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Abstract—For high dynamic applications of GNSS receivers, 
the tracking sensitivity is heavily affected by the large 
unpredictable motion dynamics. The stability of the traditional 
tracking approaches is poor when outlier occurs among 
observations. In this paper, a novel Gaussian Particle 
Filtering-based carrier tracking algorithm is proposed for high 
dynamic GNSS signals. The proposed algorithm can work stable 
when the received signal is weak. To deal with the outliers in the 
observations, a robust carrier tracking algorithm based on 
Gaussian Particle Filtering is also proposed. Finally, the 
performance of the proposed algorithms is evaluated by 
simulation, compared with two typical approaches. 
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I. INTRODUCTION 

For high dynamic applications of Global 
Navigation Satellite System (GNSS) receiver, such as 
vehicle launching and low-earth-orbit (LEO) satellite 
positioning, a major problem is the difficulty in 
tracking GNSS signals. There are mainly two kinds of 
errors which affect signal tracking. One is additive 
thermal noise induced on the channel between GNSS 
satellite and receiver. The other is unpredictable 
dynamic state of the host vehicle. Traditional GNSS 
signal tracking approaches use frequency lock loop 
(FLL) or phase lock loop to estimate carrier phase and 
Doppler frequency[1]. However, such approach 
encounters performance tradeoffs when designing 
loop bandwidth in high dynamic applications: the 
loop bandwidth needs to be increased to tolerate 
higher dynamics of host vehicle, while the effects of 
thermal noise increase with increasing loop bandwidth. 
It's concluded that for signal-to-noise ratio (SNR) 
commonly encountered by GNSS receivers in the 
open sky, which is about 44 dB-Hz, reliable carrier 
tracking can only be achieved for acceleration not 
exceeding 5g and jerk not exceeding 5g/s when the 
traditional FLL/PLL tracking scheme is used [2].  

The most straightforward approach to overcome the 
bandwidth tradeoff is using additional measurement 
units which can obtain vehicle dynamics 
independently, including inertial measurement units 
(IMU) or any other predictable resources such as 

ephemeris of LEO satellites [3]. In [4], the output of 
an accelerator is used to adjust Kalman Filter's 
process noise matrix. In [5], gyroscopic mounting is 
used to reduce frequency jitter in FLL. In [6], the 
high-dynamic performance is achieved by aiding from 
a strapdown inertial navigation system. However, 
trajectories of most receivers are unpredictable, and 
IMU based approaches are usually expensive and 
complex due to additional sensors. 

Theoretically, maximum likelihood estimation 
(MLE) based approach yields the best performance of 
carrier tracking. A maximum likelihood estimator is 
used to track signal parameters simultaneously under 
high dynamic environments, including signal power, 
initial carrier phase, frequency and code delay [2]. 
The main drawback of MLE approach is lack of 
computational efficiency. The cost function is always 
high-dimensional and nonlinear, which needs iterative 
solution. Kalman filtering based approaches are also 
proposed for high dynamic signal tracking because 
they can provide larger carrier-to-noise ratio (CNR) 
gain in carrier phase and Doppler tracking compared 
to the traditional method [7-11]. Kalman filtering is 
optimal for parameter estimation of a linear system. 
When it's applied to GNSS signal tracking, the 
nonlinearity of measurement and state transition 
should be taken into consideration [12]. Unfortunately, 
the nonlinear effect plays an important role in carrier 
tracking performance limiting conditions under high 
dynamic environments [13]. In [9], second order 
Extended Kalman Filter (EKF) is used to suppress 
nonlinear effect, which makes use of higher orders in 
the Taylor series expansion. In [14], a maximum 
likelihood estimator is used as frequency 
discriminator in a Kalman filtering based Frequency 
Lock Loop. In [15], an FFT-based estimator is used to 
avoid nonlinearity in frequency estimation. A 
well-designed algorithm is used to detect 
Doppler-parameters in [16]. However, these 
approaches do not solve the essential problem that 
Kalman Filtering is not designed for a nonlinear 
system. 

