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Abstract—Two well-known models for drop-size dis-
tribution function during dropwise condensation -called
Rose model and Mei model- were examined in two differ-
ent aspects, average and differential point of view. It has
been proved that these two models are able to describe the
relation between droplets size and distribution function at
each time step. The goal of this research is to investigate
how these models can predict the relation between average
distribution function (Nave) and average radius (rave) of
droplets during a complete procedure of dropwise conden-
sation and the relation between differential distribution
function ( dN

dr
) and drops radius (r) at each time step. The

empirical parameters are drop size distribution exponent
(n) and fractal dimension (df ) in Rose model and Mei
model respectively. At first these two parameters were
calculated based on the experimental data and then the
validity of these calculations for our computer simulation
was investigated. It was concluded that Rose method
fits the results of differential distribution function with
exponent n between 0.33 and 0.35, and average distri-
bution function with n of around 0.38. The Mei model
also can describe both differential and average results
of simulation and experiments with fractal dimension
of 1.79<df<1.99. Also it was observed that the value of
both n and df vary with changing the ratio of radius
of two following droplets generation (γ) in our computer
simulation.

Index Terms—dropwise condensation, fractal geome-
try, drop-size distribution function , Mei method, Rose
method.

I. INTRODUCTION

DROPWISE condensation has been in the center of
concentration during last few decades due to its

higher heat transfer coefficient with respect to filmwise
condensation. It was said that heat transfer coefficient
of filmwise condensation is about 5 to 7 times smaller
than in dropwise condensation [1]. Generally dropwise
condensation includes five main steps: nucleation of
initial droplets, growth due to adsorption, growth due
to coalescence, nucleation of new droplets, and sliding
of very big drops (that was not considered here). The
result of the last three stages is the change in number
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of droplets as well as their size. One can consider drop-
size distribution function (N ) as the cumulative number
of droplets bigger than a specified value per unit area
(or per unite area and size). It is obvious that both
coalescence and nucleation of new droplets change N
during dropwise condensation.

Changes of N with respect to droplets radius (r)
attracted lots of attention specially, after the works of
Rose and his colleagues during 1990s. Le Fevre and
Rose [2] were the first ones who were able to describe
N successfully and their model was used by a lot of
scientists up to now. Then, Rose and Glicksman [3]
derived a power law model to describe the relation
between N and r as well. To investigate time-series
features and the percentage of surface occupied by
droplets, Tanaka [4] numerically solved two equations
relating to the spatial distribution of droplets . Tanasawa
and Ochiai [5] also derived an empirical distribution
function and conducted a huge amount of experiments
and numerical investigations on dropwise condensation.
More recently Mei et al. [6], [7] developed a fractal
model based on fractal geometry theory. They supposed
that since the pictures taken at different scales from
droplets during dropwise condensation are the same,
the droplets will follow the law of fractal geometry the-
ory. The importance of their work is due to describing
N by parameters that have physical meanings, such as
droplets surface fraction, fractal dimension of droplets
pattern, and the maximum radius of droplets. Baojin
and his colleagues [1] developed the Rose model for all
contact angles considering contact angle hysteresis to
be able to describe droplets growth in both hydrophobic
and hydrophilic surfaces. Wu et al.[8] introduced an
algorithm to generate droplets based on the Rose model
and calculate the rate of heat transfer based on this
algorithm. At last, Watanabe et al. [9] investigated the
results of all these methods with their experimental
data.

Although lots of works have been done up to now for
describing N in dropwise condensation, two interesting
aspects of this process remained still unclear: differ-
ential and average distribution function. Differential
distribution function (dNdr ) represents the differential
changes in drop-size distribution function and average
distribution function (Nave) deals with total number
of droplets divided by total area and average radius
of droplets (rave) at each time step. More precisely,

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 40



almost all of the scientific publications deal with the
relation between N and r at each time step, but the
relationship between Nave versus rave and dN

dr versus
r was not clearly discussed up to now.

In this research we are going to introduce these two
different approaches towards dropwise condensation
modeling and apply them to Rose and Mei models.
In this regard at first a series of experiments were
conducted and the images were taken from droplets
at ∆T = 1s. These images were binarized and used
to measure experimental parameters. Then we used
a fractal generating algorithm to produce different
generations of droplets in computer simulation. The
results of experiments and simulation are compared
with theory according to the two mentioned aspects.
Considering these two aspects for each of the theoret-
ical formulas, we will represent four linear equations
as below

1) Differential Rose method, describing evolution of
dN
dr with respect to r at each time step

2) Average Rose method, describing evolution of
Nave based on rave during the whole process
time

3) Differential Mei method, describing evolution of
dN
dr with respect to r at each time step

4) Average Mei method, describing evolution of
Nave based on rave during the whole process
time

A. Rose Method [3]

This method is cited as empirical or Rose method in
the specialized literature and is based on the sequence
of events occurring during the growth cycle. Rose [3]
used a power law model to describe the total area (A)
covered by droplets with radius greater than a specified
value of r .

