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Abstract—We present some modified collocation based numerical
methods for the numerical integration of Ordinary Differential Equa-
tions (ODEs) and Volterra Integral Equations (VIEs). The treatise is
framed into the existing literature on classical collocation methods
and shows how this idea can evolve into a multistep setting, also in
case of basis of functions other than polynomials.
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I. INTRODUCTION

Collocation is a well-known strategy to develop numeri-
cal methods with many desired properties when applied to
certain families of functional equations. Such a technique is
based on the idea of approximating the exact solution of a
given functional equation with a suitable approximant in a
suitably chosen finite dimensional space, exactly satisfying the
equation in some given points (i.e. the set of the so-called
collocation points), normally located within grid points. The
finite dimensional space of the approximants can be chosen
ad hoc for the problem we are integrating, in order to better
reproduce the qualitative behaviour of the solution.

The systematic study of collocation methods for ordi-
nary differential equations (ODEs), Volterra integral equations
(VIEs), and Volterra integro-differential equations (VIDEs) is
respectively dated back to the late ’60, the early *70 and
the early ’80s. The idea of multistep collocation was first
introduced by Lie and Norsett in [64], and further extended
and investigated by several authors [10], [13], [14], [26]-[28],
[39]-[41], [43], [49], [63], [67].

Multistep collocation methods depend on more parameters
than classical ones, without any significant increase in the
computational cost, thus there are much more degrees of
freedom to gain strong stability properties and higher accuracy.
As a direct consequence the effective order of multistep
collocation methods is generally higher with respect to one
stage collocation methods with the same number of stages.
Moreover, as they generally have high stage order, they may
not suffer from the order reduction phenomenon (see [9], [52]),
which occurs in the integration of stiff systems.

The purpose of this paper is to describe recently introduced
families of collocation and modified collocation methods for
ODEs and VIEs and frame them into the existing literature.
In particular we aim to present the main results obtained in
the context of multistep collocation and almost collocation
methods, i.e. methods obtained by relaxing some collocation
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and/or interpolation conditions in order to obtain desirable
stability properties.

The paper is organized as follows: Section 2 reviews the
main results concerning classical one-step and multistep collo-
cation methods for ODEs and VIEs; Section 3 presents modern
modified collocation techniques, while Section 4 explores the
possibility to employ mixed basis functions, or functions other
than polynomials.

II. CLASSICAL COLLOCATION BASED NUMERICAL
METHODS

In this section we present a general framework for collo-
cation technique, focusing on initial value problems based on
ordinary differential equations

{ y'(z) = flz,y(z)),

y(xo) = yo € Rd?

x € [zg, X], 0

with f : [z9, X] x R? — RY. It is assumed that the function
f is sufficiently smooth, in such a way that the problem (1) is
well-posed. We also emphasize the case of VIEs of the form

x el :=[0,X],

(2)
where k € C(D x R), with D := {(z,7): 0 <7 <2 < X},
and g € C(I), also underlying connections and differences
with the case of ODE:s.

) = g(o) + / ke, y(r))dr

A. One-step collocation methods for ODEs

Let us suppose that the integration interval [xg, X| is dis-
cretized in an uniform grid {zp, : o < 21 < ... <ay = X}.
One-step collocation methods (see [4], [8], [9], [50], [S1], [61],
[84]) are identified by a continuous approximant, generally
an algebraic polynomial P(x), under opportune conditions:
advancing from x,, to 2,1, the polynomial P(x) interpolates
the numerical solution in z,,, and exactly satisfies the ODE (1)
in the collocation points {xz, + ¢;h, i = 1,2,...m}, where
C1,C2y...,Cm, ie.

{ P(-Tn) = Yn,

P/(J)n + Clh) = f(l'n + c;h, P(xn + Cih))7 )

fori =1, 2,...,m. The solution in x,,, can then be computed
by evaluating

Ynt1 = P(Tnt1). “4)
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One-step collocation methods form a subset of implicit
Runge-Kutta methods (IRK), as proved by Guillou and Soule
in [49] and Wright in [84],

Unit = Un+hY bif(@n+cih,Y:) )
i=1

Yi = yn+hY aif(@.+chY), (6)
j=1

with ¢ = 1,2, ..., m, where

Cq 1
Qi :/0 Lj(s)ds, b :/o Lj(s)ds, @)

and L;(s), j = 1,...,m, are fundamental Lagrange polynomi-
als. Their maximum attainable order is at most 2m, and it is
obtained by using Gaussian collocation points [51], [61]. The
order 2m is visible only at the mesh points: the uniform order
of convergence over the entire integration interval is only m.
As a consequence, they suffer from order reduction showing
effective order equal to m (see [8], [9], [51], [52]).

