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Abstract—The paper proposes a numerical model for T-cell dy-
namics, based on a reaction-diffusion problem originated by adding
a diffusion term in the model introduced in [1] and based on ordinary
differential equations. The model here introduced is specifically
intended to provide a mathematical description of the homeostasis of
T-cells, mainly due to a quorum-sensing mechanism. The introduced
reaction-diffusion problem is then discretized by means of a finite
difference numerical scheme. Numerical experiments supporting the
approach are provided.
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I. FRAMEWORK: MODELING HOMEOSTASIS OF T-CELLS BY
ORDINARY DIFFERENTIAL EQUATIONS

Homeostasis can be defined as the natural property of
living organisms to preserve their internal stability, in response
to changes in external conditions. A specific example of
homeostasis regards the immune system, where the number
of cells playing a key role in the immune response (the so-
called T-cells) is normally retained along the adult life of an
individual [6]. Homeostasis of T-cells is believed to be due
to a quorum-sensing mechanism, normally typical of bacteria,
according to which CD4+ cells (i.e. those T-cells which are
responsible of activating the immune response, by sending
signals to another family of T-cells, the so-called CD8 killer
cells) could control their own expansion, thanks to their ability
to perceive the density of their own populations, in order to
prevent uncontrolled lymphocyte proliferation during immune
responses.

In this homeostatic mechanism Interleukin-2 (IL-2), which
is a protein regulating the activities of lymphocytes responsible
for immunity, plays a significant role, very well described
for instance in [1] and references therein. In particular, the
authors have developed in [1] a mathematical model based on
ordinary differential equations (ODEs), describing CD4+ T-
cell homeostasis in terms of the time evolution of the following
cellular populations:

• n1(t), naı̈ve T-cells;
• n2(t), IL-2 producing cells;
• n3(t), activated/memory non-IL-2 producing cells;
• n4(t), regulatory CD4+ T-cells.

The corresponding system of ODEs assumes the following
form [1]
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n1
′(t) = ν1 − µ1n1(t) + λ1TCRn1(t)

(
1− n1(t)

k

)
− α12n1(t)− α13n1(t),

n2
′(t) = −µ2n2(t) + λ2TCRn2(t)

(
1− n2(t)

k

)
+ λ2IL−2n2(t)n2(t) + α12n1(t)− α23n2(t)

+ α32n3(t)− βn2(t)n4(t),

n3
′(t) = −µ3n3(t) + λ3TCRn3(t)

(
1− n3(t)

k

)
+ λ3IL−2n2(t)n3(t) + α13n1(t) + α23n2(t)

− α32n3(t) + βn2(t)n4(t),

n4
′(t) = ν4 − µ4

(
k2

k2 + n2(t)

)
n4(t)

+ λ4IL−2n2(t)n4(t),

(1)

equipped by the initial conditions at time t = 0

n1(0) = 100, n2(0) = n3(0) = 0, n4(0) = 1.

The constants in (1) have the following meanings and values:

• Natural death rates:
µ1 = 10−3, µ2 = µ3 = µ4 = 10−2, k2 = 10;

• proliferation rates in response to T-cell receptor (TCR)
mediated signals:
λ1TCR = λ2TCR = 2 ·10−2, λ3TCR = 5 ·10−2, k =
103;

• IL-2 induced proliferation:
λ2IL−2 = 5 · 10−5, λ3IL−2 = 2 · 10−5, λ4IL−2 =
10−4;

• Differentiation rates of naı̈ve T-cells into IL-2 producing
cells or memory cells:
α12 = 10−1, α13 = 10−2;

• Differentiation rates of IL-2 producing cells into memory
cells:
α32 = 10−3;

• Reactivation of memory cells to produce IL-2:
α23 = 10−2;

• Regulatory T-cells suppression:
β = 2 · 10−4;
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• The thymus output terms are neglected:
ν1 = 0, ν4 = 0.

As claimed by the authors in [1], the quorum-sensing
mechanism described by (1) provides that regulatory T-cells
count and regulate the number of activated T-cells through
the detection of the IL-2 and the number of interactions
between these two populations, of which a specified proportion
(encoded within the parameters of the model) leads to cellular
events such as division, survival or suppression. The novelty
with respect to previous models (see [1], [2], [8], [31], [43] and
references therein), is given by the fact that the suppression
mechanism is mathematically provided by a nonlinear density
dependent term in the equation for the IL-2 producing cells.

