithm schedules all the jobs in the non-increasing or-
der of their tails behind time r2 (as all of them are released
by that time moment). While constructing schedule σe,
the same set of jobs plus job e are available behind time
r2. In particular, it is easy to see that if pe ≥ ∆l , all jobs of
kernel K(σ) and those from set J[e] will be left-shifted by
∆l , and if pe < ∆l this left-shift will equal to pe, whereas
any j with q j ≤ qe will be scheduled behind job e and will
be right-shifted correspondingly.

Lemma 9 1. If pe ≥ ∆l , then σe has a gap of length
pe−∆l .

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 305

2. If pe < ∆l , then σe has not a gap.

Proof. First note that ∆l is now cl(σ)− r2. By the defini-
tion of σe, no job j ∈ J1 with q j < qe scheduled after K(σ)
in σ will be scheduled before K(σ) in σe. If pe ≥ ∆l , in
schedule σe, the jobs of kernel K(σ) and of set J[e] will
have the left-shift of length ∆l (which is the maximum pos-
sible by Observation 1). Then σe will have a gap of length
pe−∆l . If pe < ∆l , the jobs of kernel K(σ) and those of
set J[e] will have a left-shift of length ∆l − pe, hence σe

will have no gap.

Due to Lemma (9) we define the gap δe in schedule σe

as follows:

δe =
{

0 i f pe < ∆l
pe−∆l i f pe ≥ ∆l

for all e ∈ E (σ).

Lemma 10 The full completion time of job e in σe,

Ce(σe) = co(σ) + ∑
j∈J[e]

p j +δe +qe,

Proof. By the definition of the set J[e], job e will be sched-
uled in σe after all jobs of J[e] and before of all jobs i with
qi = qe (see proposition (7)). By the observation (1), ∆l
is the maximum possible left-shift for the jobs of K(σ) in
σe. The full completion time of job e in σe will depend on
the amount of this left-shift. Consider the following two
cases. If pe ≥ ∆l , then the jobs of K(σ) and those of set
J[e] will be left-shifted by the amount ∆l in schedule σe.
Recall that the last job of kernel K(σ) scheduled in σ is
o(σ). Then,

Ce(σe) = (co(σ) + ∑
j∈J[e]

p j)−∆l + pe +qe.

Let δe = pe−∆l , then pe = δe +∆l . Therefore

Ce(σe) = co(σ) + ∑
j∈J[e]

p j−∆l +δe +∆l +qe

= co(σ) + ∑
j∈J[e]

p j +δe +qe.

In this case, σe has a gap of length δe.
If pe < ∆l , then by the definition of set J[e] and the con-

struction of schedule σe, the jobs of kernel K(σ) and those
of set J[e] will be left-shifted by amount pe in schedule σe.
Therefore,

Ce(σe) = (co(σ) + ∑
j∈J[e]

p j)− pe + pe +qe

= co(σ) + ∑
j∈J[e]

p j +qe.

Note that in this case σe has no gap.

Consider the following inequality:

Ce(σe) = co(σ) + ∑
j∈J[e]

p j +δe +qe ≥Co(σ), (1)

Lemma 11 If pe ≥ ∆l and the inequality (1) for job e ∈
E (σ) holds, then in Sopt job e is scheduled before kernel
K(σ).

Proof. As pe ≥ ∆l , σe has a gap by Lemma (9) and ker-
nel K(σ) starts at its early starting time r(K(σ)) = r2 in
schedule σe. By inequality (1), Ce(σe) ≥ Co(σ); hence,
|σe| ≥ |σ |. Then it follows that job e cannot be sched-
uled after kernel K(σ) in schedule Sopt and the lemma is
proved.

Theorem 12 If pe ≥ ∆l for every e ∈ E (σ) and the in-
equality (1) is satisfied for job e, then σ is optimal.

Proof. Recall that if schedule σ is not optimal, kernel
K(σ) must be restarted earlier. This will be possible only
if at least one job e ∈ E (σ) is rescheduled after kernel
K(σ). Suppose σe is a schedule with a better (smaller)
makespan than schedule σ . Then similarly, it is straight-
forward to verify that, by the condition of the lemma,
inequality (1) yields Ce(σe) ≥ Co(σ), for every e ∈ E (σ).
Then by Lemma 11, schedule σ must be optimal.

Let E (S, l) = {e ∈ E (S)\{l} | pe ≥ pl}.

Lemma 13 If the inequality (1) is satisfied for job l, then
in Sopt any job e ∈ E (σ , l) is scheduled before kernel
K(σ).

