
 

 

  
Abstract—The method of Resonant Transmission Lines (RTL) is 
introduced for the generic Sturm-Liouville problem. This is then used 
to derive a fast, non-perturbative algorithm for obtaining eigenvalues 
and eigenfunctions of the Schrödinger operator. Solutions are 
obtained via a special recursion from a fine tuning condition 
equivalent with a functional Continued Fraction Expansion or an 
equivalent set of Möbius transforms. We apply this technique in the 
case of an external electric field excitation into a long thin wire 
modeled as a 1D quantum trap for the electron gas. Some 
associations with previously reported experimental results in 
exploding wires under high power, high voltage but low energy 
exploding wires is discussed. 
 

Keywords—Sturm-Liouville, Schrödinger equation, non-
perturbative, Stark effect. 

I. INTRODUCTION 
ERIODIC lattices are a very important topic in a wide 
range of applications and technologies, but there has been 

strikingly successful applications of such devices in photonic 
communication system components especially in lasers  and 
optical fibre gratings to mention just a few. In recent papers 
work on the analysis of either periodic lattices of quantum 
wells [1] or artificial optical periodic lattices [2] with standard 
textbook methods [3] has been presented. Extending periodic 
lattices to the case of linear superlattices also has been studied 
in [4] under the presence of an external field causing the 
appearance of a Wannier-Stark ladder [5]. Here we review a 
previously introduced non-traditional method for the study of 
quantum wells and periodic lattices with or without the 
Wannier-Stark terms using for the first time the Transmission 
Line Resonance (TLR) technique [6], [7], [8]. 
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artificial optical periodic lattices [2] with standard textbook 
methods [3] has been presented. Extending periodic lattices to 
the case of linear superlattices also has been studied in [4] 
under the presence of an external field causing the appearance 
of a Wannier-Stark ladder [5]. Here we review a previously 
introduced non-traditional method for the study of quantum 
wells and periodic lattices with or without the Wannier-Stark 
terms using for the first time the Transmission Line Resonance 
(TLR) technique [6], [7], [8]. 

II. LOSSLESS TLS AND THEIR PROPERTIES 
Following standard electrical engineering 

textbooks, we represent an arbitrary non-
homogeneous TL along a single dimension x via the 

pair of complex functions 






 )(),( xYxZ  also 

known as the “Impedance” and “Admittance” per 

meter. We also denote with 






 )(),( xIxV the 

“Voltage” and “Current” of the TL. The TL 
equations then obtain the form 
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The ordinary differential equation (ODE) system in 

(1) is also equivalent to the 2nd order linear differential 
equation also known as the canonical Sturm – Louville 
form for the boundary value problem [13],[14] 
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The above is simply based on identifying 

the voltage function with  

dxxIdxYxV /)())(/1()( −=  from the 2nd 
of (1) and replacing in the first of (1). In the 
TL case, boundary conditions will be given by 
the current-voltage values at terminal points 

L± as






 ±± )(),( LILV . 
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A lossless TL is characterized by having 

the complex functions 






 )(),( xYxZ being 

purely imaginary. We recall at this point, that 
in standard engineering practice, imaginary 
values generally represent the so called 
“reactive” part of the field which remains 
stored being normal to the propagation axis 
while the real part stands for the part of the 
field of which the energy gets dissipated in 
ohmic elements if present. The great interest 
of the lossless TL model stems from the fact 
that such models can always be tuned for 
specific values of a given parameter (usually 
frequency, energy, or wavenumber) which are 
the TL “eigenvalues”. For any such 
eigenvalue, a specific pair of the functions 







 )(),( xIxV  is formed which may then be 

identified with an “eigenfunction”. In the 
present review we are interested in application 
of such tunable lossless TL models for which 
we may now write naturally the conditions 







 == )()(),()( xjYxYxjXxZ where X(x) 

and Y(x) are some real functions of x. Next, we 
concentrate on uniform infinitesimal parts of 
an inhomogeneous TL model extending in the 
interval [ 2/dxx − , 2/dxx + ]. For every 
such infinitesimal interval now we will have 
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From the general analysis of TL equations 

we have the equivalent Transfer Matrix (TM) 
formalism for approximating the evolution of 
the Voltage and Current functions across 
successive infinitesimal intervals given as 
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In the above we identify the parameter 

)()()(2 xYxXx −=γ with the well-known 
“propagation function” of wave mechanics 
and the characteristic impedance 
with ( ) )(/)(/)()( xYxXxjYxxZ == γ . 
The definition above results in γ function 

having two alternating branches of either real 
or purely imaginary values. 

