
 

 

  
Abstract—The main stages of the process of  tidal wave 

evolution can be described within a weakly nonlinear model based on 
the Gardner equation (extended version of the Korteweg – de Vries 
equation with both quadratic and cubic nonlinear terms), which is 
actively applied in physical oceanography. These stages include 
nonlinear steepening, and then generation and development of 
undular bore. We carried out numerical modeling of long sine wave 
evolution in the framework of the Gardner model for different signs 
of its cubic nonlinear term and for different initial amplitudes to 
demonstrate the principal features of the process. The present study is 
focused on spectral and statistical characteristics of the generated 
wave field. If amplitude of sine wave is large enough, soliton-like 
impulses of different polarities depending on the sign of cubic 
nonlinearity are generated and their interactions may result in the 
formation of extreme amplitude waves. Statistical analysis of the 
wave field in time shows almost permanent substantial exceedance  
of the level of the significant wave height in some position in spatial 
coordinate. Spectrum behavior after a long time of initial wave 
evolution demonstrate the power asymptotic for small wave numbers 
and exponential asymptotics – for large wave numbers. 
 

Keywords—Long waves, Gardner equation, internal tide, undular 
bore, significant wave height, extreme amplitude waves, solitons, 
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I. INTRODUCTION 
NDULAR bores are very often observed in estuaries and 
river mouths during a tidal cycle, when long tidal wave 
entering shallow waters. Brilliant collection of undular 

bores’ observations can be found in the book [1]. Besides, they 
were observed during the 1983 Japan Sea tsunami [2] and 
2004 Indian Ocean tsunami [3]. In general, the criterion of 
undular bore formation is a relationship between bore height 
H, measured from the bottom, and unperturbed depth of 
reservoir h: H < 1.5h [4]. 

Undular bores are also very often observed in the stratified 
ocean as the vertical displacements of the pycnocline lying at 
the depths of 50-200 m and manifesting on the ocean surface 
as a group of slicks of various intensity, see for instance, [5]. 
Similar phenomenon was found in lakes [6]. Sometimes 
internal undular bore is called as a solibore after [7]. 

The undular bore is generated in systems with weak 
dispersion and in the presence of nonlinearity, for example, 
when the initial disturbance is very long or due to “dam-break” 
process. Simplified model of such phenomenon is based on the 
famous Korteweg-de Vries equation with initial condition in 
the form of the “dam-break”. 

In the present paper we would like to study the evolution of 
the long sine wave in the framework of the non-dimensional 
Gardner equation with different signs of cubic nonlinearity. 
This problem is of practical interest because degeneration of 
the long tidal wave is often responsible for generation of 
intense undular bores, often observed in the river mouths and 
estuaries. These waves contain huge energy, so they are a 
major source of sediment transport, resuspension as well as 
turbulent mixing in the water column. Such waves have a 
significant influence on the propagation of sound in the water 
column and on the formation of the bottom sound channel. 
Another interesting aspect of the solibores’ studying is the fact 
that extreme amplitude pulses may be generated in the process 
of their evolution under certain conditions. Main goal of this 
study is to carry out spectral and statistical analysis of long 
sine wave degeneration in the framework of Gardner equation..  

II. THEORETICAL MODEL 
We will use the canonical form of the Gardner equation 

with positive or negative sign of cubic nonlinearity term: 

Long sine wave transformation in the 
framework of Gardner equation: spectral and 

statistical analysis 
O. Kurkina, E. Rouvinskaya, A. Giniyatullin, A. Kurkin, T. Talipova, E. Pelinovsky 

U 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 381



 

 

 ( ) 0ηηη1η6η
3

3
=

∂
∂

+
∂
∂

±+
∂
∂

xxt
,                    (1) 

Initial value problem with periodic boundary conditions is 
solved for this equation: 

( ) ( ) ( )txtLxLxAx ,η,η  ,/π2cos)0,(η =+= ,  (2) 
where L is the length of the computational domain (taken to be 
equal to 100 or 200 nondimensional units in our 
computations), and amplitude of the wave A was ranged from 
0.1 to 3 dimensionless units. 

To solve the problem (1), (2) we use a numerical code 
based on the implicit pseudo-spectral method [8] with periodic 
boundary conditions and with the control of conservation of 
the values of the mass and momentum integrals: 

 ∫= dxM η ,   ∫= dxE 2η                  (3) 

within the numerical domain.Numerical code, that we use, 
repeatedly was verified in simulation of wave processes of 
different nature (see, eg, [9], [10]). 