A = 1 − (
r

rmax
)n (1)

where n is an empirical parameter known as the drop
size distribution exponent and must be determined
experimentally. Rose and Glicksman [3] reported n =
0.382 based on the theoretical evidences . Wu [8], [6]
assumed n = 1

3 based on the experimental works of
Graham and Griffith [10] and Tanaka [11] that reported
n laying in the real number range [0.313-0.350]. Mei[6]
also used n = 1

3 based on experimental results of other
researchers . The most frequently reported value for n
in literature is around 1

3 = 0.33. Maximum radius of
each generation of droplets before sliding (rmax) can
be derived by force balance between surface tension
and droplet weight and for hemisphere droplets is [12]:

rmax =

√
3σ

(ρl − ρv)g
(2)

where σ is liquid surface tension, ρl and ρv are
liquid and vapor density respectively, and g is earth

acceleration. If we consider N as the number of drops
per unit size which have radius greater than r, then the
differential distribution function of droplets size will be
as below:

f(r) =
−dN
dr

=
−1

πr2
dA

dr
=

n

πr3max
(

r

rmax
)(n−3) (3)

Most of the time the logarithmic version of this
equation is used to describe the spatial distribution
pattern of droplets:

log(
−dN
dr

r3max) = log(
n

π
) + (n− 3)log(

r

rmax
) (4)

The logarithmic scale is more preferable because the
terms are dimensionless and thus easier to compare.
Moreover droplets nucleation function is normalized
for size of droplets and area of fractal zone and thus the
results will be independent of experimental situation.
From equation 3, if we consider N as the total number
of droplets of each generation per unit area and unit
radius, the time average version of Rose method will
be [6]:

log(Nave) = log(
n

π
)−nlog(rmax) + (n− 3)log(rave)

(5)
where rave here is the average radius of droplets of
each generation. Equations 4 and 5 represent differen-
tial and average Rose method, respectively. It has been
frequently said that if we take pictures of droplets at
different scales over time or space, all of them are
similar and follow the same spatial pattern. This is
known as the rule of self-similarity. According to the
concept of self-similarity, we can say that droplet size
distribution obeys the same rule in all size ranges and
this is apparent by comparing equations 4 and 5.

B. Mei Method [6], [7]

The second method applied to describe dropwise
condensation based on fractal units comes from the
fractal geometry theory. According to this theory, in
a fractal zone if we assume the size of the biggest
particle equal to lmax made up of smaller units with
size of l, the number of fractal units bigger than l is
[13]:

N = (
lmax
l

)df (6)

df = lim
r→0

log(N)

log( rmax

r )
(7)

where df is the fractal dimension and is different
for each of fractal patterns. For 2-dimensional droplets
growing on a flat surface df is smaller than 2, while
for 3-dimensional ones df is smaller than 3 [7]. Based
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on fractal geometry theory, the cumulative number of
droplets bigger than a specified value of r on a flat
surface during dropwise condensation is:

N = (
rmax
r

)df , for rmin < r < rmax (8)

By differentiating from equation 8 with respect to
r, the differential distribution function of droplets size
will be:

f(r) =
−dN
dr

=
df
rmax

(
rmax
r

)df+1 (9)

The negative sign indicates opposite relation between
size and number of droplets. Equation 9 in log-log
system is a straight line with slope and intercepts that
are function of df :

log(rmax
−dN
dr

) = log(df)−(df +1)log(
r

rmax
) (10)

To be able to derive an average model comparable
with equation 5, this equation must be divided by the
total area occupied by fractal particles. Total area of a
fractal zone was calculated by Mei [6] by integrating
equation 10 :

A =

∫ rmax

rmin

−dNπr2 =
πdf (1 − φ)r2max

(2 − df )φ
(11)

where φ is the fraction of covered area by a fractal
zone and is equal to:

φ = (
rmin
rmax

)2−df (12)

where rmin is the size of the smallest viable droplets
and must be calculated based on physical evidences
[14]:

rmin =
(2σTs)

Hfgρ(∆Tt)
(13)

It is obvious that rmin is just a function of the
process conditions and physical properties of liquid.
Dividing equation 9 by equation 11 and next taking
logarithm, we will get the average distribution function
of droplets for Mei model:

log(Nave) = log(
(2 − df)φ

π(1 − φ)
)

+(df − 2)log(rmax) − (df + 1)log(rave)

(14)

This equation represents a straight line with slop and
intercept as functions of df and surface coverage(φ).
Both of these parameters are depended on temperature
difference between cold substrate and hot air. Equations
10 and 14 are differential and average Mei distribution
of droplets during dropwise condensation. These two

formulas are based on the fractal geometry theory and
assume the droplets as fractal particles growing in a
fractal zone with area equal to equation 11.