Particle filter, first proposed by Gordon [17], is a 
sequential Monte Carlo method based on Bayesian 
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estimation principle. It uses a series of weighted 
random samples, which are also called particles, to 
approximate the posterior probability density, so that 
any kinds of statistical estimates like mean and 
variance can be computed easily, which makes it 
capable to deal with any nonlinear models. One of the 
key technologies for particle filter is importance 
sampling, which generates particles to approximate 
the posterior distribution. The performance of particle 
filter deteriorates when the statistical probability of 
generated particles deviates from the true probability 
distribution after several iterations [18-21]. Gaussian 
particle filter (GPF) uses Gaussian distribution as the 
posterior probability density to avoid particle 
distribution deviation [22].  

In this paper, a novel high dynamic carrier tracking 
algorithm based on the GPF is proposed. Two 
optimization methods are also proposed to obtain 
better robustness. 

II. PROBLEM DESCRIPTION 

GNSS satellites transmit pseudorandom signals at 
L-band frequency. Due to the transmission delay and 
relative motion between satellite and receiver, the 
received signal can be expressed as 

( ) ( ) ( ) ( )[ ] 0cosR IF c Rs t AD t C t f t t nπ θ= 2 + +  (1) 

where A is the received signal amplitude; D(t) is the 
navigation message modulated on the signal with bit 
rate of 50 bps; C(t) is the pseudorange code; fIF is 
signal intermediate frequency after down-converted 
by the receiver front-end; cθ  is carrier phase at time t; 
n0R is the thermal noise obeying Gaussian distribution. 
Note that in equation (1), Doppler effect caused by the 
relative motion is included in the time-varying carrier 
phase, so cθ  can be expressed as 

( ) ( )
0

t

c d dclkt f n dtθ π= 2 −∫  (2) 

where fd is the Doppler frequency shift, and ndclk is 
clock drift which can be modeled as random noise 
[23]. Although the code frequency C(t) is also shifted 
by the Doppler effect, it's ignored in this paper 
because the code Doppler shift is a fixed ratio to the 
carrier Doppler shift [1]. Equation (2) can be 
expressed in discrete form, 
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 (3) 

where T is the sampling period, dclkn′ is the 
combination of discrete clock drift noise and linear 

approximation error, which is assumed to follow 
Gaussian Distribution. The covariance matrix of 

dclkn′ is given by [24] 
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where Qθ  denotes the spectral intensity of clock 

phase bias error, dQ is the spectral intensity of clock 

frequency drift error, and 
a

Q  is caused by the linear 
approximation error. 
The received signal is then mixed with local generated 
I/Q carrier replicas, and the pseudorange code is 
removed through coherent integration with local 
generated pseudorange code replica. The output of the 
k-th coherent integration can be expressed as 

( ) ( ) ( ) 0

sin
expe

k k e

e

f T
r AD R j n

f T

π
τ θ

π
= +  (5) 

where ( )R τ  is the auto-correction of the 
pseudorange code due to code phase delay τ ; fe is the 
average frequency error during integration; eθ is the 
average phase error during integration; n0 is additive 
complex white Gaussian noise. Note that in equation 
(3), Dk is assumed to be constant during the 
integration because the integration time, typically 1ms 
for high dynamic applications, is much smaller than 
the bit duration. The covariance matrix of 0n can be 
expressed by 
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 (6) 

III. GAUSSIAN PARTICLE FILTERING 

The tracking error of carrier phase and Doppler 
frequency before each update epoch follows linear 
propagation model, according to equation (3), 

1 1k k k dclkX X BU n
− −

′= Φ + +  (7) 

where ( ) ( ) ( ) ( )[ ], , , T

k c d d dX k f k f k f kθ ′ ′′=  is state 

vector; ( ) ( )[ ], T

k nco ncoU k f kθ= represents the carrier 
phase and frequency of local generated carrier 
replicas; Φ and B denote the state transition matrix 
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and control matrix, respectively, 
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The measurement equation (5) can also be written as, 

( ) 0k kr h X n= +  (9) 