Butcher (see [8] and references therein) gave an interesting
characterization of collocation methods in terms of easy al-
gebraic conditions, and analogous results are also reported in
[51], [61]. This characterization comes regarding collocation
methods in terms of underlying quadrature formulae. In fact,
if f(z,y(z)) = f(x), equations (5)-(6) can be respectively
interpreted as quadrature formulae for f;frh f(x)dx and

f;”“i’h f(z)dz, for i=1,2,....,m. We next consider the follow-
ing;; linear systems
A(q) : Zaijcf_l = ?1, k=1,..,q,i=1,....m, (8)
=1

- 1
B(p): Y bic 12%’ k=1,2,...p. )
=1

Next, the following result holds (see [50], [61]):

Theorem 2.1: If the condition B(p) holds for some p > m,

then the collocation method (3) has order p.
As a consequence, a collocation method has the same order of
the underlying quadrature formula (see [50], p. 28). Finally, the
following result characterizing classical collocation methods
arises (see [8], [50], [51], [61]).

Theorem 2.2: An implicit m-stage Runge-Kutta method,
satisfying B(m) and having distinct collocation abscissae, is
a collocation method if and only if conditions A(m) holds.

The most used collocation methods are those based on the
zeros of some orthogonal polynomials, that is Gauss, Radau,
Lobatto [8], [9], [51], [52], [61], having respectively order of
convergence 2m, 2m — 1, 2m — 2, where m is the number
of collocation points (or the number of stages, regarding the
collocation method as an implicit Runge-Kutta). Concerning
their stability properties, it is known that Runge-Kutta methods
based on Gaussian collocation points are A-stable, while the
ones based on Radau ITA points are L-stable and, moreover,
they are also both algebraically stable (see [9], [52], [56] and
references therein contained); Runge-Kutta methods based on
Lobatto IITA collocation points, instead, are A-stable but they
are not algebraically stable (see [8], [50], [51], [61]).
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As remarked by Hairer and Wanner in [52], only some
IRK methods are of collocation type, i.e. Gauss, Radau IIA,
and Lobatto IIIA methods. An extension of the collocation
idea, the so-called perturbed collocation is due to Norsett and
Wanner (see [68], [69]), which applies to all IRK methods.

We denote by II,, the linear space of polynomials of degree
at most m and consider the polynomial N; ¢ II,,, defined by

1 «— .
Nj(z) = ﬁ Z(pij — i)z, j=1,2,...,m,
T i=0

where d;; is the usual Kronecker delta. We next define the
perturbation operator Py p, : 11, — IL,,, by

T — X

(P (o) = (o) + 3-8, (1
j=1

)u(-j)(xo)hj.

Next, the following definition is given (see [68], [69]).

Definition 2.1: Let cq, ..., c,, be given distinct collocation
points. Then the corresponding perturbed collocation method
is defined by

U(xo) Yo, uUE H’ma
u'(zog +c;ih) = f(xo + cih, (Pu)(zo + c;h)),
y1i = ulzo+h),

1 =1,2,...,m. As the authors remark in [69], if all N;’s are
identically zero, then P is the identical map and the definition
coincides with classical collocation. In the same paper the
authors provide the equivalence result between the family of
perturbed collocation methods and Runge-Kutta methods (see
[69]). The interest of this results, as again is stated in [69], is
that the properties of collocation methods, especially in terms
of order, linear and nonlinear stability, can be derived in a
reasonable short, natural and very elegant way, while it is
known that, in general, these properties are very difficult to
handle and investigate outside collocation.

In the literature, perturbed collocation has been considered
as a modification of the classical collocation technique, in such
a way that much more Runge-Kutta methods could be regarded
as perturbed collocation based methods, rather than classically
collocation based. There are other possible extensions of the
collocation idea, which apply to wider classes of Runge-Kutta
methods, such as the so-called discontinuous collocation (see
[50D).

Definition 2.2: Let co,...,cn_1 be distinct real numbers
(usually between O and 1), and let by,b,, be two arbitrary
real numbers. The corresponding discontinuous method is then
defined via a polynomial of degree m — 2 satisfying

u(zo) = yo — hbi(w(zo) — f(wo,u(z0)),
W(xo +cih) = f(wo+ cih,u(zg + c;h)),
1 = u(z1) — hbs(i(z1) — f(z1,u(z1)),

i = 2,...,m — 1. Discontinuous collocation methods fall
inside a large class of implicit Runge-Kutta methods, as stated
by the following result (see [50]).

Theorem 2.3: The discontinuous collocation method given
in Definition 2.2 is equivalent to an m-stage Runge-Kutta

322



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

method with coefficients determined by ¢; =0, ¢,,, = 1 and

ailzbla a/im:O7 i:17"'7ma

while the other coefficients result as solutions of the linear
systems A(m — 2) and B(m — 2) defined in (8) and (9).

As a consequence of this result, if by = 0 and b,, = 0,
then the discontinuous collocation method in Definition 2.2
is equivalent to the (m — 2)-collocation method based on
c2,...,Cm—1. An interesting example of implicit Runge-Kutta
method which is not collocation based but is of discontinuous
collocation type is the Lobatto IIIB method (see [8], [50],
[51], [61]), which plays an important rule in the context of
geometric numerical integration, together with Lobatto IIIA
method (see [50], p. 33). They are both nonsymplectic methods
(see Theorem 4.3 in [50]) but, considered as a pair, the
resulting method is symplectic. This is a nice example of
methods which possess very strong properties, but are difficult
to investigate as discrete scheme (they cannot be studied as
collocation methods, because they are not both collocation
based); however, re-casted as discontinuous collocation based
methods, their analysis is reasonably simplified and very
elegant [50].

