
 

 

  
Abstract—Due to the lack of understanding of the flow parameters 
including roughness coefficient, bed slope, and initial conditions, 
governing equations may be considered in the stochastic form. 
Karhunen–Loeve expansion (KLE) approach as a perturbative 
expansion method is applied to explore uncertainty and its 
propagation based on the Advection-Diffusion equation (ADE). To 
assess the uncertainty in the present work, input variables (including 
initial condition, boundary condition, and diffusion coefficient), as 
source of uncertainty, is imposed in the framework of one-
dimensional open channel flow. Our investigation is aimed at 
obtaining higher-order solutions to the statistical moments of the 
flow depth as random field. KLE approach is adopted to decompose 
the uncertain parameter in terms of infinite series containing a set of 
orthogonal Gaussian random variables. Eigenvalues and 
eigenfunctions of the covariance function associated with the random 
initial condition play a key role in computing the coefficients of the 
series and extracted from Fredholm’s equation. The flow depth, as 
random dependent variable, is also represented as an infinite series 
which are obtained through decomposing by polynomial expansions 
in terms of the products of Gaussian random variables. The 
coefficients of the last series are governed by a set of recursive 
equations that are derived from the ADE. Monte Carlo simulation 
(MCS), as a reliable approach, is carried out for about 1000 
realizations and compared with the KLE. The present results 
highlight statistical properties of input variables including initial 
condition, boundary condition and diffusion coefficient, then, flow 
depth variance is achieved based on the variance of the input random 
variable. It was found that when higher-order approximations are 
used to represent initial condition, KLE results (mean flow depth and 
the flow depth variance) would be as accurate as MCS, however, 
with much less computational time and effort. 
 

Keywords— Stochastic Simulation, Advection-Diffusion 
equation, Karhunen–Loeve expansion, Polynomial expansion. 

I. INTRODUCTION 
IVEN the heterogeneous nature of many fluid flows and 
difficulties associated with understanding this 

heterogeneity accurately, flow characteristics are often treated 
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as random functions, leading to governing equations of 
stochastic types.  

In environmental fluid mechanics, such as wave 
transformation, transport occurs in fluids through the 
combination of advection and diffusion. Due to the complexity 
of measurements for flow parameters (such as roughness 
coefficient, bed slope, initial and boundary conditions), 
therefore, these terms consider as source of uncertainty. 
Stochastic approaches to flow in open channels have been 
generally studied in the last two decades, and many stochastic 
models have been developed.  

A conventional method to solve partial differential 
equations (PDEs) stochastically is Polynomial Chaos 
Expansion (PCE). It was put forward by Ghanem and Spanos 
[1], with application to transport in heterogeneous media [2], 
[3] and diffusion problems [4]. PCE is applied to model the 
uncertainty propagation from the beginning of a waterhammer 
with random system parameters and internal boundary 
conditions [5]. This technique includes representing the 
random variables in terms of polynomial chaos basis and 
deriving appropriate discretized equations for the expansion 
coefficients via Galerkin technique. PCE allows high order 
approximation of random variables and possesses fast 
convergence under certain conditions. However, the 
deterministic coefficients of PCE are governed by a set of 
coupled equations, which are difficult to solve when the 
number of coefficients is large. PCE is based on the expansion 
of variables by products of polynomial coefficients and 
orthogonal chaos bases. It is needed to treat a system of 
equations numerically. PCE applications to stochastic shallow 
water flows were reported by Ge et al. [6] and Liu [7]. A 
comprehensive review of PCE approach is discussed by 
Debusschere et al. [8]. 

Karhunen-Loeve Expansion (KLE) is a flexible approach to 
solve PDEs stochastically, leading to high order moments with 
relatively small computational efforts. PCE [9], [10], 
probabilistic collocation method [11], [12] and KLE [9], [13] 
have been utilized to illustrate random processes in porous 
media. This method is applied to decompose the solution of 
Boussinesq equations for the velocity, density and pressure 
fields [14]. 