The basic idea of particle filtering is to use a series of 
weighted random particles to approximate posterior 
probability density. The approximated probability 
density is given by, 

( ) ( )
1

0

|
N

i i

k k k k K
i

p X r w X Xδ
−

=

≈ −∑  (10) 

where { }ikX  is a set of the generated particles 

sampled at epoch k; { }ikw are the corresponding 
normalized weights; N is the number of particles; 
( )δ ⋅  is Dirac-Delta function. The un-normalized 

weights of particles at epoch k is derived by [21], 

( ) ( )
( )

1

1

1

| |

|

i i i

k k k ki i

k k

k k

p r X p X X
w w

p r r
−

−

−

=  (11) 

The state vector at epoch k Xk is estimated by, 

1

0

N
i i

k k k
i

X w X
−

=

= ∑  (12) 

And then, the importance density is resampled and the 
particles are re-generated. 
Gaussian Particle filter approximates the posterior 
probability density by Gaussian density, 

( ) ( ); ,k k k kp X N X µ= Σ  (13) 

where kµ  is mean value, and kΣ  is the covariance 
of Xk. So in each epoch when the importance density 
are resampled, only | 1k kµ

−
 and | 1k k −Σ  need to be 

updated as, 
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When a new measurement rk is obtained, the posterior 
probability density is given by, 
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( ) ( )

( )
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So the proposed GPF-based carrier tracking algorithm 
can be concluded as follows, 
1. Generate particles from ( )1 1 1; ,k k kN x µ

− − −
Σ , denoted 

as { }1 ; 1...i

kX i N
−

= ; 
2. For i = 1: N 
 2.1 Generate particles from 
( )| 1 1 1| i

k k k kp X X X
− − −

= , denoted as { }1|

i

k kX
−

 

 2.2 Compute | 1 | 1,k k k kµ
− −
Σ  due to equations (14) 

and (15); 
 2.3 Compute un-normalized weights, 
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3. Normalize obtained weights, 

1

0

N
i i j

k k k
j

w w w
−

=

= ∑  (18) 

4. Compute the estimated state vector due to equation 
(12); 
5. Update the mean and covariance of the Gaussian 
density used in step 1 for next epoch. 

IV. ROBUST CARRIER TRACKING APPROACH 

The proposed GPF-based tracking approach can 
eliminate nonlinear error effectively, since the 
transition of probability density is approximated 
directly as a finite number of particles. However, in 
most practical situations, random noise don't precisely 
obey the assumed probability model, especially 
Gaussian model used in GPF, which means outliers 
always appear sometime. The deviation to assumption 
models lead to performance degradation.  
To improve robustness of GPF, the strong tracking 
filtering [25] concept is applied to GPF, denoted by 
STF-GPF. Since the prior probability model of the 
estimated state vector is decided by the posterior 
probability model of the previous epoch according to 
equation (7), STF-GPF computes | 1k kµ

−
 and | 1k k −Σ  

directly as follows, instead of steps 2.1 ~ 2.2 in 
Section 3,  

| 1 1 | 1 1; T

k k k k k k k kQµ µ λ
− − − −
= Φ Σ = ΦΣ Φ +  (19) 

Notice that a fading factor kλ  is introduced in 
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equation (19) so that the impact of old measurements 
is reduced automatically. It's proven that when the 
innovations { }kγ , defined by ( )| 1k k k kr h Xγ

−
= − , are 

orthogonal at each epoch[25], all useful information 
in the observations is fully used during the filtering 
procedure. The orthogonality of innovations are 
defined by, 

( ) 0; 0T

k j kE jγ γ
+

= ≠  (20) 

According to equation (20), kλ  can be derived as 
follows, 

( ) ( )0, 0,
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1; 1
k k k k

k

k

tr N tr Mλ λ
λ

λ

= ≥
=

<





 (21) 

1 0,;T T T

k k k k k k kM H H N C HQ H l R
−

= ΦΣ Φ = − −  (22) 