II. A REACTION-DIFFUSION MODEL FOR CD4+ T-CELLS
HOMEOSTASIS

We now present a new model describing CD4+ T-cells
homeostasis, that gives an extension of (1) obtained by the
introduction of a second independent variable x in the four
populations functions ni(x, t), i = 1, 2, 3, 4, that still retain the
same meaning described in Section 1. This additional depen-
dency clearly produces a change in the mathematical nature
of the model, that becomes a system of partial differential
equations (PDEs). The purpose aimed to be achieved is to
investigate the behavior of the four cells populations, when
the homeostasis, based on the quorum sensing hypothesis, is
thought as a diffusive phenomenon respect to the new variable
x. Hence, the novel structure of the system is held by the intro-
duction of a diffusion term in every equation in (1). The novel
PDEs based model is then given by the following reaction-
diffusion problem in the rectangular domain [0, X]× [0, T ]

∂n1(x, t)

∂t
=

∂2n1(x, t)

∂x2
+ ν1 − µ1n1(x, t)

+ λ1TCR n1(x, t)(1− n1(x, t)/k)

− α12n1(x, t)− α13n1(x, t),

∂n2(x, t)

∂t
=

∂2n2(x, t)

∂x2
− µ2n2(x, t)

+ λ2TCRn2(x, t)(1− n2(x, t)/k)

+ λ2IL−2 n2(x, t)n2(x, t)

+ α12n1(x, t)− α23n2(x, t) + α32n3(x, t)

− βn2(x, t)n4(x, t),

∂n3(x, t)

∂t
=

∂2n3(x, t)

∂x2
− µ3n3(x, t)

+ λ3TCRn3(x, t)(1− n3(x, t)/k)

+ λ3IL−2 n2(x, t)n3(x, t)

+ α13n1(x, t) + α23n2(x, t)− α32n3(x, t)

+ βn2(x, t)n4(x, t),

∂n4(x, t)

∂t
=

∂2n4(x, t)

∂x2
+ ν4

− µ4(k2/(k2 + n2(x, t)))n4(x, t)

+ λ4IL−2 n2(x, t)n4(x, t).

(2)

The problem is equipped by initial conditions analogous to
those of the ODE model, i.e.

n1(x, 0) = 100, n2(x, 0) = n3(x, 0) = 0, n4(x, 0) = 1,

and in correspondence of mixed Neumann-Dirichlet boundary
conditions

•
∂ni(0, t)

∂x
= 0, ∀t ∈ [0, T ], i = 1, 2, 3, 4,

• ni(0, t) = 103, ∀t ∈ [0, T ], i = 1, 2, 3, 4.

In order to provide numerical simulations of the dynamics
described by (2), we consider the discretized version of
(2) originated by a finite difference numerical scheme [28],
[33], [46], [47]. For this purpose, we introduce the spatially
discretized domain

Dh = {(xi, t) : xi = ih, i = 0, . . . , N − 1,

h = X/(N − 1), t ∈ [0, T ]},
and, in correspondence of this domain, the system of PDEs (2)
can be recasted as a system of ordinary differential equations

n′
i,0(t) = n′

i,2(t), i = 1, 2, 3, 4,

n′
1,j(t) = ∆m[n1(t), h] + ν1 − µ1n1,j(t)

+ λ1TCR n1,j(t)(1− n1,j(t)/k)

− α12n1,j(t)− α13n1,j(t),

n′
2,j(t) = ∆m[n2(t), h]− µ2n2,j(t)

+ λ2TCRn2,j(t)(1− n2,j(t)/k)

+ λ2IL−2 n2,j(t)n2,j(t)

+ α12n1,j(t)− α23n2,j(t) + α32n3,j(t)

− βn2,j(t)n4,j(t),

n′
3,j(t) = ∆m[n3(t), h]− µ3n3,j(t)

+ λ3TCRn3,j(t)(1− n3,j(t)/k)

+ λ3IL−2 n2,j(t)n3,(t)

+ α13n1,j(t) + α23n2,j(t)

− α32n3,j(t) + βn2(t)n4,j(t),

n′
4,j(t) = ∆m[n4(t), h] + ν4

− µ4(k2/(k2 + n2,j(t)))n4,j(t)

+ λ4IL−2 n2,j(t)n4,j(t),

n′
i,N−1(t) = 0, i = 1, 2, 3, 4,

(3)

with 1 ≤ j ≤ N − 2, being ni,j(t) = ni(xj , t) and
∆m[ni(t), h] a finite difference on m equispaced grid points.