B. Classical one-step collocation methods for VIEs

Let us discretize the interval I by introducing a uniform
mesh

I, ={z, :=nh,n=0,..,.N, h>0,Nh=X}.

The equation (2) can be rewritten, by relating it to this mesh,
as

y(x) Fn(x) =+ (I)n(x) HAES [mm xn-&-l}v

where F,,(z) := g(x) + /Oxnk(m,r,y(r))dr and ®,(x) :=

T
/ k(x,T,y(7))dr represent respectively the lag term and the

n

increment function. Let us fix m collocation parameters 0 <
¢ < .. < ¢pn <1 and denote by x,; = x, + cjh the
collocation points. The collocation polynomial, restricted to
the interval [2,,, 1], is of the form:

Un(xy + sh) = ZLj(s)Unj s€f0,1] n=0,.,N—-1
j=1

(10)
where L;(s) is the j — th Lagrange fundamental polyno-
mial with respect to the collocation parameters and U,,; :=
Up (Zy;). Exact collocation methods are obtained by imposing
that the collocation polynomial (10) exactly satisfies the VIE
(2) in the collocation points x,; and by computing y,11 =

ol Upi = Fpi + ®

Ynt1 = Zle(l)Unj 5 (11)
j:

where
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, M.

13)
Note that the first equation in (11) represents a system of
m nonlinear equations in the m unknowns U,;. We obtain
an approximation u(z) of the solution y(z) of the integral
equation (2) in [0, X|], by considering

D, = h/ ’k(mm,xn + sh,up(xy, + sh))ds i=1,...
0

u(x) = up(z) (14)

|(xn1xn+l]

where u,,(z) given by (10).

We recall that, in contrast with what happens in the case of
ODEs, generally u(z) is not continuous in the mesh points,
as

u(z) € S$N (1), (15)

where

S(1,) = {veOd(I): eI, (OgnSN—l)}.

U|(wmwn+1]
Here, II,, denotes the space of (real) polynomials of degree not
exceeding p. A complete analysis of collocation methods for
linear and nonlinear Volterra integral and integro—differential
equations, with smooth and weakly singular kernels is given
in [4]. In particular, as shown in [4], [7], the classical one—
step collocation methods for a second-kind VIE do no longer
exhibit O(h?™) superconvergence at the mesh points if col-
location is at the Gauss points, in fact they have uniform
order m for any choice of the collocation parameters and
local superconvergence order in the mesh points of 2m — 2
(m Lobatto points or m — 1 Gauss points with ¢,, = 1) or
2m — 1 (m Radau II points). The optimal order is recovered
only in the iterated collocation solution.

We observe that, differently from the case of ODEs, the
collocation equations are in general not yet in a form amenable
to numerical computation, due to the presence of the memory
term given by the Volterra integral operator. Thus, another
discretisation step, based on quadrature formulas E, ~F,
and ®,; ~ ®,; for approximating the lag term (12) and
the increment function (13), is necessary to obtain the fully
discretised collocation scheme, thus leading to Discretized
collocation methods. Such methods preserve, under suitable
hypothesis on the quadrature formulas, the same order of the
exact collocation methods [7].

The connection between collocation and implicit Runge—
Kutta methods for VIEs (the so called VRK methods) is not
immediate: a collocation method for VIEs is equivalent to
a VRK method if and only if ¢,, = 1 (see Theorem 5.2.2
in [7]). Some other continuous extensions of Runge—Kutta
methods for VIEs, which do not necessarily lead to collocation
methods, have been introduced in [2].

Many efforts have been made in the literature with the
aim of obtaining fast collocation and more general Runge—
Kutta methods for the numerical solution of VIEs. It is known
that the numerical treatment of VIEs is very expensive from
computational point of view because of presence of the “lag-
term”, which contains the entire history of the phenomenon.

n—1
Foi =gz -)Jth/lk(x @y +sh, (o +sh))ds i=1 To_this cost, it has also to be added the one due to the
" " = Jo e T " “increment term” which leads, for implicit methods (generally
(12) possessing the best stability properties), to the resolution of
ISSN: 1998-0140 323
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a system of nonlinear equations at each step of integration.
In order to reduce the computational effort in the lag—term
computation, fast collocation and Runge—Kutta methods have
been constructed for convolution VIEs of Hammerstein type,
see [11], [25], [65], [66].

The stability analysis of collocation and Runge—Kutta meth-
ods for VIEs can be found in [1], [7], [12], [31] and the related
bibliography. In particular a collocation method for VIEs is
A-stable if the corresponding method for ODEs is A-stable.