II. EXPERIMENTAL APPARATUS

Experimental setup consists of a chamber containing
hot air and cold substrate and a compressor to adjust
relative humidity about 40 percent inside the chamber.
Temperature of hot air is set to 86◦F , while substrate
temperature is around 62◦F . Nucleation and growth of
droplets are recorded by a high resolution CCD camera
installed outside the chamber in time intervals of 1s.
The images taken by CCD camera then are binarized
and used to model droplets nucleation and growth.

III. FRACTAL SIMULATION ALGORITHM

Present simulation develops the model proposed by
Wu et al. [8] both in time and space domains. Ac-
cording to this model the square substrate with length
l is divided itteratively to γ2 small squares and p
percent of these small squares are chosen completely
randomly as new generation droplets. The idea behind
this simulation is indicated in figure1.

Figure 1. Illustration of how to generate droplets of each generation
in fractal simulation algorithm (γ = 3)

In other words consider a square of length l. At
the first step each side of this square is divided to
γ, so now there are γ2 small squares in the whole
area. If we consider p as the fraction of available
area for each generation of droplets, in the first step
p× γ2 small squares must be randomly chosen as the
first generation droplets. The choice of droplets was
done based on Poisson point process, which generates
completely random spatial distribution of points in the
whole domain. In the second step each length of each
small squares is divided by γ again and p percent of
resulted squares are chosen as the second generation of
droplets. This process continues till reaching the size
of smallest viable droplets.

The fraction of available area p is the same for all
generations and can be referred to as the probability
of finding a droplet in a elementary square at each
step. At each step, the chosen squares are assumed
as hemispherical droplets so a correction factor equal
to p = p × π/4 must be considered in calculations.
Procedure of generating random droplets of each gen-
eration is shown in figure 2. Although for generation
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k available area is fewer than generation k − 1, since
there are more squares available to find droplets, there
are more droplets in generation k with respect to k−1.
In the other words, in each generation available area
reduces, while number of droplets increase because
droplets are smaller and need smaller amount of area
to locate. This is the concept of linear relation between
log(N) and log(r) during time. Analysis of droplets
nucleation and growth was carried out based on each
image at steady state time as well as based on average
parameters during procedure.

Figure 2. Illustration of generating random droplets, whose centers
obey Poisson spatial point process in 6 different generations, k =
1, 4, 8, 16, 20, 26. At first the biggest droplets are formed by dividing
substrate in to γ2 squares and choosing p percent of them completely
randomly. Then in each step smaller droplets are generated with the
same pattern.

The droplets are located one by one to avoid any
overlap between them. In reality, if a pair of droplets
touch each other they will coalesce and form a bigger
drop in their mass center. Thus, in the current method
the droplets are added one by one and for each droplets
there is a check to insure that the cell is not occupied
by another droplets.

IV. RESULTS AND DISCUSSION

A. Model Validation, Comparison With Experimental
Results

Figures 3 and 4 compare the results of equations
4 and 10 with data obtained from experiments, at
different time intervals. In these two figures Rose and
Mei models are calculated for experiments of t = 60s
and t = 100s. The time intervals were chosen after
starting coalescence in order to have both adsorbing -
or small- and coalescence -or big- drops. The concept
of small and big droplets comes from the critical radius
(rc), which was introduced as the half-spacing between
active sites on substrate [15]. For square substrate with
A = L× L it will be:

rc =

√
L2

4N̂
(15)

where N̂ here is the number of droplets. Droplets
smaller than rc grow mainly due to adsorbing water
molecules from humid air, while the main reason of
growth of droplets bigger than rc is coalescence. Figure
3 shows good agreement between experimental results
and differential Rose model with n between 0.33 and
0.35, especially for bigger droplets. The same devia-
tions near small drops was described before by Wu et
al. [8] and Baojin et al. [1] while studying experimental
results of dropwise condensation. Due to deviation
around small droplets Rose method usually introduces
as a method to describing evolution of coalescing
droplets. Obtaining rmax from equation 2 and rc from
equation 15, we will have −1.9 < log rc

rmax
< −2.9

-depending on the experiment time- that is exactly the
point after which the deviations from straight line start
in figure 3. So, it can be claimed that equation 4 that
has been used before, to describe N , has also a good
understanding of dN

dr , especially for droplets bigger
than rc.
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Figure 3. Comparison of the results of Rose model (equation 4) and
experimental results at 5 different steps of t = 60, 70, 80, 90, 100s.