Considering that at a certain point the 
currents and voltages are known we can 
calculate them in every point of the TL. Each 
infinitesimal element can be interpreted as a 
small homogeneous TL which then become 
equivalent to a T-circuit as in figure 1. We 
again identify the local impedances as 
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Such infinitesimal circuits 

with 1|)(| <<dxxγ can be fairly well 
approximated with 
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As the maximal value of |γ| is by definition 

known a priori for all x in an interval of 
interest, one can always define the x interval 
partition from a condition of the 

form 10,)(max <<<< ccxx δγ . If need be, 
one can also make the same partition to be a 
function of x in order to have a well defined 
value everywhere inside the interval. 

The input reactance of any T-circuit jXIN is 
then immediately related to its output 
reactance jXOUT (that is equal to the input 
reactance of its next T-circuit) by just 
computing the total composite impedance 
using the simple circuit diagram of figure 1 
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Substituting the originally defined values 

for the various impedances in (5) leads to a 
simple recursive form as a partial fraction 
expansion 
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We notice that repeated application of the 
above in our algorithm leads to a Continuous 
Fraction Expansion that has been recently 
associated with an interesting new type of 
geometry called the “Chain of Horospheres” 
[15]. 

 
With the above analysis we can now 

interpret the overall TL as a series of 
connected T-circuits. Bringing a TL into 
resonant state requires a tuning condition 
which is given from the demand that the total 
left and right reactances at any point are equal 
and opposite. An infinite TL is equivalent to 
its characteristic impedance. Thus, assuming 
reactances are known at the two terminal 
points L± , the reactances at any point x in 
the interval LxL <<− can be calculated 
left and right of x for any x inside this interval. 
Then the tuning condition for any given TL 
assuming appropriate frequencies or their 
associated wavenumbers for the parameter ξ 
which becomes an eigenvalue at the roots, 
takes the form 

 
( ) ( ) ( )left rightf Xξ ξ ξ= Χ +    (6) 

 
For each eigenvalue ξ, the corresponding 

eigenfunction y(x)=I(x) is then easily 
generated via the transfer matrix (4) starting 
from the terminal point L with 

)()(,1)( LXLVLI == .  
 
In general, the same method is applicable 

in any case of optics, wave and quantum 
mechanics or any other physical phenomena 
ruled by either a 2nd order ODE or a separable 
PDE of which one degree of freedom (as for 
instance, the radial equation of a spherically 
symmetric Hydrogen atom) obtains the 
standard Sturm-Liouville form 
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The generic equivalence with a TL model 

is then described by the equivalent ODE 
system 

 







−=

−=

)(
)(

/)(

)()(/)(

xV
xg
jdxxdI

xIxjfdxxdV
   (8) 

 
with the identification 
 

 
dxxdIxjgxV
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Next we give some examples of 

application of the RTL method in generic 
quantum mechanical systems. 

 

III. APPLICATIONS IN PERIODIC WELLS AND SUPERLATTICES  
The general treatment of a periodic structure, 

either of ordinary lattices or superlattices is given in 
terms of the Schrödinger equation. Following standard 
textbooks, we have the generic time independent 
equation for a particle of mass m and  the reduced 
Planck’s constant (h/2π) 
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Restricting attention to the 1-D case we get the 

ODE 
 

[ ] )()()(
2

2

xyxu
dx

xyd ε−=        (10) 