III. MODIFIED COLLOCATION METHODS
A. Multistep collocation for ODEs
The attention in the literature (see [24], [49], [52], [63],
[64]) has later been focused on the construction of multistep
collocation methods, first introduced in [49], by adding inter-
polation conditions in the previous k step points, so that the
collocation polynomial is defined by

P(xn—v) = Yn—i,
P/(xn + th) = f(‘rn + thap(l'n + th))7

with i =0,1,....k — 1, 7 = 1,...,m. The numerical solution
is given, as usual,

(16)

Ynt1 = P(ny1)- (17)

Hairer-Wanner [52] and Lie-Norsett [64] derived different
strategies to obtain multistep collocation methods. In [52] the
Hermite problem with incomplete data (16) is solved by means
of the introduction of a generalized Lagrange basis

{901'(5)’ 1/’](3), i:1727"'7ka ]:1727

and, correspondingly, the collocation polynomial is expressed
as linear combination of this set of functions, i.e.

7m}

k s
Pleat 5h) = 3 0u8)ncis + h S Uls)P (wn + cih).
=1 =1

T—Tp

where s = . Therefore, the problem (16) is transformed
in the problem of deriving {y;, ¥;, i = 1,2,...,k, j =
1,2,...,m} in such a way that the corresponding polynomial
P(s) satisfies the conditions (16).

Lie-Norsett in [64] completely characterized multistep col-
location methods, giving the expressions of the coefficients
of collocation based multistep Runge-Kutta methods in closed
form, as stated by the following

Theorem 3.1: The multistep collocation method (16)-(17)
is equivalent to a multistep Runge-Kutta method

k-1

Y; = 0i(c))ynth-1—i
=0

7m7

+ hziﬁi(cj)f(xan +ch,Yi), j=1,..
i=1

k—1 m
Ynik = 3 @i(Vtnir-1-i+h > (1) f(@nsr-1+cih, Vi),

i=0 i=1
where the expression of the polynomials ¢;(s), ¥;(s) are
provided in Lemma 1 of [64]. (I
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Lie and Norsett in [64] computed order conditions by means
of the study of variational matrices, and proved that the maxi-
mum attainable order of a k-step m-stage collocation method
is 2m+k—1. As claimed in [52], such methods are not stiffly
stable and, therefore, not suitable to solve stiff problems: in
order to obtain better stability properties, they derived methods
of highest order 2m + k — 2, imposing c,, = 1 and deriving
the other collocation abscissa in a suited way to achieve this
highest order and named the corresponding methods of Radau-
type, studied their stability properties, deriving also many A-
stable methods.

B. Almost collocation methods for ODEs

In more recent times, our strenghts have been devoted to
extend the idea of multistep collocation technique, by focusing
on a larger family of methods, i.e. two-step Runge-Kutta
methods (TSRK)

Ynt1 = Gy#]l—l +0yn
Y () o ),
Yi["] = u]ir;z—l + Uiyn "
3 (a0 £,
=1

introduced by Jackiewicz and Tracogna [57] and further in-
vestigated by several authors (see [56] and references therein
contained). TSRK methods (18) differ from the multistep
Runge-Kutta methods above described, since they also depend
on two consecutive sets of stage derivatives. In this way,
some degrees of freedom are added, without heightening the
computational cost, since the values of f (Yj[nfl]) are inherited
from the previous step. Therefore, the computational cost of
these formulae only depends on the structure of the matrix B.
Different approaches to the construction of continuous TSRK
methods outside collocation are presented in [58].
The continuous approximant

P(xp 4 sh) = ©o(8)yn—1 + ©1(5)Yn
+ hz (Xj(s) F(P(zn_1 + c;h))

(19)
+ 05 () f(P(@n + i) )

Yn+1 = P(l’n+1),
expressed as linear combination of the basis functions
{()00(8)7 901(5)’ Xj(s)v 7%-(5), j = 1, 27 cee ,m}a

is an algebraic polynomial which is derived in order to satisfy
some interpolation and collocation conditions, i.e.

P(xp-1) =yn-1, P(xn) = yn,
P'(zp—1 + cih) = f(xp_1 + cih, P(xn_1 + ¢;h)),
P'(xy + c;h) = f(xn + cih, P(xy + ¢;h)),

i =1,2,...,m. As a first attempt, we have generalized in [39],

[40] the techniques introduced by Guillou-Soulé [49], Hairer—
Wanner [52] and Lie—Norsett [64], adapting and extending this

(20)
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technique to TSRK methods. Using the techniques introduced
in [64], we have derived in [40] the coefficients of (19) in
closed form: the corresponding results are reported in the
following theorem in [40].