The periodic solutions (“cnoidal” waves) of the Gardner 
equation can be found in [11]. The solitons of this equation are 
very good studied also [12]–[14] and their properties depends 
on values of nonlinear and dispersion coefficients.  

In the present paper we eliminate the real values of the 
coefficients of the Gardner equation using appropriated 
scaling. But in context of the various physical applications 
they can be necessary to introduce them into practice. 

The analytical one-soliton solution of Gardner equation is 
well known:  

)))γ(γ(cosh1/(γ),(η 22 txBtxs −+= ,            (4) 
where γ is inverse soliton width. The parameter B determine 
the soliton amplitude a as the extreme value of the function 
ξ(x, t): 

)1/(γ2 Ba += , 22 γ1±=B ,                 (5) 
The parameters of the family of solutions can also be 

expressed through its amplitude a: 
)2(γ2 aa ±= ,  aB ±=1 .                (6) 

There are three different branches of the soliton solutions 
depending on the sign of coefficient at the cubic nonlinear 
term in the Gardner equation (1), see Fig. 1. In case of 
negative cubic nonlinearity in (1) (Fig.1, left) parameter γ is 
changing from 0 (Korteweg – the Vries (KdV) limit) to 1 

(table-top soliton), and parameter 2γ1−=B . In case of 
positive cubic nonlinear term in (1) (Fig.1, right) coefficient γ 
is changing from 0 (KdV soliton) to infinity (soliton of 

modified KdV equation), and parameter 2γ1+±=B ;the 
sign “+” correspond to the solitons of positive polarity and “–” 
– to the solitons of negative polarity. 

Let us briefly describe the properties of solitary waves for 
positive sign of the quadratic nonlinear term (In opposite case, 
the polarity of solitons should be inverted). If cubic nonlinear 
term is negative, the solitons have positive polarity. The 
soliton height has the limiting value alim = 1

 
for canonical form 

(1), and such a limit represents the infinitely wide table-top 
soliton. The soliton width varies non-monotonically with 

amplitude. For small amplitudes the KdV equation is a good 
model to describe soliton parameters. Solitons with amplitude 
exceeding 0.8 - 0.9 can be considered as wide (table-top) 
solitons. 
 

 
Fig. 1. Shapes of soliton solutions to Gardner equation: left 

panel – for positive, and right – for negative sign of the cubic 
nonlinear term in the Gardner equation (1) 

 
In the case of positive cubic nonlinear term there are two 

branches of solitary waves. The first branch has the polarity 
determined by sign of quadratic nonlinearity, and its amplitude 
can be arbitrary with no limiting amplitude (within the 
applicability of Gardner equation). The second branch 
describes the solitons of alternative polarity. The soliton 
amplitude of this branch should exceed the minimal value 
corresponding to the so called algebraic soliton amplitude 
(which is equal to aalg = − 2 for canonical Gardner equation 
(1)).. 

III. SOLITON SPECTRA 
Spectrum of the Gardner eqution soliton (4) is 
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Gardner solitons for negative sign of cubic nonlinear term and 
their spectra are displayed in Fig. 2 for three values of γ. It is 
clearly seen how soliton transforms to table-top soliton with 
increase in amplitude, and the peaks appear in their spectrum 
similar to kk /sin as for step-like pulse. 

In case of positive cubic nonlinearity soliton shapes and 
spectra for solution brahch of positive polarity are presented in 
Fig. 3 for three values of γ (1, 3 and 5). Qualitatively all 
pictures are similar to KdV solutions.  

Solitons of family with negative polarity and their spactra 
are illustrated by Fig. 4. Qualitatively all pictures here similar 
to those for mKdV solutions. 

IV. SOLITON GENERATION FROM SINE WAVE 
 The detailed analysis of sine wave disintegration is given in 

[15]. Here we reproduce only briefly the description of key 
features of this process.  

The scenario for evolution of small-amplitude long 
harmonic waves in the case of negative as well as positive 
values of cubic nonlinear term in the Gardner equation has 
many features in common with the process of disintegration 
such an impulse in the framework of the Korteweg-de Vries 
equation, see, for instance [16], [17]. The snapshots of 
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evolution of wave (2) with amplitude A = 0.1 dimensionless 
units and negative cubic nonlinearity are shown in Fig. 5. 