 
We define )()( xyxI = and 

dxxjdyxV /)()( =  so that (9) can be rewritten in 
the form of the ODE system for an LTL as  
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Defining again εγ −= )(2 xU   and Y=1 leads to 

the final form as  
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We now turn attention to the problem of an 

arbitrary periodic potential. In this particular case, it 
has been proven on very general grounds the so called 
Bloch theorem according to which the wavefunction 
contains a periodic modulating function known as a 
Bloch wave.  We assume a homogeneous TL with an 
infinitesimal thickness Δx extending in the 
range [ ]2/,2/ xxxx ∆+∆−  with an equivalent factor 
γ(x). This corresponds to an infinitesimal homogeneous 
T-circuit (shown in fig 1) with impedances 

2/2 xjZ B ∆≈ γ and xjZ P ∆≈ / . 
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Fig. 1.  The basic 2-ports T-circuit, representing a 

homogeneous differential element of a lossless 
transmission line. 

 
 
 Successive infinitesimal circuits of the above 

type can be connected to approximate the continuous 
functions V(x) and I(x) due to their correspondence 
with )(,/ xydxdy respectively. Following the same 
generic approach explained in section 2, we need to 
tune the resulting lossless TL model according to the 
matching condition between left and right layers 
separating any chosen point.  

 
Given appropriate boundary conditions 

represented by terminal impedances at )( Lx ±=Ζ  the 
roots of the characteristic function f of equation (6) are 
then the energy eigenvalues of both the TL and the 
original Schrödinger problem. For each such 
eigenvalue ε the corresponding eigenfunctions can be 
easily computed with the aid of the generic Transfer 
Matrix method as provided by the general theory of the 
general LTL equation in the form 
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In (13) the characteristic impedance is given 

as )()( xjxZ γ−= . For an infinitesimal TL we 
approximate the above assuming 

1|)(| <<xx δγ with 1))(cosh( ≈∆xxγ ,and
xxxx ∆≈∆ )())(sinh( γγ . This simplifies (13) in the 

final form 
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Starting with )()(,1)( RRR xZxVx ==Ι from the 
right terminal impedance and assuming both V and I 
are defined for all successive points nΔx as well as the 
wavefunction )()( xxy Ι=  and its derivative.  

We first apply the above in the simple case of a 
superlattice formed by a set of successive planar layers 
of alternating material along x with constant quantum 
potentials 21 VV < with alternating widths 21 ,dd  and 

total period 21 dd +  forming a so called superlattice 
with a periodic square well potential. We want to find 
the eigenvalues (eigenenergies) and eigenfunctions for 
a finite number of periods representing N similar 
dyadic blocks of material. The set must then be 
terminated at two barriers of height V2 
satisfying ε−== 2)()( VjxZxZ RL . We also set 

εγ −= )()(2 xUx and Z=jγ(x). An example of a 
superlattice of ten such wells 
with 10,0,2.0,8.0 2121 ==== VVdd  together with 
two of their computed eigenfunctions is shown in figure 
2. The x interval was subdivided into 2000 
infinitesimal subintervals with 

0.005x∆ = and| ( ) | 10xγ < , thus their product 
max ( ) 0.0167x xγ ∆ <  and for ( )p x xγ= ∆  

sinh(p)≅p,  tanh(p/2)≅p/2 and cosh(p)≅1.  Details of 
the algorithm used for this and the rest of the examples 
are provided in Appendix A. 

Next we consider an example of a superlattice of 
a non squared potential with periodic wells with 
curvature and period d=1 as defined by 
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  (15) 
 
The superlattice is again considered to be 

terminated to the max. values 10, 22 =− VVj ε . We also 
have that  

 max ( ) 0.0167x xγ ∆ < ,so that  for ( )p x xγ= ∆  

the relations sinh(p)≅p,  tanh(p/2)≅p/2 and 
cosh(p)≅1, are valid.  

 
In figure 3 the calculated eigenfunctions for the 

graded superlattice potential for two of the calculated 
eigenvalues are shown. The presented method is much 
simpler than existing alternatives leading to the same 
results. However, in the case of periodic wells with 
arbitrary curvature there is no general method for 
attacking this and similar problems. Also for a general 
periodic or even non periodic superlattice with an 
arbitrary graded potential, we know that there is no 
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analytic expression of its eigenfunctions and thus no 
analytic approach for calculating eigenvalues.  

