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Abstract—The hydromagnetic free convection of a Cu-water
nanofluid in a square cavity involving an adiabatic circular cylinder
is numerically investigated in the presence of an inclined uniform
magnetic field. The left and right walls of the cavity are kept at
constant hot and cold temperatures, respectively, while the horizontal
walls are assumed to be adiabatic. The coupled nonlinear equations
of mass, momentum and energy governing the present problem
are discretized using the dual reciprocity boundary element method
which is a boundary only nature technique treating the nonlinear
terms by the use of radial basis functions. The flow and thermal
fields are analyzed through streamline, isotherm, and average Nusselt
number plots for a wide range of controlling parameters, such as
Rayleigh and Hartmann numbers, the nanoparticle volume fraction
and the inclination angle of the magnetic field. The results reveal
that heat transfer and fluid flow are strongly affected by the presence
of the circular cylinder and the inclined magnetic field.
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I. I NTRODUCTION

CONVECTION flow and heat transfer in enclosures have
been investigated by many researchers due to their

importance in many engineering applications such as nu-
clear reactors, design of solar collectors, thermal design of
buildings, lakes and reservoirs, air conditioning and cooling
of electronic devices, food processing, crystal growth and
coating solidification. The fluids with small sized nanoparticles
suspended in them are called nanofluids. Due to small sizes
and large specific surface areas of the nanoparticles, nanofluids
have superior properties like long-term stability, homogeneity
and especially high thermal conductivity when compared to
conventional base fluids such as water and ethylene glycol.
Thus, recently nanofluids have been extensively analyzed in
the heat transfer applications due to their potential in the
enhancement of heat transfer with minimum pressure drop.
When the fluid is electrically conducting and the fluid flow is
due to convection under the influence of a magnetic field, the
fluid experiences a Lorentz force. This force affects the heat
transfer rate and reduces the velocity of the fluid particles
which is the well-known retarding effect of magnetic field on
the convective flow. The free convection is under the effect of
a magnetic field in many applications such as fusion reactor,
thermal insulation systems, crystal growth and metal casting.
Therefore, considering a combined effect of magnetic field
and addition of nanoparticles becomes crucial in the study of
convection flow of an electrically conducting fluid to control
the heat transfer and fluid flow characteristics.
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There are many works on the numerical solution of the
natural convection in a nanofluid filled cavity under the
influence of an externally applied magnetic field with different
thermal boundary conditions. Ghasemi et al. [1] and Teamah et
al. [2] have investigated the effect of the horizontal magnetic
field on heat transfer in a square enclosure by using control
volume (CV) based on Patankar’s SIMPLE algorithm. A
numerical solution to magnetohydrodynamic (MHD) natural
convection flow in a square cavity by using Lattice Boltzmann
method (LBM) has been analyzed in the works [3], [4]
under different thermal wall conditions. They found that heat
transfer enhancement with the growth of solid volume fraction
depends on Hartmann and Rayleigh numbers. Rahman et al.
[5] have studied Buongiorno’s model for hydrodynamic free
convection flow in a triangular cavity filled with nanofluid by
Galerkin weighted residual finite element method (FEM). The
results showed that the heat transfer rate can be decreased
with increasing Hartmann number but it can be increased
by increasing Rayleigh number and by reducing the diameter
of the nanoparticles. Tezer-Sezgin et al. [6] have solved the
natural convection nanofluid flow in a square enclosure in
presence of an inclined magnetic field using both FEM and
dual reciprocity boundary element methods (DRBEM). The
hydromagnetic nanofluid natural convection flow has been
further solved numerically in different geometries. Ghasemi
[7] have studied the natural convection in anU -shaped en-
closure filled with nanofluid with the use of control volume
formulation with SIMPLE algorithm. They observed that the
heat transfer rate increases as Rayleigh number increases while
it decreases for higher values of Hartmann number. The natural
convection in an inclinedL-shaped nanofluid filled cavity in
the presence of inclined magnetic field has been solved by the
finite difference method (FDM) in the work of Elshehabey
[8], and their results revealed that a good enhancement in the
heat transfer rate is obtained by adding cooper nanoparticles
to the base fluid. Bondareva et al. [9] have also used FDM
for the solution of MHD natural convection in an inclined
wavy porous cavity filled with a nanofluid to investigate
the effects of Hartmann number, inclination angles of the
cavity on the heat transfer and fluid flow. Sheikholeslami
et al. [10] have investigated the heat transfer characteristics
of unsteady nanofluid flow between parallel plates by using
differential transformation method. It is found that Nusselt
number increase with Hartmann, Eckert and Schmidt numbers
but it decreases with augment of squeeze number.