 

 
Fig. 2. Gardner solitons (upper panel) for negative sign of cubic 

nonlinear term and their spectra (lower panel) for three values of γ 
(shown in the legend). 

 

 
Fig. 3. Gardner solitons of positive polarity (upper panel) for 
positive sign of cubic nonlinear term and their spectra (lower panel) 

for three values of γ (shown in the legend) 

 

 
Fig. 4. Gardner solitons of negative polarity (upper panel) for 

positive sign of cubic nonlinear term and their spectra (lower panel) 
for three values of γ (shown in the legend). 

 
After a time, one of the fronts becomes steeper due to 

nonlinearity, and cnoidal waves of variable, decreasing 
linearly amplitudes are generated on it. These waves interact 
with each other because of the periodicity of the boundary 
condition. These interactions lead to a negative phase shift and 
decreasing of waves’ velocity as in the case of two-soliton 
interaction such as overtaking. But amplitudes of the resulting 
impulse in the moment of the interaction is less than the 
amplitude of cnoidal wave with greater amplitude.  

The Fourier spectra of the evolving wave in terms of 
coefficients Cj: 
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(we use discrete set of N harmonics η(k)) are presented in Fig. 
6. Due to nonlinear steepness of initial sine wave, the spectrum 
on small time has the breaking asymptotic j-4/3 for 
approximately 20 harmonics which is a common feature of 
nonlinear hyperbolic systems with weak dispersion [18], [19]. 
Then, forming of undular bore leads to generation of several 
spectral peaks in range 10-100 harmonics downshifting with 
time. The energy of the basic harmonics is decreased 
transferring the energy in high harmonics. The variable 
amplitude cnoidal-like structure of undular bore is not strongly 
periodic that leads to the wide overlapping peaks. 

In more detail the evolution of small-amplitude sine waves 
is analyzed in [15]. 
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Cubic nonlinear effects become noticeable with increasing 
amplitude. When the amplitude of initial wave amounts to 0.5 
dimensionless units and the cubic nonlinear term is negative, 
the “breaking” point shifts to the trough. If cubic nonlinear 
term is positive and A = 0.5 the “breaking” point shifts to the 
wave crest (Fig. 7). In both cases envelope of wave crests 
becomes parabolic. It is worth noting that there are many 
nonlinear interactions of waves, that are similar to 
“overtaking”, if cubic nonlinearity is negative. But if cubic 
nonlinearity is positive, scenario of “exchange” takes place. 

 
Fig. 5. Snapshots of wave dynamics with A = 0.1 and negative cubic 

nonlinear term for the Gardner equation 

 
Fig. 6. Spectrum of wave records for A = 0.1 and negative cubic 

nonlinearity at different times. 
 

Spectra of sine wave evolution have much in common for 
such amplitude and negative or positive cubic nonlinearity, 
therefore only graph for the latter case is given (Fig. 8). The 
spectra for this run are wider due to increased nonlinearity. 
Positive cubic nonlinearity accelerates the generation of higher 
harmonics in comparison with negative cubic nonlinearity. But 
again qualitatively, the shape of spectra are the same as in 
previous case with spectral peaks downshifting with time. The 

spectra after t = 10 are equidistant (with peaks on harmonics 
with multiple numbers). 

 
Fig. 7. Snapshots of wave dynamics with A = 0.5 and positive cubic 

nonlinear term for the Gardner equation 

 
Fig. 8. Spectrum of wave records for A = 0.5 and positive cubic 

nonlinearity at different times. 
 

Exceedance probability distribution of wave heights over 
time is shown in Fig. 9 separately for positive and negative 
parts of the wavefield. Significant wave height, which is 
defined as: 

Hs = 4 σ,                                   (9) 
where σ is the standard deviation of ordinates η, Hs is 
indicated by the black line. Substantial asymmetry of negative 
and positive values of η is demonstrated by this plot. 

Further amplitude increasing in the case of negative cubic 
nonlinearity causes appearance of second breaking point and 
generation of one table-top soliton with a group of solitary-like 
waves at the leading edge of the bore. Small solitons run on 
the crest of the table-top soliton and change their polarity. This 
process is described in detail in paper [15]. 

If the coefficient of cubic nonlinearity is positive and 
amplitude of initial wave amounts to A = 1.5 dimensionless 
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units, a second “breaking” point appears and the pulses of both 
positive and negative polarity are generated. This process is 
demonstrated in Fig 10. Interactions of waves of opposite 
polarities result in an increase of the maximum amplitude of 
the wave field. 