 
As a last example of such a difficult case where 

standard treatment is usually given via the so called 
“perturbation method” [16], we apply RTL in the case 
of an externally applied electrical field across the x 
direction leading to the formation of the so called 
“Wannier-Stark ladder”. The Stark effect is well 
known in the literature and is responsible for shifting 
the energy levels due to polarization by a constant 
electric field applied between the two ends of a 
periodic lattice. In this case we assume a perturbation 
of the form xExUxU 0)()( +=′  where E0 is the 
intensity of the external DC electric field such that we 
now have  

 
εεγ −+=−′= xExUxUx 0

2 )()()(   (16) 
 
In this case the original symmetry of the potential 

is broken causing the appearance of the characteristic 
ladder shapes. For each one of these ladders there is a 
possibility for the establishement of a set of 
eigenfunctions with their associated eigenvalues. 

 
 We can assume that for an adequate number of 

wells in the ladder, the terminal reactances at the 
starting and ending points are equal to the higher 
potential of the ladder or any higher value potential in 
order to confine the eigenfunctions inside the ladder. 
Following the previous analysis, i.e. dividing the 
Wannier-Stark ladder in a large number of very thin 
lattices Δx, the eigenvalues and their respective 
eigenfunctions can be calculated. In figures 4 and 
figures 5 two ladders are sown of squared and non 
squared wells together with two of their computed 
eigenvalues and their corresponding eigenfunctions for 
E0=1. In this case we took the terminal impedances as 

2 2, 10, 10j V x V xε+ − = =  in this case to have for 

2000 infinitesimal subintervals with 0.005x∆ =  thus 
max ( ) 0.0223x xγ ∆ < ,so that  for ( )p x xγ= ∆  

the relations sinh(p)≅p,  tanh(p/2)≅p/2 and 
cosh(p)≅1, are valid again. 

 
 We can define a search region in the interval 

[ ]21 ,εε  where one may take the limits to be the lower 
minimum and the upper maximum of any ladder well in 
order to find possible eigenfunctions related to this 
well. As we can notice the method of calculation for 
superlattices or Wannier-Stark ladders is exactly the 
same. The same resonance method can be applied also 
in any periodic or non periodic structures of any form 
of similar or dissimilar wells.  
 

IV. DISCUSSION AND CONCLUSIONS 
The above examination showed the ability of our 

approach to locate the eigenvalues from arbitrary 
potentials with ease. The significance of the particular 
type of Wannier-Stark effect extends beyond just the 
stationary states examined here. In another approach 
which is also non-perturbative [17] the problem is 
examined in the case of additional ac fields causing 
chaotic scattering. This situation is much worse in the 
case of abrupt high power and high voltage electrical 
impulses followed by strong current surges. 

 
Recent theoretical and experimental work by the 

authors [19] [20] [21], showed the appearance of 
certain extreme phenomena even at the low energy 
limit that call for further study in terms of a full 
quantum mechanical treatment. We note in passing that 
while the problem of the transition from the 
microscopic to the macroscopic reality has been 
partially answered with the well known Ehrenfest 
theorem [18], there are still some obscured areas 
associated with the passage to macroscopic dissipative 
structures as for instance, in the case of determination 
of the current form in macroscopic radiating volumes 
or antennas from first principles. As an example we can 
take the case of a long thin antenna of length L under 
electrical excitation causing a polarization field in the 
interior of the bulk lattice.  

 
We may consider the case of an initially 

uncharged thin, long metal wire or strip with a large 
conductivity. We can also simplify the problem by 
taking a free electron gas model where the influence of 
the periodic potential is negligible but the boundary 
conditions are to be considered important for taking 
into account correctly the finite length of the conductor. 
We are then confronted with a situation much like the 
case of a finite square well where the potential of the 
conducting electrons is practically very large in 
comparison with that of the underlying lattice wells. 
Hence, the whole wire can be seen as a kind of 
quantum trap for the electron gas. 