In this study our focus is on the MHD natural convection
flow in nanofluid filled enclosures with a detached body placed
inside it. The thermal boundary conditions, the shape, location
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and size of the body is of great interest in heat transfer
applications. In fact, the presence of a solid body has a direct
effect on the fluid flow and hence on the heat transfer. There
have been studies considering the combined effect of the mag-
netic field and internal solid bodies on the nanofluid natural
convection flow in cavities by using domain decomposition
techniques such as FEM, FVM and LBM. Aminossadati [11]
have analyzed the cooling of a right triangular heat source in a
triangular cavity under the influence of a horizontal magnetic
field using CV formulation. The heat transfer enhancement of
nanofluid filled square cavity with a circular disk have been
investigated by Kobra et al. [12] with FEM. Selimefendigil and
Özturk [13] have worked on the impact of different shaped
obstacles on the natural convection and entropy generation
of nanofluid filled cavity with inclined magnetic field. They
employed Galerkin weighted residual FEM for the discretiza-
tion of the equations and it was found that the square shaped
bodies deteriorates the averaged heat transfer more than the
circular and diamond shape bodies compared to the case
without obstacle at high Rayleigh number106. Zhang and
Che [14] has developed a two-dimensional double multiple-
relaxation-time thermal LBM to simulate the MHD flow and
heat transfer of Cu-water nanofluids in an inclined cavity with
four heat sources placed inside the cavity. Their results showed
that the average Nusselt number increases significantly with
the increase of nanoparticles volume fraction, but it decreases
in the presence of magnetic field at any Rayleigh number and
inclination angles.

We aim here to analyze numerically the natural convection
flow and the heat transfer in a closed square cavity filled
with Cu-water nanofluid which involves an adiabatic circular
cylinder under the effect of an externally applied inclined
magnetic field. To the best of authors knowledge and based
on the above literature survey, no work has been reported
on the dual reciprocity BEM solution, which reduces the
dimension of the problem by discretizing only the boundary
of the problem, to the specified MHD natural convection
problem which may be encountered in the area of coating,
food processing, cooling systems, nuclear and solar reactors
and many more. The present study focuses on incorporating
this issue with the effect of controlling parameters including
Rayleigh and Hartmann numbers, nanoparticle volume fraction
and the inclination angle of the magnetic field. The heat
transfer enhancement is also analyzed through average Nusselt
number at various combination of aforementioned controlling
parameters along the hot left wall of the cavity both in the
presence and absence of the inner circular cylinder.

II. M ATHEMATICAL FORMULATION

The schematic view of the problem of a two-dimensional
square cavity of heightℓ with a circular cylinder of diameter
d placed at the center of the cavity is illustrated in Figure
1. The left and right walls are maintained at isothermal hot
Th and coldTc temperatures, respectively. On the horizontal
walls and on the cylinder surface adiabatic boundary condition
is assumed. A uniform inclined magnetic field of strength
B0 is applied forming an angleγ with the x-axis and the

adiabatic

ℓ

d
Th Tc

g

y

x

B0

γ

Fig. 1. Geometry of the physical problem with boundary conditions.

gravity acts in the negativey-direction. The cavity is filled
with a Newtonian Cu-water nanofluid, and the flow generated
inside the cavity is assumed to be steady, laminar and obeying
the Boussinesq approximation. The effects of joule heating,
induced magnetic field and viscous dissipation are neglected.
The base fluid and the nanoparticles are assumed to be in
thermal equilibrium and their thermo-physical properties are
taken from Bansal et.al. [15].