III. NUMERICAL RESULTS

We now present the numerical evidence originated by solv-
ing the discretized system (3) in the domain [0, 1]× [0, 1]. We
choose N = 11 and solve the system of ODEs by the Matlab
built-in command ode15s.

Figures 1 and 2 represent the solutions of (2) with
Neumann-Dirichlet boundary conditions. The choice of mixed
conditions is quite typical for diffusion problems (compare
[14], [19], [44]), while employing pure Dirichlet or Neumann
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conditions lead to plane solutions. We observe that the solu-
tions obtained in Figures 1 and 2 well model the homeostatic
behaviour, but the solver stops quickly along the time. Such
a situation is not advisable if periodic free-flow boundary
conditions are used

• ni(0, t) = ni(0 + h, t), i = 1, 2, 3, 4,
• ni(1, t) = ni(1− h, t), i = 1, 2, 3, 4,

begin h is the spatial discretization step, as visible in Figures 3
and 4, where the employed domain is [0, 1]×[0, 50] . Moreover,
the most important feature achieved by the computed numer-
ical solution is their boundedness: indeed, By considering the
homeostasis as phenomenon developing according to a Quo-
rum Sensing mechanism and, afterwards, joining to it a spatial
diffusion, it preserves a character of controlled expansion, thus
the model and the numerical results look reasonably coherent
with the biological dynamics.

Fig. 1. Profiles of the solutions n1(t) and n2(t) in (2) with mixed boundary
conditions

Fig. 2. Profiles of the solutions n3(t) and n4(t) in (2) with mixed boundary
conditions
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Fig. 3. Profiles of the solutions n1(t) and n2(t) in (2) with free-flow
boundary conditions
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Fig. 4. Profiles of the solutions n3(t) and n4(t) in (2) with free-flow
boundary conditions

IV. CONCLUSIONS

We have proposed a reaction-diffusion problem modeling
T-cell dynamics. The specific feature of the developed model
(2) is given by CD4+ T-cells homeostasis, extending the ideas
in (1) by introducing evolution with respect to a further
variable denoted by x in (2). Such a system of partial dif-
ferential equations preserve the homeostasic behaviour, based
on the quorum sensing hypothesis, thought as a diffusive
phenomenon respect to the new variable x. The model has
been solved by the method of lines, hence spatially discretized
and then integrated in time by a built-in Matlab time integrator.
Numerical evidence highlights the homeostatic behaviour of
the analyzed populations of cells both in space and in time.
Future approaches regard the possibility to provide alternative
space-time discretization, such as those in [7], [9], [11], [12],
[19], [20], [41], [42].
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APPENDIX

Mathematical modeling for T-cells have been carried out in
many various ways and we now aim to provide a very brief
state-of-the-art to present the main features of the involved
operators. A survey of the existing literature concerning the
mathematical modeling of the dynamics of T-cells exhibits
the prevalent employ of ordinary differential equations, partial
differential equations, delay differential equations, fractional
differential equations and stochastic differential equations.
More specifically, [31] briefly summarizes some advantages
and disadvantages in the use of different mathematical models:

• ordinary differential equations are very common models
in Immunology (we suggest the review paper [31] for
specific references and many areas of application) and
are able to model a high level of biological complexity
in an elegant and efficient way, without heightening the
computational cost. They are particularly suitable in the
case of regulatory networks that do not take delayed
feedbacks, spatial distribution of the cells or probabilistic
events into account;

• models based on delay differential equations generally
take into account incubation times [10], [23], [32], [35],
[36], [51], [52];

• models based on fractional differential equations [3],
[22], [50] are able to preserve some typical properties
of the phenomenon: for instance, the positivity of the
solution (which is, indeed, a density of populations);

• partial differential equations [2], [37] are particularly
suitable to model a spatio-temporal dynamic, for cellular
systems gradually changing their behavior in time, also in
relation to their age, or remain localized over long times.
From a computational point of view, these models are
much more expensive than systems of ODEs and DDEs;

• stochastic differential equations [21] are the least ex-
plored model so far in the immunologic modeling. How-
ever, they can be considered effective in the description
of populations regarded as collective groups rather than
individual agents.