 
In this practically infinite well only the known 

sinusoidal wavefunctions would be of importance with 
zeroes at positions 2/L± . Ignoring at the moment the 
Stark effect associated with polarization, we first 
consider the statistical effect of a very large numbers of 
electrons of which every eigenfunction when added up 
becomes equivalent to the macroscopic harmonics for 
the overall electric current in the conductor with a 
frequency cL /2=ω . Assume that an initial transient 
charging takes place that excites a number of 
harmonics in the wire which now acts as a temporary 
antenna. The externally applied electrical field can be 
interpreted as an overall Stark term superposed on the 
square well causing a strong polarization which 
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subsequently causes an excess in the concentration of 
the electrons on the surface of the conductor. 

 
 This overpopulation of electrons is expected to 

have as a secondary effect the appearance of a new 
potential function of which the exact form is difficult to 
know yet we can approximate by a simple argument as 
follows. The huge transient internal potential in 
practice can also affect the various lattice atoms and 
this influence can be approximated as a wall of charge 
against a lattice atom with its internal electron shells 
due to the very large scale difference. In such a case a 
local atom will see a practically homogeneous field 
which will cause an additional temporary Stark effect 
breaking the symmetry of the lattice atomic potentials 
and raising the possibility of naked nuclei due to a 
retraction of the internal shell orbitals from a very 
strong local Stark effect. A hypothesis to be tested at a 
later stage regards the possibility of high power 
excitations of conductors to be able to cause even 
nuclear transmutations due to the baring of the lattice 
nuclei at least with some probability to be estimated in 
future studies. The already observed evidence from 
previous experimentation where complete 
disintegration and strong white light emission takes 
place suggests that the above is a possibility that must 
be tested more thoroughly.  

 
The algorithm presented here is a very practical 

alternative to other more computationally heavy 
methods like Hartree-Fock and it is the opinion of the 
authors that can be extended even in such difficult 
cases as the transient excitation of long thin wires with 
a single or multiple materials as in superlattices. 
Existing codes as presented in Appendix appear to 
converge rapidly and with a practically linearly 
increasing accuracy with respect to the coarse graining 
parameter δx. Hence they may prove beneficial to the 
research community in a multiplicity of other similar 
cases. 

APPENDIX 
A set of MATLAB® codes that were used to 

produce the figure is provided together with a brief 
description of their use. In all applications shown in 
this paper a partition of the main interval in 2000 layers 
was used with a thickness Δx =0.005 each. Thus taking 
into consideration that  2( ( )) 10Max xγ <  for the 
superlattices 2( ( )) 0.0167x xγ ∆ < and for the Wannier-
Stark ladder for E0=1 where 2( ( )) 20Max xγ < and 

2( ( )) 0.0223x xγ ∆ < . Thus in both cases for 
2( ( ))p x xγ= ∆  the relations sinh(p)≅p,  

tanh(p/2)≅p/2 and cosh(p)≅1, are valid. The 
eigenvalue finder is given by the bloch22 routine. The 
function u(x) and the E0 value are defined from any 
appropriate external interface function one of which for 

non squared wells is given by bloch11 rourine. 
MATLAB provides the facility of root finding 
functions for locating specific values as roots of the 
array returned by bloch22. The bloch33 routine is 
giving the eigenfunction of a potential function 
(superlattice or Wannier-Stark ladder) for a given 
eigenvalue. Resulting eigenvalues for all four cases 
examined in the main paper are provided in Table 1.  