We proved in [40] that the resulting methods have uniform
order 2m + 1 but such an high order enforces these methods
to have bounded stability regions only, due to Daniel-Moore
conjecture [9]. For this reason, in order to derive highly stable
methods (i.e. A-stable and L-stable), we have introduced in
[43] the class of almost collocation methods, which are ob-
tained in such a way that only some of the above interpolation
and collocation conditions are satisfied. Relaxing the above
conditions, we obtain more degrees of freedom, which have
been used in order to derive many A-stable and L-stable
methods of order m+r, r = 0, 1, ..., m. Therefore the highest
attainable order is 2m, uniformly over the integration interval:
this is a significant improvement with respect to Runge-Kutta
methods, which suffer from order reduction in the integration
of stiff problems (see [8], [9], [52]), since their effective order
of convergence is only m. Our methods, instead, do not suffer
from order reduction. In [43] we have studied the existence of
such methods, derived continuous order conditions, provided
characterization results and studied their stability properties.
A complete analysis of m-stage two-step continuous methods,
with m = 1,2,3,4, has been provided in [44], while the
analysis of the implementation issues for two-step collocation
methods has been provided in [45], also in case of diagonally
implicit methods [38]. The construction of algebraically stable
two-step collocation methods is object of [29].

C. Multistep collocation for VIEs

Multistep collocation and Runge—Kutta methods for VIEs,
have been introduced in order to bring down the computational
cost related to the resolution of non-linear systems for the
computation of the increment term. As a matter of fact
such methods, showing a dependence on stages and steps in
more consecutive grid points, permit to raise the order of
convergence of the classical methods, without inflating the
computational cost or, equivalently, having the same order at
a lower computational cost.

A first analysis of multistep collocation methods for VIEs
appeared in [27], [28], where the methods are obtained by
introducing in the collocation polynomial the dependence from
r previous time steps; namely we seek for a collocation
polynomial, whose restriction to the interval [z,,, z, 1] takes
the form

r—1 m
Po(wn +sh) =Y @e(s)yn—r + Y 1i(s)Ynj. s €[0,1],
k=0 j=1

2L

n=20,..,N — 1, where

Ynj = Pn(xnj) (22)

and @i(s), ¥,(s) are polynomials of degree m +r — 1 to
be determined by imposing the interpolation conditions at the
points x,, g, that is w, (Z,—k) = Yn—k, and by satisfying (22).

ISSN: 1998-0140
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It is proved in [26] that, assuming ¢; # c; and c¢; # 0, the
polynomials ¢y(s), 1;(s) have the form:

m r—1 i
S—Cj
or(s) = H1 “k—c; ‘Ho —Sk-',l-i’
i= =
i#£k
- (23)
wile) =Tl 255 1 2=
J - Bl Cj-‘ri =1 Cj—Ci :
1#]

The discretized multistep collocation method is then ob-
tained by imposing the collocation conditions, i.e. that the
collocation polynomial (21) exactly satisfies the VIE (2) at the
collocation points x,;, and by computing y,+1 = P, (zn41):

r—1 m (24)
Y1 = 2 r(Dyn—r + 2 9;(1)Yay
k=0 j=1
The lag-term and increment—term approximations
B n—1 w1
Fni = g(xnz)+hZZblk(xnzairu+§lh7Pv($u+§lh)) 1=
v=0 1=0
(25
B Mo
(I)ni =h Z wilk(x7zi7 $n+dilh, Pn(xn'i'dilh)) 1= 1; M
1=0
(26)
are obtained by using quadrature formulas of the form
(£l7bl)f:117 (dil7wil)7:[)1u 1= 17“‘>m7 (27)

where the quadrature nodes & and d;; satisfy 0 < &; < ... <
§u <land 0 < dj; < ... <djpuy <1, po and py are positive
integers and wj;, b; are suitable weights.

The discretized multistep collocation method (21)-(24) pro-
vides a continuous approximation P(x) of the solution y(x)
of the integral equation (2) in [0, X], by considering

P(z)

— Py(2) (28)

|($n7$n+1]
where P,(x) is given by (21). We note that usually the
polynomial constructed in the collocation methods for VIEs
doesn’t interpolate the numerical solution in the previous step
points, resulting a discontinuous approximation of the solution
(15). In this multistep extension, the collocation polynomial
is instead a continuous approximation to the solution, i.e.
u(z) € 8§ (In)

The discretized multistep collocation method (21)-(24) can
be regarded as a multistep Runge—Kutta method for VIEs:

Mo

F‘n(xnz) + h Z Wy
=1

k(xn +eih, xn + dih,

r—1 m

.9
E YitkYn—k + E BitjYnj) 29
k=0 j=1

Yni

r—1 m
Uni1 =D Oktnk+ 3 NV
k=0 =1
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where
B n—1 p1
Fu(z) =g(x)+hY > b
v=0 I=1
r—1 m (30)
k@, w o Gh Y Stk + Y Ve
k=0 j=1
and

eir = ¢i, ik = @r(dir), Buj = v;(da),
Or = pr(1), Aj = ;(1),
o = @r(&), my = ¥;(&)-

The reason of interest of the multistep collocation methods
lies in the fact that they increase the order of convergence
of collocation methods without increasing the computational
cost, except for the cost due to the starting procedure. As a
matter of fact, in advancing from z,, to z, 41, we make use of
the approximations 4,,_x, k = 0, ...,7 — 1, which have already
been evaluated at the previous steps. This permits to increase
the order, by maintaining in (24) the same dimension m of
the nonlinear system (11).