Proof. By Lemma 11, l is scheduled in Sopt before
K(Sopt). Let k be the last job scheduled of J[l] in σ (re-
call that J[l] is the set of all jobs j scheduled after r2 in σ

such that ql < q j < qo(σ)). By J-algorithm, job k has the
tail less than the jobs of set J[l]. By the definition of the
set J[l], without loss of generality we assume that the J-
algorithm schedules job l after job k in σl . In addition, the
starting time of job l must be the completion time of job k
in σl , i. e., tl(σl) = ck(σl) (by proposition 7 and because by
J-algorithm, for any job i scheduled after of k in σ , qi < qk
and therefore qi ≤ ql , by the definition of set J[l]).

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 306

It is easy to see that for all e∈ E (σ , l), δe ≥ δl (because
pe ≥ pl and by the definition of δe). Besides, job k is
scheduled after jobs of kernel K(σ) in σe and job e can
be scheduled before or after job k in σe. We respectively
distinguish the following two cases. If job e is scheduled
in σe after of job k, the starting time of job e in schedule
σe is equal to the starting time of job l in schedule σl , i. e.,
te(σe) = tl(σl) since for any job i scheduled after job l in σl ,
qi ≤ ql and qi < qe since qe ≥ ql . As the inequality (1) is
satisfied for l, it is also satisfied for job e because δe ≥ δl
and qe ≥ ql . By Lemma 11, e is scheduled before K(σ) in
Sopt .

If job e is scheduled in σe before job k, the jobs sched-
uled after job e in schedule σe (in particular the jobs of
set J[l]) are right-shifted, therefore, the completion time
of job k in σe is greater than the completion time of job k
in σl . Also, because δe ≥ δl , the completion time of job
k in σe is greater than or equal to the completion time of
job l in σl . (ck(σe) ≥ cl(σl)). As qk > ql , Ck(σe) > Cl(σl)
and therefore |σe|> |σl|. Then job e cannot be scheduled
after kernel K(σ) in schedule Sopt since job l satisfies the
inequality (1) |σe|> |σ |.

We have shown that job e cannot be scheduled after ker-
nel K(σ) in schedule Sopt and Lemma is proved.

IV.2 A FEW MORE PROPERTIES FOR
EQUAL-LENGTH JOBS IN SET J1

In this section we consider another special case of our
problem when all jobs released at time r1 have the
same processing time p. We abbreviate this problem
as 1

∣∣{r1,r2},q j, pr1, j = p
∣∣Cmax (pr1, j = p denotes that all

jobs released at the time r1 have processing time p).
Among all the jobs scheduled after jobs in kernel K(σ)

and set J[e] in schedule σ , let k be the job with the greatest
full time completion in σ . Recall that the left-hand side
in inequality (1) is the full completion time of job e in
schedule σe. If Ce(σe) is not greater than Co(σ) then the full
completion time of job k in σe may be greater than the full
completion time of job o(σ) in σ .

We define set J(e,k) = {i | qk ≤ qi ≤ qe}.

Lemma 14 The full completion time of job k in the
schedule σe is:

Ck(σe) = co(S) + ∑
j∈J[e]

p j +δe + ∑
i∈J(e,k)

pi + pk +qk.

Proof. Is analogous to that of Lemma (10).

Consider the following inequality:

co(S) + ∑
j∈J[e]

p j +δe + ∑
i∈J(e,k)

pi + pk +qk ≥Co(S) (2)

Lemma 15 For problem 1
∣∣{r1,r2},q j, pr1, j = p

∣∣Cmax, in
any schedule σe there occurs a gap before kernel K(σ).
Moreover, δe = δl for every job e ∈ E (σ)\ l.

Proof. We have pe > ∆l since pe = pl = p for all e ∈
E (σ)\{l}. By Lemma 9, schedule σe has a gap of length
pe−∆l and δe = δl for all e ∈ E (σ)\{l}.

Lemma 16 If the full completion time of job k satisfies
the inequality (2), then each job e ∈ E (σ) is scheduled
before kernel K(σ) in Sopt .

Proof. The inequality (2) implies that Ck(σl) ≥ Co(σ);
hence, |σl| ≥ |σ |. As the full completion time of k in σ

is less than the full completion time of the overflow job
o(σ) (otherwise, job k would be the overflow job in σ)
and Ck(σl) ≥Co(σ), job l cannot be scheduled after kernel
K(σ) in schedule Sopt . By Lemma (15), δe = δl for every
emerging job e. Then the starting time of job k in schedule
σe is the same as that in σl . Therefore Ck(σe) ≥Co(σ) and
|σe| ≥ |σ | for each job e ∈ E (σ). It follows that no job
e ∈ E (σ) can be scheduled after kernel K(σ) in schedule
Sopt .