 
 
function y=bloch11(x) 
% Wannier Stark ladder for w3>0, v2=max 
potential of superlattice for w3=0   
% The wells have a width of 1  
global  w3 v2   
w2=.8; 
w1=w3*x; 
 x1=x+1; 
if x1>0;xx=x1-fix(x1);else xx=1+x1-
fix(x1);end 
xx=2*xx-1; 
  
  
ys=(1/(1-(sin(w2*pi/2))^2)-1); 
y=(1/(1-(sin(xx*pi/2))^2)-1)*v2/ys; 
 y=y+w1; 
if xx>=w2;y=v2+w1;end 
if xx<=-w2;y=v2+w1;end 
 
function y=bloch22(e) 
% root finder equation of Wannier Stark 
ladder terminated for the higher potential 
%value of zz at the boundaries  
% N1=number of wells of the ladder or 
%superlattice w3=0 
  
global N1 w3 
  
N=2000; 
dz=N1/N; 
aa=bloch11(N1);  
zz=j*sqrt(aa-e); 
z1=zz; 
for n=1:N; 
    x=N*dz-(n-1)*dz-dz/2; 
    cc=bloch11(x)-e; 
    zb=j*cc*dz/2; 
    zp=j/dz; 
    zz=(zz+zb)*zp/(zz+zb+zp)+zb; 
end   
y=imag(zz+z1); 
 
function y=bloch33(e) 
 % eigenfunction for Wannier Stark ladder of 
%N1 wells for given eigenvalue e 
% terminated at the barrier of its maximum 
%potential  
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global  N1 tt t ttt 
N=2000; 
dz=N1/N; 
as=sqrt(bloch11(N1)-e); 
zz=[as;1]; 
f(1)=zz(2); 
xx(1)=N1; 
  
for n=1:N; 
    x=N*dz-n*dz+dz/2; 
    xx(n+1)=x-dz/2; 
    cc=bloch11(x)-e; 
    A=[1 cc*dz;dz 1];   
    zz=A*zz; 
    f(n+1)=zz(2);%eigenfunction 
    ff(n+1)=bloch11(x);%superlattice or ladder   
end 
 zz(1)/zz(2) 
av=max(f);bv=min(f); 
;%eigenfunction confined between 0 and e 
f=(f-bv)/max(f-bv)*e 
tt=f;t=xx;ttt=ff+.0001; 
plot(xx,f,xx,ff+0.0001); 
 

TABLE I 
CALCULATED EIGENVALUES FOR TEN WELLS  

 
 

Sq. Wells Sq. Wells/WS Ladder 

1.882323758928340    3.821083251932061    
2.128029079655592    5.541936589278953     
2.536350770548123    6.943427668535321      
3.105290903104073    8.175341254729894    
3.831524487427041    9.298748979739466 
4.709576837991253    10.356808521701257    
5.730039628915276    11.416307865400780     
6.875187431560925    12.615851302654566    
8.105853527282257    14.14932491397774 
9.308110171804502 17.081006786119623    

 19.916402641206560 

Non Sq. Wells Non Sq. Wells/ WS Ladder 

2.997490736501053    4.902143091788726      
3.235745108757861    6.609827763390554     
3.631388078391419    7.997876665249874     
4.181977541483595    9.216355865107895   
4.883435048859936    10.328372874665952 
5.729013303641652    11.378556895144090   
6.707050360468842    12.426419377119878   
7.795465555034969    13.598121221788318   
8.945606393470433 15.08727507151336    

 17.201288618849624   
 18.407750017160357 
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Fig. 2.  Potential with corresponding 
wavefunctions obtained for ten periodic 
square wells via the Transfer Matrix for the 
4th and 10th eigenvalues e1 (green) and e2 
(red) respectively (see Table 1). 
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Fig. 3.  Potential with corresponding 
wavefunctions obtained for ten periodic non 
square wells via the Transfer Matrix for the 
2th and 9th eigenvalues e1 (green) and e2 (red) 
respectively (see Table 1). 
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Fig. 4.  Potential with corresponding 
wavefunctions obtained for Wannier-Stark 
ladder of ten square wells (Eo=1) via the 
Transfer Matrix for the 5th and 11th 
eigenvalues e1 (green) and e2 (red) 
respectively (see Table 1). 
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Fig. 5.  Potential with corresponding 
wavefunctions obtained for Wannier-Stark 
ladder of ten non square wells (Eo=1) via the 
Transfer Matrix for the 2th and 11th 
eigenvalues e1 (green) and e2 (red) 
respectively (see Table 1). 
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