Thus, the steady governing equations of conservation of
mass, momentum and energy in dimensionless form can be
written as follows [1], [8], [12]:

∂u

∂x
+
∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= −

∂p

∂x
+

µnf

ρnfαf

∇2u

+Ha2Pr sin γ (v cos γ − u sin γ)
(2)

u
∂v

∂x
+ v

∂v

∂y
= −

∂p

∂y
+

µnf

ρnfαf

∇2v +RaPr
(ρβ)nf
ρnfβf

θ

+Ha2Pr cos γ (u sin γ − v cos γ)
(3)

u
∂θ

∂x
+ v

∂θ

∂y
=

αnf

αf

(

∂2θ

∂x2
+
∂2θ

∂y2

)

(4)

by defining the dimensionless parameters as

x =
x̄

ℓ
, y =

ȳ

ℓ
, u =

ūℓ

αf

, v =
v̄ℓ

αf

, p =
p̄ℓ2

ρnfα2
f

,

θ =
T − Tc
Th − Tc

, Ha = B0ℓ

√

σnf
ρnfνf

, P r =
νf
αf

,

Ra =
gβf ℓ

3(Th − Tc)

νfαf

(5)

where the overline in equation (5) indicates the quantities
are dimensional. The parametersℓ, g, σ, ν and B0 are
the characteristic length, gravitational acceleration, electrical
conductivity, kinematic viscosity and the magnetic field inten-
sity, respectively. In equations (1)-(4)u, v, p and θ denote
the dimensionlessx- and y-velocity components, pressure
and temperature of the fluid, respectively. HerePr, Ra and
Ha represent, respectively, Prandtl, Rayleigh and Hartmann
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numbers. The thermo-physical properties of nanofluids are
defined by the following formulas [15]:

ρnf = (1− φ)ρf + φρp, σnf = (1− φ)σf + φσp,

(ρβ)nf = (1− φ)(ρβ)f + φ(ρβ)p, αnf = knf/(ρCp)nf ,

(ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)p, µnf =
µf

(1− φ)2.5
(6)

whereφ is the nanoparticle volume fraction,ρ is the density,
α is the thermal diffusivity,Cp is the specific heat,β is
the thermal expansion coefficient,µ is the effective dynamic
viscosity,k is the thermal conductivity. The subscripts ‘nf ’, ‘ f ’
and ‘p’ refer to nanofluid, fluid and nanoparticle, respectively.
Finally, the thermal conductivity of the nanofluid is given as

knf = kf

[

kp + 2kf − 2φ(kf − kp)

kp + 2kf + φ(kf − kp)

]

.

The appropriate dimensionless boundary conditions corre-
sponding to the considered problem are

At left wall: u = 0 = v = 0, θ = 1

At right wall: u = v = 0, θ = 0

At horizontal walls: u = v = 0, ∂θ/∂n = 0

On the cylinder surface: u = v = 0, ∂θ/∂n = 0 .

(7)

The system of equations (1)-(4) can be written in the stream
functionψ, vorticity w and temperature form as

∇2ψ = −w (8)

µnf

ρnfαf

∇2w =
∂w

∂x

∂ψ

∂y
−
∂w

∂y

∂ψ

∂x
−RaPr

(ρβ)nf
ρnfβf

∂θ

∂x

−Ha2Pr

(

sin 2γ
∂2ψ

∂x∂y
+ cos2 γ

∂2ψ

∂x2
+ sin2 γ

∂2ψ

∂y2

)

(9)

αnf

αf

∇2T =
∂T

∂x

∂ψ

∂y
−
∂T

∂y

∂ψ

∂x
(10)

by defining the stream functionψ and the vorticityw as

∂ψ

∂y
= u,

∂ψ

∂x
= −v, w =

∂v

∂x
−
∂u

∂y
. (11)

The corresponding boundary conditions for stream function
and temperature become

At left wall: ψ = 0, θ = 1

At right wall: ψ = 0, θ = 0

At horizontal walls: ψ = 0, ∂θ/∂n = 0

On the cylinder surface: ψ = 0, ∂θ/∂n = 0

(12)

and the unknown boundary conditions for the vorticity will be
obtained from equation (8) by using a radial basis function
approximation which is an advantage of DRBEM.