0, 1

0, 0,0 0 0;
1

T

Tk k k

k

C
C C

ρ γ γ
γ γ

ρ
−
+

= =
+

 (23) 

where ( )tr ⋅  denotes the trace of a matrix; ρ is 

forgetting factor with typical value of 0.95; 1kl ≥ is 
an adjustable softening factor; Hk denotes the 
Jacobian matrix of the measurement equation, which 
is given by 

( )
| 1k k

k

X X

dh X
H

dX
−=

=  (24) 

V. SIMULATION RESULTS 

The proposed algorithms are tested by simulation. The 

simulated signal uses real GPS PRN codes (PRN = 1), 

modulated by randomly generated navigation data bit 

with data transition probability of 50%. High dynamic 

model used in the simulation follows the dynamic 

model proposed by the Jet Propulsion Laboratory 

(JPL)[13]. The acceleration keeps at about -25 g/s for 

3 seconds, and then a sudden jerk of 100 g/s2 happens, 

which lasts 0.5 second, and then constant acceleration 

for 3 seconds, jerk for 0.5 second and constant 

acceleration for 2 seconds consecutively. 

 

Figure 1 JPL test (CNR = 44dB-Hz) 
The performance of proposed GPF-based tracking 
approach is evaluated under different CNRs. Figure 1 
shows carrier tracking results of GPF-based approach 
when CNR is 44 dB-Hz. Figure 1(a) is the estimated 
Doppler frequency; Figure 1(b) is the estimation error 
of Doppler frequency; Figure 1(c) is the estimated 
frequency rate; Figure 1(d) is the estimated frequency 
jerk. It's obvious that the proposed GPF-based carrier 
tracking algorithm works well under extremely high 
dynamic situations. 

 
Figure 2 Tracking performance for different particle 

numbers and CNRs 
The root mean square errors (RMSEs) of the 
estimated Doppler frequency under different CNRs 
are shown in Figure 2, with different number of 
particles used. The RMSE increases with the 
decreasing of CNR. It can be found that the estimation 
error can be reduced by increasing the number of 
particles used in GPF. As shown in Figure 2, the 
RMSE of Doppler frequency decreased about 0.2 Hz 
when the number of particles increases from 300 to 
1000, with CNR = 32 dB-Hz. 
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Figure 3 Performance comparison among different 

tracking algorithm 
The performance of the proposed robust carrier 
tracking approach (STF-GPF) is also evaluated under 
different CNRs, compared with GPF-based approach 
and other 2 typical high dynamic tracking approaches, 
which are Unscented Kalman Filtering (UKF)[26] 
based approach and Strong Tracking Filtering[25] 
based approach. 1% (equally to 3sigma confidence 
interval) outliers are added to the simulated signal 
manually. The RMSEs of Doppler frequency are 
shown in Figure 3. UKF and STF based approaches 
loss lock when CNR is lower than 27dB-Hz, however 
STF-GPF and GPF can keep stable tracking when 
CNR is 24dB-Hz. The tracking error of both proposed 
STF-GPF and GPF is much smaller than UKF and 
STF. STF-GPF shows the best performance among all 
the four tracking approaches, especially when the 
signal quality is good, since STF-GPF shows better 
robustness to the outliers. 

VI. CONCLUSION 

In this paper, a novel carrier tracking algorithm based 
on GPF is proposed for high dynamic GNSS signals. 
The GPF-based algorithm uses Bayesian theorem to 
estimate carrier phase and Doppler frequency to 
eliminate nonlinear error. The posterior probability 
density is assumed to be Gaussian and approximated 
by randomly generated particles. To improve the 
robustness of GPF in case of model deviation, 
STF-GPF is proposed by applying fading factor to 
GPF. The performance of the proposed algorithms is 
evaluated by simulations, using JPL's high dynamic 
model. Two classical tracking algorithms are also 
tested for comparison. Simulation results show that 

the proposed algorithms are ideally suited for 
improving the performance of carrier tracking in high 
dynamic environments. The proposed STF-GPF 
shows obvious better performance when model 
deviation occurs. 
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