KLE approach has been proven efficient for uncertainty 
analysis in groundwater hydraulics [9], [13], and [15]. 
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Contrary to PCE, the coefficients associated with KLE appear 
in uncoupled equations, from which required statistical 
moments can be extracted. However, this method has 
received little attention in open channel applications.  

A reliable tool usually used as a reference for solving 
stochastic PDEs is Monte Carlo Simulation (MCS) which 
consists of three steps; 1) generating several realizations of the 
uncertain parameter based on its distribution function, 2) 
solving the governing equation by means of an appropriate 
deterministic scheme for the generated parameter, and 3) 
taking statistical moments on the entire realizations obtained in 
previous steps. MCS is simple to implement, however, it 
introduces considerable computational effort due to large 
number of realizations needed. Application of MCS in open 
channel flow has been reported by Gates and Alzahrani [16], 
[17] for Colombia River in US. The uncertainty in geometrical 
properties and bed slope are investigated via their distribution 
functions, and consequently, statistical moments are evaluated 
for the flow field. A virtual sampling MCS was proposed to 
address uncertainty quantification in flood modeling on a real 
test case for Tous dam break in Spain [18]. Dutykh et al. [19] 
adopted MCS to quantify the effect of bottom roughness on 
maximum run-up height by resorting to nonlinear shallow 
water equations. Multilevel MCS is applied to uncertainty 
quantification for porous media flow [20]. 

In the present work, KLE approach is applied to 1-D 
Advection-Diffusion equation considering uncertainty in initial 
condition for a synthetic case in open channel flow. 
Consequently, flow field parameter has appeared as a random 
variable, too. Validity of the proposed model has been ensured 
through comparing with MCS results for various spatial 
variability. 

II. GOVERNING EQUATION 
One dimensional Advection Diffusion-equation (ADE) could 

be written for an incompressible fluid as 
2

2 0H H HU D
t x x

∂ ∂ ∂
+ − =

∂ ∂ ∂
 

 (1) 

  
in which ( ),H x t is flow depth, U is flow velocity and D is 
diffusive coefficient, subject to the initial and boundary 
conditions given by  

( ) 2
0 3

0

3,0 sech ,
24

a LH x h a x x D
h

   = + − ∈ 
   

 

( ) ( ) 00, , , 0H t H L t h t= = >  

 
       (2) 

 
       (3) 

 
       (2) 

 

where L is channel length, ( ) ( ),0 orH x h x is initial water 
depth, 0h  is undisturbed uniform water depth, a is initial wave 
height and D is spatial domain in x direction. The initial 
condition corresponds to a first-order solitary wave 
propagating in the positive x-direction [21]. The random 
nature of ( )h x converts deterministic equations, (1)-(3), in to 
stochastic ones, the solution of which is sought in the form of 

statistical moments. The length of the channel is assumed 
sufficiently large compared to the characteristic length of 
solitary wave [22]. This justifies the validity of (3), implying 
that the boundary values remains unaffected by the initial wave 
form.   

III. KARHUNEN-LOEVE EXPANSION 
In KLE approach, initial water depth ( )h x is considered a 

random variable due to many factors including uncertainty 
inherent in measurements. It may be decomposed to the mean 
term h〈 〉 and the fluctuation term h ′ . KLE expresses ( )h x′  in 
terms of eigenstructure for covariance function ( )1 2,hC x x of 
the random field as follows [1]  

( ) ( ) ( )
1

, ,n n n
n

h x f xω ξ ω λ
∞

=

′ = ∑  (4) 

where x and ω  are indices of real and probability spaces, 
respectively. ( )nξ ω is an orthogonal Gaussian random variable 
with zero mean and nλ  and ( )nf x  are eigenvalues and 
eigenfunctions associated with the given covariance function, 
respectively. With a covariance function for the exponential 
distribution as 