In order to determine the heat transfer enhancement in the
cavity, the local Nusselt numberNu based on the height of
the cavity is evaluated by [15]

Nu = −
knf
kf

∂θ

∂n
|wall

while the surface average Nusselt numberNu is obtained by
integrating its local value on the concerned surface.

III. M ETHOD OF SOLUTION AND NUMERICAL

VERIFICATION

The governing equations (8)-(10) subjected to the boundary
conditions (12) are discretized using the dual reciprocity
boundary element method, which aims to transform these
equations into boundary only integral equations by means
of a radial basis function approach. Equations (8)-(10) are
weighted with the fundamental solution of Laplace equation
u∗ = −1/2π ln r by treating the terms on the right hand
side of these equations as inhomogeneity [16]. Thus, after the
application of divergence theorem, equations (8)-(10) take the
form

ciSi +

∫

Γ

(q∗S − u∗
∂S

∂n
)dΓ = −

∫

Ω

bSu
∗dΩ (13)

whereS is used for each unknownψ, w and θ. Here,Γ is
the boundary of the computational domainΩ, q∗ = ∂u∗/∂n
and the constantci = ηi/2π with the internal angleηi at the
source pointi. The right hand side terms in equations (8)-(10)
are denoted bybS and they are approximated by using poly-
nomial type radial basis functionsfj linked with the particular
solutionsûj to equation∇2ûj = fj [16]. That is, these ap-

proximation are given bybS ≈

N+L
∑

j=1

αSjfj =

N+L
∑

j=1

αSj∇
2ûj

whereαSj are undetermined coefficients,N and L are the
number of boundary and interior nodes, respectively. Thus,
equation (13) take the form

ciSi +

∫

Γ

(q∗S − u∗
∂S

∂n
)dΓ =

N+L
∑

j=1

αSj

[

ciûji +

∫

Γ

(q∗ûj − u∗q̂j)dΓ

]
(14)

which contains only boundary integrals andq̂ = ∂ûj/∂n. By
discretizing the boundary with constant elements, the matrix-
vector form of equation (14) can be expressed in a compact
way for each unknownsS(= ψ, w, θ), as

HS −G
∂S

∂n
= (HÛ −GQ̂)F−1bS (15)

where the matriceŝU and Q̂ are constructed by taking each
of the vectorŝuj and q̂j as columns, respectively. The matrix
F consists of vectorsfj of size (N + L) as columns. The
components of the matricesG andH are obtained by taking
the integral of the fundamental solutionu∗ and its normal
derivative along each boundary elementsΓj , respectively.
The final DRBEM equations (15) are coupled so that they
are solved iteratively. In each iteration, the required space
derivatives of the unknownsψ, w and θ, and also the un-
known vorticity boundary conditions are obtained by using
the coordinate matrixF [16].

The present numerical algorithm is validated against the
existing numerical results of [12], [17] for a two-dimensional
natural convection flow in a square cavity filled with Cu-
water nanofluid. In this problem, the top and bottom walls
are adiabatic while the left wall is heated and the right wall is
cold. Table I shows the values of the average Nusselt number
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along the hot wall of the cavity, which are computed with
the present algorithm and are given in the works [12], [17],
for various Grashof numbers and the solid volume fraction
φ = 0.04, 0.2. The values ofNu in work of Khanafer [17]
are obtained from the correlation (23) in [17]. The obtained
results are in good agreement with those of [12], [17].

TABLE I
COMPARISON OF AVERAGENUSSELT NUMBER ON HOT WALL FOR THE

NATURAL CONVECTION FLOW IN CU-WATER FILLED SQUARE CAVITY.