Figure 4 shows acceptable agreement between ex-
perimental results and equation 10 with df between
1.79 - 1.99 in all time intervals. The deviations around
very small and very big droplets were observed by Mei
himself [16]. For very small and very big droplets the
number of droplets depends on the physical properties
of process like contact angle hysteresis and starvation
of substrate for growing small droplets in vacant area
around bigger ones. So, these deviations maybe seen
frequently.

The predicted results for Nave by Rose method
(equation 5) and Mei method (equation 14) is presented
in figure 5 as well as experimental results. This figure
highlights that experimental Naves are fitted by the two
models very well with n = 0.38 and df = 1.99. Figure
5 shows that both Rose and Mei methods can describe
droplets growth by adsorption and coalescence from
minimum to maximum radius. Also, it can be said that
according to this figure droplets nucleation and growth
during the whole process from rmin to rmax obeys the
same pattern in which fractal particles grow.
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Figure 4. Comparison of the results of Mei model (equation 10) and
experimental results at 5 different steps of t = 60, 70, 80, 90, 100s.
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Figure 5. Comparison of the results of average Rose model (equation
5) and average Mei model (equation 14) with experimental results.

B. Examination Simulation Procedure With The Two
Methods

Comparison of the results from simulation with the
two models are presented in figure 6. It can be seen
that predicted line of differential Mei model fits the
simulation results with df = 1.99, while the line of
differential Rose model fits them with n = 0.35.
These values for n and df agree very well with ex-
perimental results discussed in section IV-A. Figure 7
also shows that both average Mei and Rose models
fit simulation results with n = 0.38 and df = 1.79.
The surprisingly good agreement between simulation
and predicted values from both differential and average
models with expected values of n and df validates
the method that was used for simulating dropwise
condensation. All of these graphs indicate that the
process of dropwise condensation obeys the rule of
fractals in both differential and average scales.

It is worth to point out here that the grid number is
an important parameter in simulation that can affect the
values of n and df . Grid number refers to the number of
small squares in each iteration from which the number
of droplets are chosen. So, it has a direct influence
on the distribution function of each generation of
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Figure 6. Comparison of the results of both models and results
from fractal simulation (a) Rose model(equation 4) (b) Mei model
(equation 10).
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Figure 7. Comparison of the results of average Rose model (equation
5) and average Mei model (equation 14) with results from fractal
simulation

droplets. For simplification, instead of grid number we
can investigate the effect of γ that is the side length
reduction coefficient in each step.

1

γ
=
rk+1

rk
(16)

Whit this definition the grid number will be γ2. Choos-
ing bigger values for γ will lead to smaller size but
higher number of droplets in each generation (bigger
γ, smaller r, bigger N ). This will change the values
of both right and left hand sides of equations 4 and
10 and changes in both parameters n and df . Figure 8
shows that by increasing γ the slope of both lines of
equations 4 and 10 increase but the intercept does not

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 44



change significantly. This is because intercept of both
lines are in log scale (log(nπ ) and log(df)) and are not
sensible enough to show the changes. From these two
graphs, it is expected to see the sharp increase in both
n and df .
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Figure 8. Results of both methods at different γ (a) Rose model
(b) Mei model

The predictions for increase in n and df are sup-
ported by figure 9. According to this figure, increase
in γ will lead to a jump in the value of n and then a
constant trend around 0.75. The same pattern is appar-
ent in figure 9 (b), for df that increases rapidly from
0.9 to 1.99 by changing γ from 2 to 6. These figures
indicate that the accuracy of simulation proposed in
section III depends on the value of γ. Depending on
the value of γ n can vary from 0.04 to around 0.75
and the most reported value that is n = 0.33 can be
obtained by γ = 2.5. In the case of differential Mei
method df varies from 0.9 to 1.99 and the best value
that is 1.99 is calculated with γ = 6.

V. CONCLUSION

The aim of this research was to investigate drop-
size distribution function of droplets during dropwise
condensation in both differential and average scales.
In this regard, two sets of data were extracted from
experimental set up and from our computer simulation
algorithm. The models used here were Rose and Mei
models that have powerful theoretical basis. It was
concluded that both differential and average Rose mod-
els were able to describe coalescing droplets evolution
with exponent (n) between 0.33 and 0.35 and 0.38

.
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Figure 9. (a) n v.s γ (b) df v.s γ

respectively. While for differential and average Mei
models the important parameter is fractal dimension
(df ) and was between 1.79-1.99 for both experimental
and simulation data. Also the effect of side length
reduction coefficient (γ) on n and df was investigated
and it was found that the best γ for Rose model is
around 2.5 and for Mei model is around 6.
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