The r—steps m—points collocation methods have uniform
order m + r, and order of local superconvergence 2m +1r — 1.
The knowledge of the collocation polynomial, which provides
a continuous approximation of uniform order of the solution,
will allow a cheap variable stepsize implementation. Indeed,
when the stepsize changes, the new approximation values can
be computed by simply evaluating the collocation polynomial,
without running into problems of order reduction, as a conse-
quence of the uniform order.

D. Two-step collocation and almost collocation methods for
VIEs

Unfortunately multistep methods of the form (21)-(24) do
not lead to a good balance between high order and strong
stability properties, infact, altough methods with unbounded
stability regions exist, no A-—stable methods have been found.
Therefore in [28] a modification in the technique has been in-
troduced, thus obtaining two-step almost collocation methods,
also for systems of VIEs, by relaxing some of the collocation
conditions and by introducing some previous stage values, in
order to further increase the order and to have free parameters
in the method, to be used to get A-stability.

The methods are defined by

P(xn +Tih) = 900(3)yn—1 + @1%)%
+ NP @a1) + 265 () (P + Buy)).
j=1 j=1

Yn4+1 = P(xn+1)7
(31)

s€(0,1,n=1,2...,N—1.
If the polynomials ¢qg(s), 1(s), x;(s) and ¥;(s), j =
1,2, ..., m satisfy the interpolation conditions

©o(0) = 0, ¢ (0) = 1,
x;(0) = 0, ¢;(0) = 0,
wo(=1) = 1, ¢i(=1) = 0,
xi(=1) = 0, ¥;(-1) = 0,
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and the collocation conditions

polci) = 0, wi(ci) = 0,

xjlei) = 0, bj(es) = i,
SDO(CZ' - 1) = Oa 901(075 - 1) = Oa
xjlci—1) = &, Yi(ci—1) = 0,

i=1,2,...,m, then we obtain order p = 2m + 1.

In our search for A-stable methods we will have been
mainly concerned with methods of order p = 2m — r, where
r =1 or r = 2 is the number of relaxed conditions. Namely
we for p = 2m + 1 —r, r = 1,2, have chosen @q(s) as
a polynomial of degree < 2m + 1 — r, which satisfies the
collocation conditions

wo(ci)zo, i=1,2,...,m. (32)

This leads to the polynomial ¢(s) of the form
m
@o(s) = (qo+ @5+ -4 Gmy1—rs" ") H (s —ci), (33)
i=1
where qo, q1,...,qm+1—r are free parameters. Moreover, for
p = 2m — 1 we have chosen ¢1(s) as a polynomial of degree
< 2m — 1 which satisfies the collocation conditions

<p1(ci):0, i:1,2,...,m. (34)

This leads to the polynomial ¢4 (s) of the form
m
p1(s) = (o + P15+ .+ pm1s™ ) [[ (s =), (35)
i=1
where pg, p1,...,Pm—1 are free parameters.
The methods have uniform order of convergence p = 2m —
r, and are therefore suitable for an efficient variable stepsize
implementation. Moreover methods which are A-stable with
respect to the basic test equation and have unbounded stability
regions with respect to the convolution test equation have been
provided. Diagonally implicit methods are derived in [30]

IV. COLLOCATION METHODS FOR PERIODIC STIFF
PROBLEMS

We now focus on second order ordinary differential equa-
tions with periodic and oscillating solution

y'(z) = f(z,y(x)),
y'(x0) = yo € RY,
y(z0) = Yo,
where f : [zg, X] xR? — R is assumed to be a is sufficiently
smooth function, in order to ensure the existence and the
uniqueness of the solution.

In the context of collocation methods for second order
equations, two possibilities have been taken into account in the
literature, i.e. methods based on indirect or direct collocation
[81]. Indirect collocation methods are generated by applying
a collocation based Runge-Kutta method to the first order
representation of (36), which has doubled dimension. If

c| A
b

is the Butcher array of a collocation Runge-Kutta method, the
tableau of the corresponding indirect collocation method is

x € [zo, X],
(36)
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c| A?
A'b
bT

which results in a Runge-Kutta-Nystrom method [51]. The
theory of indirect collocation methods completely parallels
the well-known theory of collocation methods for first order
equations (see [81]) and, therefore, the properties of a colloca-
tion method are totally inherited by the corresponding indirect
collocation method. Thus, the maximum attainable order is
2m, where m is the number of stages, and it is achieved by
Gauss-type methods, which are also A-stable, while L-stability
is achieved by Radau IIA-type methods, of order 2m — 1.