φ = 0.04 φ = 0.2

Gr Present Khanafer[17] Present [17] Kobra[12]
10

3 2.0895 2.1182 2.7975 2.7645 2.5662
10

4 4.3542 4.3478 5.8641 5.6744 5.4050
10

5 9.1849 8.9243 12.121 11.647 10.667

IV. RESULTS AND DISCUSSION

In the present study, the numerical simulations with
DRBEM are performed for various combination of problem
parameters including Rayleigh number (103 ≤ Ra ≤ 106),
Hartmann number (0≤ Ha ≤ 100) and the solid volume
fraction (0 ≤ φ ≤ 0.2) at fixed Prandtl numberPr = 6.2.
The computational domain is determined by taking the height
of the cavityℓ = 1 and the diameter of the circular cylinder
d = 0.2. The boundary of the square cavity and the inner cir-
cular cylinder are discretized by using 120 and 60 (N= 180)
constant boundary elements, respectively. The choice of this
grid is based on the tests implying various grid sizes for the
case whenRa = 105 andHa = 50 are employed atφ = 0.1,
d = 0.2 and γ = 0. The results are displayed in Figure 2 in
terms of|ψ|max and the average Nusselt numberNu along the
hot left wall. It is observed that the grid withN ≈ 180 shows
little difference with the results obtained for finer grids. Thus,
the grid ofN = 180 elements ensures grid independence and
hence is used in the subsequent computations.

50 100 150 200 250 300 350 400

2

2.5

3

3.5

 

 
|ψ|max

Nu

N

Fig. 2. Grid dependency whenRa = 10
5, Ha = 50, φ = 0.1, γ = 0.

The effects of the Rayleigh number and the nanoparticle
volume fraction on the flow patterns and the temperature
distribution are displayed for horizontally applied magnetic
field (γ = 0) when Ha = 0, Ha = 30 and Ha = 50 in
Figures 3, 4 and 5, respectively. In these figures solid-lines
and dotted-lines represent the cases with nanofluid (φ= 0.1)
and with pure fluid (φ= 0), respectively. It is observed that in
the absence of magnetic field (Ha= 0), adding nanoparticles
leads to an increase in the magnitude of maximum stream
function at Ra = 104, 105, 106, while it decreases in the
conduction dominated case atRa = 103. However, in the
presence of magnetic field the strength of the stream function

decreases due to the retarding effect of magnetic field on
the fluid flow, therefore, addition of nanoparticles results in
weaker buoyancy driven circulations, which reduces the values
of stream function. By increase of the buoyant force via
increasingRa, the strength ofψ increases and the streamlines
become dense close to the vertical walls of the cavity forming
secondary eddies near the circular cylinder (atRa = 105, 106)
for each Ha(= 0, 30, 50). Moreover, the core vortex in
streamlines extends vertically asHa increase and it tends to
become diagonal and finally horizontal asRa increases. On
the other hand, with an increase inRa the free convection
dominates the flow and isotherms change their profiles from
being vertical to almost horizontal at the center of the cavity.
However, Hartmann number has an opposite influence on
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Fig. 3. Streamlines and isotherms for nanofluid withφ = 0.1 (solid)
and water (dotted) at different Rayleigh numbers:Ha = 0, γ = 0.

isotherms, that is, the isotherms tend to go from horizontal
to vertical (especially atRa = 105) indicating the suppression
of convective flows at higherHa. Moreover, following an
increase inRa, isotherms are condensed close to vertical
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walls, which results in a thermal boundary layer formation
along these walls atRa = 105, 106 whenHa = 0, 30 and
at Ra = 106 when Ha = 50. It is also observed from
isotherms that at each Rayleigh number with the addition of
nanoparticles the thermal boundary layer along the vertical
walls becomes thicker due to higher conductivity of nanofluid
than that of pure fluid. These results are compatible with the
ones given in [12].
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Fig. 4. Streamlines and isotherms for nanofluid withφ = 0.1 (solid)
and water (dotted) at different Rayleigh numbers:Ha = 30, γ = 0.