It is also important to highlight that many systems of interest
in life sciences have been successfully modelled by oscillatory
reaction-diffusion equations, especially for those problems
typically exhibiting the generation of periodic waves along
their dynamics. For instance, cell cycles are frequently clock-
like [24], [34], behaving if they are driven by an autonomous
biochemical oscillator.

These situations are also typically encountered in intracel-
lular calcium signalling [45]: indeed, calcium shows many
differrent types of oscillations in time and space, in response
to various extracellular signals [5]. Among many existing
mathematical models, that described in [45] is based on the
release of calcium from intracellular stores through channels
that are sensitive to the regulatory molecule IP3: the main idea,
first presented in [4], is that external stimuli produce increased
concentrations of IP3, causing the release of calcium from
these internal stores. Under the mathematical point of view, in
the model provided in [4], [45], the dynamics of this process
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is governed by two partial differential equations

∂c

∂t
= Dc

∂2c

∂x2
+ kfluxµn

(
b+

1− b

k1 + c

)
− γc

kγ + c
,

τn
∂n

∂t
=

k22
k22 + c2

− n.

(4)

in the unknowns c(x, t) and n(x, t), respectively denoting
the local calcium concentration and the fraction of receptors
that have not been inactivated by calcium. As it arises from
[4], Dc denotes the cytosolic diffusion coefficient of calcium,
kflux is the maximum total calcium flux, b represents a basal
current through sensitive channels, γ gives the rate of calcium
pumping out of the cytosol, kγ is the calcium concentration at
which the rate of calcium pumping from the cytosol is at half-
maximum, τn is the time constant for the dynamics of n(x, t),
k2 is the rate of production of new receptors. Coherently with
the biological evidence, the solutions derived in [45] under
suitable initial and boundary conditions, exhibit an oscillatory
dynamics both in space and in time.

As regards numerical modeling, it is important to ensure
that the numerical scheme chosen to discretize the operator
involved in the model takes into account the qualitative
properties of the problem. For instance, in the case of os-
cillatory dynamics (as said, typical of biological oscillations),
the periodic character of the problem suggests to propose a
numerical solution which takes into account this qualitative
behavior, i.e. by means of a special purpose numerical solver
more tuned to follow the periodic behavior, in the spirit of
the so-called exponential fitting technique (compare the recent
review paper on the topic [41] and references therein and the
classical monograph [30]; in the case of differential equations,
we specifically refer to [11], [12], [14]–[18], [25]–[27], [29],
[38], [42], [48], [49] and references therein).

The existing literature on EF-based methods has provided a
certain number of adaptations of classical numerical methods
to better numerically follow known qualitative behaviors (e.g.
periodicity, oscillations, exponential decay of the solution).
This problem-oriented approach differs from the classical one,
given by the employ of general purpose methods, which
would require a very small stepsize to accurately follow the
prescribed dynamics, if compared to problem-based methods,
with a subsequent deterioration of the numerical performances,
especially in terms of efficiency. For this reason, many clas-
sical numerical methods have been adapted in order to more
efficiently approach oscillatory problems.

A special purpose numerical method for the solution of
functional equations is developed in order to exactly integrate
(within round-off error) problems whose solution lies in a
finite dimensional linear space (the so-called fitting space)
spanned by a set of functions other than polynomials, properly
chosen according to the behaviour of the solution. The main
difference between general and special purpose numerical
methods is that the former are characterized by constant coef-
ficients, while the latter depend on variable coefficients, which
are functions of the parameters characterizing the solution (e.g.
the frequency of the oscillations in case of oscillatory problems
or the rate of decay in case of problems with exponentially
decaying solutions).

In this direction, two main problems arise
(i) choosing a fitting space which is as much as possible

suitable to represent the solution of the problem;
(ii) accurately computing/estimating the parameters on which

the numerical method depends.
In many cases of practical interest, both problems (i) and
(ii) can be accurately approached by taking into account the
existing theoretical studies on the problem. More issues on
these aspects can are discussed in [41] and references therein,
as well as in [12]–[14], [19].
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