In the case of direct collocation methods, Van der Houwen
et al. [81] studied the order and stability properties of direct
collocation methods, extending the results of Kramarz [60]. In
particular, the following result holds (see [81]):

Theorem 4.1: Direct and indirect collocation methods with
the same collocation nodes have the same order. The stage
order of direct collocation methods is one higher whenever

1 m
/ H(s —¢;)ds = 0. O
0 =1

Therefore, while indirect and direct collocation methods
share the same order, their stage order is different and, in
particular, direct methods have higher stage order. However,
they are not competitive in terms of stability. Van der Houwen
et al. in [81] clearly state that “From a practical point of view,
direct collocation methods based on Gauss, Radau and Lobatto
collocation points are of limited value, because the rather small
stability or periodicity boundaries make them unsuitable for
stiff problems. The A-stable indirect analogues are clearly
more suitable for integrating stiff problems”.

Moreover, Coleman [19] proved that no P-stable one
step symmetric collocation methods exist. P-stability (see
Lambert-Watson paper [62]) is a very relevant property for
the numerical treatment of a second order system whose
theoretical solution is periodic with a moderate frequency and
a high frequency oscillation of small amplitude superimposed.
This phenomenon is known in literature as periodic stiffness
[79], which can be reasonably faced using P-stable methods,
exactly as A-stable methods are suitable for stiff problems. In
other terms, P-stability ensures that the choice of the stepsize
is independent from the values of the frequencies, but it only
depends on the desired accuracy [23], [74].

In [62], the authors proved that P-stable linear multistep
methods

P p
> yni; =h* Y Bifats
i=0 i=0

can achieve maximum order 2. In the context of Runge—Kutta—
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Nystrom methods

Un + Myl +1° Y bif (e + cih, Vi),

Yn+1 =
i=1
Y1 Yn + B> bif(@n + cih,Yy),
i=1
Yi = yn+chy,+h’ Zaijf(fn + ¢jh, Yj),
j=1

1 =1,2,...,m, many A-stable and P-stable methods exist, but
the ones falling in the subclass of collocation methods, whose
coefficients (see [51]) are of the form

CLij =
1

b = / Li(s)ds,
0

B 1

b — / (1— )Li(s)ds,
0

have only bounded stability intervals and are not P-stable [74].
Further issues on the solution of second order problems are
also object of [32], [36], [76], [78].

Another important issue regards hybrid methods. Indeed, as
Henrici observed in [53], “If one is not particularly interested
in the values of the first derivatives, it seems unnatural to
introduce them artificially”. For this reason, other types of
methods have been taken into account in the literature, i.e.
methods which provide an approximation to the solution
without computing any approximation to the first derivative:
these formulae are denoted in literature as hybrid methods.
Coleman introduced in [21] the following class of two-step
hybrid methods for second order equations:

VI = iyt + (1= w)yn + 02 i f@n + ¢h, Y;),
j=1

(37

Yn+1 = Y1 + (1= O)yn + h? ZU}if(fL'n +eih, Y.
i=1
(38)

i = 1,...,m. This class of methods has been further inves-
tigated in [18], [42], [47], [82], [83]. In more recent times,
we derived in [41] collocation based methods belonging to
the class of Coleman hybrid methods (37)-(38), extending the
technique introduced by Hairer and Wanner in [52] for first
order problems. The collocation polynomial takes the form

P(zn, + sh) = ¢1(8)yn—1 + ©2(5)yn

m

12 S X P (e + csh), O
j=1

where s = “=*= € [0, 1], and unknown basis functions
{@1(5)5 902(5)7 Xj(s)a ] = 17 23 ceey m}a
are derived imposing the following m + 2 conditions

P(xn—l) Yn—1, P(xn) = Yn,
P"(z, + cjh) f(xn + cjh, P(z, + ¢;h)),
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j =1,...,m. After computing the basis functions as solutions
of m + 2 linear systems (see [67]), the resulting class of
methods takes the following form

Y™ = o1(e)yn1 + @a(ci)yn (40)
+ 5> (e P (wn + cjh), (41)

j=1
Unt+1 = L1(D)yn—1 + ©2(1)yn (42)
(43)

+h? Z xj ()P (zy + cjh).
j=1

In [41] we have provided the study of stability and peri-
odicity properties and derived continuous order conditions for
(43)-(41), which are object of the following result.

Theorem 4.2: Assume that the function f is sufficiently
smooth. The collocation method associated to (39) has uniform
order p if the following conditions are satisfied:

L= p1(s) —p2(s) =0, s+p1(s) =0,

s (=)o (s) — k(k — 1) ij(s)cé?*z —o.

k=2,...,p, s€l0,1].

Theorem 4.2 allows us to prove that every two—step col-
location method associated to (39), has order p = m on the
whole integration interval, and this is result is coherent with
[21].

V. MIXED COLLOCATION METHODS

The development of classical collocation methods (i.e.
methods based on algebraic polynomials), even if it is not
the most suitable choice for second order problems that do
not possess solutions with polynomial behaviour, is the first
necessary step in order to construct collocation methods whose
collocation function is expressed as linear combination of
different functions, e.g. trigonometric polynomials, mixed or
exponential basis (see, for instance, [22], [55]), which can
better follow the qualitative behaviour of the solution. It is
indeed more realistic to choose basis functions which are not
polynomials.