In Figure 6, the variation of average Nusselt number on
the left hot wall with Hartmann and Rayleigh numbers are
shown for the nanofluid withφ = 0.1 when γ = 0. It
is observed that there is no difference inNu at different
Hartmann numbers when the heat transfer is dominated by
conduction atRa = 103, indicating thatHa has no significant
effect on heat transfer. However, for higher values ofRa, Nu
decreases asHa increases since the magnetic field reduces
the flow and consequently the convective heat transfer is
decreased. Furthermore, the rate of decrease inNu for higher
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Fig. 5. Streamlines and isotherms for nanofluid withφ = 0.1 (solid)
and water (dotted) at different Rayleigh numbers:Ha = 50, γ = 0.

Ha increases with an increase inRa. On the other hand,Nu
increases asRa increases since the heat transfer is due to
convection, and the increase rate is higher in the absence of
magnetic field (Ha= 0).

(a) Ha (b) Ra
Fig. 6. Effects of (a) Hartmann number and (b) Rayleigh number on
average Nusselt number atφ = 0.1, γ = 0.

The effect of solid volume fractionφ on the average Nusselt
number at different values of Rayleigh number andγ = 0 is
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displayed in Figure 7 (a)Ha = 0, (b)Ha = 10, (c)Ha = 30,
(d) Ha = 50. At eachHa, the average Nusselt number is an
increasing function of Rayleigh number for all values of solid
volume fraction since the heat transfer becomes dominated
by the convection for highRa. On the other hand, when the
intensity of the magnetic field is low (Ha <30) the average
Nusselt number increases asφ increases regardless of the
values ofRa, which indicates that the addition of nanoparticles
enhances the heat transfer rate inside the cavity. However,
the amount of increase inNu reduces asHa increases from
Ha = 0 to Ha = 10, and specifically atRa = 104 and
Ra = 105 the solid volume fraction has no significant effect
on Nu following the suppression effect of magnetic field
on convective flow. On the other hand, whenHa ≥ 30
the behavior ofNu with respect toφ alters drastically at
Ra ≥ 105. That is, whenHa ≥ 30 andRa = 105, 106 an
increase in solid volume fraction results in a decrease ofNu
(and as a result in the reduction of heat transfer rate inside
the cavity) while it increases for lower values ofHa andRa.
This result shows that the magnetic field of specific intensity
plays a significant role in the heat transfer enhancement in the
enclosures filled with nanofluids of different volume fractions.
It is also observed that whenHa = 30 the heat transfer is
higher for the pure fluid (φ= 0) whenRa = 104. The reason
for this phenomena is that atRa = 104 the buoyancy force
is not strong enough to resist the magnetic field with strength
Ha = 30, and hence an increase in the solid volume fraction
of nanofluid reduces the heat transfer rate.

Ra Ra

Ra Ra

(c) Ha = 30 (d) Ha = 50

(a) Ha = 0 (b) Ha = 10

Fig. 7. Variation of average Nusselt number with Rayleigh number
at different solid volume fractionsφ(= 0, 0.1, 0.2) whenγ = 0: (a)
Ha = 0, (b) Ha = 10, (c) Ha = 30, (d) Ha = 50.

The variations of streamlines and isotherms with respect
to the inclination angle of magnetic field for the nanofluid
with φ = 0.1 at Ha = 30 are visualized in Figure 8 for
the conductive flow whenRa = 103 and in Figure 9 for the
convective flow whenRa = 105, respectively. The average
Nusselt number and the maximum magnitude of the stream
function are also displayed in the figures. It is evident that
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Fig. 8. Streamlines and isotherms for nanofluid withφ = 0.1 at
different inclination angles of magnetic fieldγ: Ha = 30,Ra = 103.