 
Fig. 9. Exceedance probability distribution of ordinates for A = 0.5 
and positive cubic nonlinearity at various moments in time. Black 

line – significant height. 
 

The spectra are qualitatively similar to those shown above 
but are significantly wider (Fig. 11). After t = 2 they contain 
almost equidistant peaks corresponding to multiple numbers of 
harmonics. 

Statistical analysis of the wave field is shown in Fig. 12. 
Even in the case of A = 1.5 the wave interactions cause 
appearance of impulses with amplitude greater than significant 
wave height. 

 
Fig. 10. Snapshots of wave dynamics with A = 1.5 and positive cubic 

nonlinear term for the Gardner equation 
 

Nonlinear interactions of pulses of opposite polarities are 
more intense with increasing of initial sine wave amplitude. So 
to study the possible mechanisms of generating of extreme 

waves in the canonical Gardner equation with a positive cubic 
nonlinearity we increase the amplitude of sine impulse to a 
value A = 3 dimensionless units. The process of undular bore 
development and generation of wave field, which is 
represented interactions of ensembles of positive and negative 
polarity solitons, is shown in Fig. 13 for this initial amplitude. 

 
Fig. 11. Spectrum of wave records for A = 1.5 and positive cubic 

nonlinearity at different times. 
 

One can see in Fig. 14 for exceedance probability 
distribution of wave heights, that large values of η are 
observed when paired collisions of different polarities solitons 
began after t = 1.6. Amplitudes of such impulses are four times 
greater than initial sine wave amplitude and often more than 
Hs. 

 
Fig. 12. Exceedance probability distribution of ordinates for A = 1.5 
and positive cubic nonlinearity at various moments in time. Black 

line – significant wave height. 
 

Graphs of kurtosis and skewness (Fig. 15) are also 
characterized by presence of peaks at times of higher 
probability of large-amplitude waves. 
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Fig. 13. Snapshots of wave dynamics with A = 3 and positive cubic 

nonlinear term for the Gardner equation 
  

 
Fig. 14. Exceedance probability distribution of ordinates for A = 3 
and positive cubic nonlinearity at various moments in time. Black 

line – significant height. 
 

 
Fig. 15. Skewness (lower line) and kurtosis (upper line) of η for 
different points in time for A = 3 and positive cubic nonlinearity 

The analysis of the shapes of spectra of the calculated wave 
fields vividly demonstrated the presence of exponential 
asymptotics for large wave numbers after some time of 
evolution (see Figs. 6, 8, 11, which illustrate linear 
dependence of Cj in semi logarithmic in ordinate axes): 

[ ]0/exp)( KkkS −∝∞→ .                 (10) 
We calculated scaling parameter K0 for all our numerical 

experiments, and found out that it can be approximated in 
terms of amplitude A and length L of initial sine wave (2). The 
results are shown in Fig. 16. 

 

 
Fig. 16. Parameter K0 of spectral exponential asymptotics versus 

the product AL of amplitude and length of initial wave (2). Symbols 
“■” denote numerical experiments for positive term of cubic 

nonlinearity in the Gardner equation (1), symbols “•” are for the runs 
with negative coefficient of cubic nonlinear term. Dashed lines – 

approximating linear dependencies. 

V. CONCLUSION 
The present paper studies the process of long sine wave 

disintegration in weakly nonlinear and weakly dispersive 
media within the Gardner equation with positive and negative 
cubic nonlinearity. We made a series of numerical 
computations to demonstrate the features of undular bores 
development for different signs of the cubic nonlinear term. If 
the cubic nonlinear term is positive and the wave amplitude is 
large, the solitons of both polarities appear. These waves 
interact and extreme amplitude waves can generate as a result 
of such collisions. This process is demonstrated well in 
exceedance probability distribution graphs for wave height as 
ordinates substantially exceeding significant amplitude Hs. 
Nonlinear interactions lead to the generation of higher 
harmonics forming the breaking asymptotic j−4/3 for small 
times (as it was predicted within the dispersionless Gardner 
equation). For larger times the spectral peaks appear due to 
generation of solitary waves, they downshift with time. 
Exponential asymptotic of wavefield spectra for large values 
of wave numbers for longer evolution times are shown to be 
valid for both signs of cubic nonlinearity. The parameter of 
exponent is shown to be well described as a linear function of 
the product of initial sine wave amplitude and length. 
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