Many authors have considered in literature different func-
tional basis, instead of the polynomial one, e.g. [5], [20],
[23], [42], [46], [48], [55], [59], [711, [73], [75], [77], [80].
In particular we mention here the work by Coleman and
Duxbury [22], where the authors introduced mixed collocation
methods applied to the Runge-Kutta-Nystrém scheme, where
the collocation function is expressed as linear combination
of trigonometric functions and powers, in order to provide
better approximations for oscillatory solutions. The methods
are derived in order to exactly integrate the armonic oscillator
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a linear combination of a sine and cosine of a given frequency,
and powers of the relevant variable, and later used by Brunner
et al. in [5] in the context of Volterra integral equations.
The solution on the generic integration interval [z, 1] is
approximated by the collocating function
m—1
u(x, + sh) = acosfs + bsinfs + Z ;s
i=0

(44)

which satisfies the following collocation and interpolation
conditions

U(I’n) = Yn, ul(zn) = y:w
u(z + ¢jh) = f(zy + cjh,u(x, + cjh)),
7 = 1,...,m. Integrating (44) twice, we obtain the Runge-

Kutta-Nystrom formulation of the methods, i.e.

m

uW'(zp,+sh) = y,+ hz a;(8) frte:s
i=1
u(z, +sh) = yn+ shyl, +h* Z Bi(8) frters
i=1
where

ai(s) = /05 L;()dr, Bi(s) = /OS(S — 1)L (T)dr.

Outside collocation, many authors derived methods having
frequency dependent parameters (see, for instance, [55], [59],
[72], [80] and references therein contained). The linear stabil-
ity analysis of these methods is carried out in [23]. In [42]
also a method with parameters depending on two frequency
is presented, and the modification in the stability analysis
is performed, leading to a three dimensional region. Further
issues on the solution of second order problems by means of
non-polynomially based methods are contained in [33]-[35],
[37], [70] and references therein.

A. VIEs with periodic solutions

In the case of VIEs with periodic highly oscillatory so-
lutions, traditional methods may be inefficient, as they may
require the use of a small stepsize in order to follow accurately
the oscillations of high frequency. As in the case of ODEs “ad
hoc” numerical methods have been constructed, incorporating
the a priori knowledge of the behaviour of the solution, in
order to use wider stepsizes with respect to classical methods
and simultaneously to simulate with high accuracy the oscil-
lations of the solution.

A first work on the numerical solution of VIEs with periodic
solution is [3], where numerical methods were constructed
by means of mixed interpolation. Recently, mixed collocation
methods have been introduced in [5], [6] for VIEs and VIDEs.
In particular in [5], mixed collocation methods have been
introduced for linear convolution VIEs of the form

y// —_ —k‘2y, T
y(z) = g(x) +/ k(x —m)y(r)dr, =z€l0,X], (45)
where k is a constant, a feature which is not achievable by al- —o0
gebraic polynomial collocation. The term mixed interpolation  with
appeared for the first time in [46] to describe interpolation by y(x) =Y(x), =z €[-00,0],
ISSN: 1998-0140 328
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where k € L'(0,00), g is a continuous periodic function and
1) is a given bounded and continuous function. The collocation
polynomial is taken in the form

m

P, (xn + sh) = Z By (s)Yak
k=0

where the By(s) are combinations of trigonometric functions
and algebraic polynomials given in [5]. The numerical method
is of the form

Ynt1 =D o Be(D)Ynx

where the lag-term and increment term approximations are
given by

B 0
Fri = glams) + /_ F(itms — T (r)dr
n—1 m

+h Z Z wi(1)k(zn; — 201 P (20)

v=0 [=0

Opi = hei Y wi(D)k(Tn; — 20 — heier) | > Br(eior) Yok
=0 k=0

with

wi(s) = /O " B(r)dr

With some suitable choices for collocation parameters such
methods accurately integrates systems for which the period
of oscillation of the solution is known. In the paper [17]
the authors introduce a family linear methods, namely Direct
Quadrature (DQ) methods, specially tuned on the specific
feature of the problem, based on the exponential fitting [54],
[55], which is extremely flexible when periodic functions are
treated. Such formulae are based on a three-term quadrature
formula, that is of the same form as the usual Simpson rule,
but specially tuned on integrands of the form k(s)y(s) where
k and y are of type

k(x) = €7, y(x) = a+ beos(wx) + csin(wz), (47)
where o, w, a, b, c € IR. The coefficients of the new quadrature
rule depend on the parameters of the integrand, i.e. o and w. It
has been shown as the use of exponentially fitted based three-
point quadrature rules produces a definite improvement in the
accuracy when compared with the results from the classical
Simpson rule, and that the magnitude of the gain depends on
how good is the knowledge of the true frequencies. The results
also indicate that, as a rule, if the input accuracy is up to 10
percent, then the accuracy gain in the output is substantial.
Further issues in the numerical solution of Volterra Integral
equations with periodic solution are in [15], [16].
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