the direction of the magnetic field has a significant effect
on the flow patterns. That is, the streamlines extends in the
direction of magnetic field whenγ = π/4, π/3 in eachRa.
Furthermore, the core vortex of streamlines showing a vertical
extension around the circular cylinder whenγ = 0, Ra = 103

tends to extend horizontally whenγ increases toπ/2. A
similar behavior is also seen atRa = 105 with a small
difference atγ = 0 in which the core vortex in streamlines has
been almost diagonal due to the stronger convective flow at
Ra = 105. The stream function increases a little in magnitude
asγ increases, but then its magnitude starts to decrease with
further increase inγ. On the other hand, atRa = 103 when the
heat transfer is due to mainly conduction there is no alteration
in the isotherms and the values ofNu as γ increases from
0 to π/2. However at highRa = 105 as γ increases, little
variations are observed in the isotherms, especially between
γ = 0 and γ = π/2 following the changes inNu which
is an indicator for the heat transfer rate. It seems that the

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 337



ψ θ
γ
=

0

N
u

=
3
.
2
3
3

|ψ
| m

a
x
,
n
f

=
5
.
0
2
1

γ
=
π
/
4

N
u

=
3
.
7
0
5

|ψ
| m

a
x
,
n
f

=
6
.
6
0
3

γ
=
π
/
3

N
u

=
3
.
6
5
3

|ψ
| m

a
x
,
n
f

=
6
.
0
1
5

γ
=
π
/
2

N
u

=
3
.
3
9
2

|ψ
| m

a
x
,
n
f

=
5
.
0
1
7

Fig. 9. Streamlines and isotherms for nanofluid withφ = 0.1 at
different inclination angles of magnetic fieldγ: Ha = 30,Ra = 105.

heat transfer is enhanced more atγ = π/4, π/3 compared to
the cases atγ = 0, π/2 when the heat transfer is convection
dominated atRa = 105.

The effect of the inner circular cylinder onNu along the
hot wall of the cavity is also analyzed at various combination
of Hartmann and Rayleigh numbers. The variation ofNu
with respect toHa in the presence and in the absence
of the inner circular cylinder is displayed in Figure 10 at
Ra = 103, 104, 105. It is observed that the average Nusselt
number on the left wall increases when a circular cylinder
of diameterd = 0.2 is inserted inside the square cavity for
Ha < 50 when Ra = 104, 105. On the other hand, at the
lowest Rayleigh numberRa = 103 the presence of cylinder
has no effect onNu for eachHa since the heat transfer is
mainly driven by conduction. For higher values ofHa ≥ 50 at
Ra = 103, 104, Nu remains constant for both cases with and
without cylinder and atRa = 105 it slightly increase with the
insertion of cylinder. This is a result of the suppression effect

Fig. 10. Variation of average Nusselt number along the hot wall of
the cavity with and without circular cylinder atγ = 0.

of the magnetic field on the convective flow, and hence on the
convective heat transfer at highRa.
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V. CONCLUSION

The natural convection flow in a square cavity filled with
Cu-water nanofluid in the presence of an inclined magnetic
field is numerically solved. It is observed that the dual reci-
procity boundary element method is an effective technique for
the solution of MHD nanofluid natural convection in cavities
with a circular cylinder, which is a rather complex problem
geometry. The obtained results reveal that the flow behavior
and the heat transfer enhancement are strongly influenced by
the presence of magnetic field and the insertion of nanopar-
ticles with various solid volume fractions to the fluid flow in
enclosures with circular cylinder. The Hartmann and Rayleigh
numbers affect the fluid flow and the heat transfer in opposite
manner. That is, the flow strength and heat transfer rate
increases as Rayleigh number increases, while they decreases
for higher Hartmann numbers at a fixed solid volume fraction.
It is further shown that the effect of suspended nanoparticles
with various solid volume fractions depends strongly on the
values of Hartmann and Rayleigh numbers. The nanofluid
heat transfer rate increases with an increase in solid volume
fraction in the case when the heat transfer is due to conduction
regardless of the values of Hartmann number. However, when
the heat transfer is dominated by convection via high Rayleigh
numbers, the heat transfer rate decreases as solid volume
fraction increases in the presence of magnetic field with high
intensity. Moreover, the direction of the magnetic field vary the
flow patterns significantly while the isotherms remains almost
same at various inclination angles of the magnetic field.
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