Theorem 17 For problem 1
∣∣{r1,r2},q j, pr1, j = p

∣∣Cmax,
schedule σ is optimal, if:

1. The inequality (1) is satisfied for job l in schedule σl .

2. The inequality (2) is satisfied for job k in schedule
σl .

Proof. For the first claim, by Lemma (13), any job e ∈
E (σ) is scheduled in Sopt after kernel K(σ). This implies
that every job e ∈ E (σ) \ {l} satisfies the inequality (1)
and by Theorem (12) σ is optimal.

As to the second claim, by Lemma (16) every job e ∈
E (σ)\{l} must be scheduled before kernel K(σ) in Sopt ,
hence σ is optimal.

V CONCLUSION

The presented properties of problem 1|{r1,r2},{qi}|Cmax
have, from one hand, the theoretical value as they lead us
to optimal solution in a low degree polynomial time. From

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 307

the other hand, these properties have also the practical im-
portance as they can be efficiently used in enumerative al-
gorithms for this NP-hard problem.

As to the directions for the future work, we believe that
the presented approach might be extended for the multi-
processor version of our problem with parallel identical
processors.

REFERENCES

[1] P. Bratley, M. Florian and P. Robillard. On sequencing
with earliest start times and due–dates with applica-
tion to computing bounds for (n/m/G/Fmax) problem.
Naval Res. Logist. Quart. 20, 57–67 (1973)

[2] J. Carlier. The one–machine sequencing problem. Eu-
ropean J. of Operations Research. 11, 42–47 (1982)

[3] E. Chinos and N. Vakhania. Polynomially Solvable
and NP-hard Special Cases for Scheduling with Heads
and Tails. RECENT ADVANCES in MATHEMATICS
and COMPUTATIONAL SCIENCE Proceedings of
the 4th International Conference on Mathematical,
Computational and Statistical Sciences (MCSS ’16),
p.141-145 (2016)

[4] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP–
completeness. Freeman, San Francisco, 1979.

[5] M.R. Garey, D.S. Johnson, B.B. Simons and R.E. Tar-
jan. Scheduling unit–time tasks with arbitrary release
times and deadlines. SIAM J. Comput. 10, 256–269
(1981)

[6] R.L. Graham. E.L. Lawler, J.L. Lenstra, and A.H.G.
Rinnooy Kan. Optimization and approximation in de-
terministic sequencing and scheduling: a servey. Ann.
Discrete Math. 5 287-326 (1979)

[7] L.A. Hall and D.B. Shmoys. Jackson’s rule for single-
machine scheduling: Making a good heuristic better,
Mathematics of Operations Research 17 22–35 (1992)

[8] Hoogeveen J.A. Minimizing maximum promptness
and maximum lateness on a single machine. Math.
Oper. Res 21, 100-114 (1995)

[9] J.R. Jackson. Schedulig a production line to mini-
mize the maximum tardiness. Manegement Scince Re-
search Project, University of California, Los Angeles,
CA (1955)

[10] G. McMahon and M. Florian. On scheduling with
ready times and due dates to minimize maximum late-
ness. Operations Research 23, 475–482 (1975)

[11] C.N. Potts. Analysis of a heuristic for one machine
sequencing with release dates and delivery times. Op-
erations Research 28, p.1436-1441 (1980)

[12] L. Schrage. Obtaining optimal solutions to resource
constrained network scheduling problems, unpub-
lished manuscript (march, 1971)

[13] N. Vakhania. Single-Machine Scheduling with Re-
lease Times and Tails. Annals of Operations Research,
129, p.253-271 (2004)

[14] N. Vakhania. “Scheduling jobs with release times
preemptively on a single machine to minimize the
number of late jobs”. Operations Research Letters 37,
405-410 (2009)

[15] N.Vakhania. Branch less, cut more and minimize
the number of late equal-length jobs on identical ma-
chines. Theoretical Computer Science 465, 49–60
(2012)

[16] N.Vakhania. A study of single-machine scheduling
problem to maximize throughput. Journal of Schedul-
ing Volume 16, Issue 4, pp 395-403 (2013)

[17] N.Vakhania, D.Perez and L.Carballo. Theoretical
Expectation versus Practical Performance of Jack-
son’s Heuristic. Mathematical Problems in Engineer-
ing Volume 2015, Article ID 484671, 10 pages
http://dx.doi.org/10.1155/2015/484671 (2015)

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 308