  ( ) 1 22
1 2, exp ,h h

x x
C x x σ

η
 −

= −  
 

 (5) 

The eigenstructures are obtained analytically from Fredholm’s 
equation [13] as 

( )
( ) ( )

( )
2

2 2 2 2

cos sin2 ,
0.5 1

n n nh
n n

n n

w w x w x
f x

w L w

ηησ
λ

η η η

 + = =
+ +

 (6) 

where 2
hσ  and η are variance and correlation length of the 

random variable ( ),h x ω , respectively. It is worth mentioning 
that a similar problem has been treated by Zhang and Lu [13] 
when modeling groundwater flow in a random porous medium. 
In the above expression, nw  refers to positive roots of the 

characteristic equation ( ) ( ) ( )2 2 1 sin 2 cos .w wL w wLη η− =  For 

notational convenience, the function ( )n nf xλ  is replaced 

with ( )*
nf x , hereafter.  

IV. MOMENT EQUATIONS IN KLE 
Initial condition, ( )h x is considered as a random variable 

and other terms as deterministic ones. KLE, as a perturbative 
expansion technique, expand the dependent variable ( ),H x t  
as the following series 

 

( ) ( ) ( ) ( )0 1 2,H x t H H H= + + + …  (7) 

Substituting the above expansion and ( )h x h h= 〈 〉 + ′  in (1)-(3) 
and considering only the zero order terms, the governing 
equation and related conditions will take the form of 
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( ) ( ) ( )0 0 02

2 0H H HU D
t x x

∂ ∂ ∂
+ − =

∂ ∂ ∂
 (8) 

( ) ( )0 2
0 3

0

3,0 sech ,
24

a LH x h a x x D
h

   = + − ∈ 
   

 (9) 

( ) ( ) ( ) ( )0 0
00, , , 0H t H L t h t= = >  (10) 

in which a  is mean value of a . Similarly, one may obtain the 
following expression for any higher order term m [13] 

( )( ) ( )( )
( ) ( )

( )

2

2

0

1
0

!

m m

km m kk

k

U H D H
x x

Hh x
k t

−

=

∂ ∂
−

∂ ∂

−
′ ∂ + =  ∂∑

 (11) 

( ) ( ),0 0,mH x x D= ∈  (12) 

( ) ( ) ( ) ( )0, , 0,m mH t H L t= =  (13) 

Various components of (7) can now be expanded by suitable 
polynomial expansions in terms of the orthogonal Gaussian 
random variable ξ  as illustrated in Table Ι . 

Where ( )1
iH , ( )2

ijH  and ( )3
ijkH  (for , , 1,2,i j k = … ) are 

deterministic coefficients obtained from the associated 
governing equation, numerically. Note that, above governing 
equations are derived via substituting the expansions of ( )h x′  

and ( ) ( ),mH x t  with 1,2,3m =  in (11)-(13) and simplifying 
the resulting expressions in view of orthogonality of the 

random variable ξ . Index ( ).
ijkP

∑ is found by a substitution 

manner, i.e., 

( ) ( ) ( ) ( )2 2 2 2* * * *. . . .
ijk

i i j kjk jk ik ij
P

f H f H f H f H∇ ∇ = ∇ ∇ + ∇ ∇ + ∇ ∇∑ . For the 

trivial solutions to exist, ( ) ( )3 ,H x t should be expanded in 
terms of nξ and i j kξ ξ ξ  simultaneously [13]. Manipulating the 
third order approximation of ( ),H x t (Eq. 7) mathematically, 
one may compute higher moments of the flow depth as shown 
in Table ΙΙ . It is important to note that, the same approach is 

chosen to solve the governing equation of ( )0H  to ( )3
ijkH  

because of the diversity in homogeneity property. Despite of 
analytical solution for (8)-(10) (i.e., convolution integral), 
QUICKEST (Quadratic Upstream Interpolation for Convective 
Kinematics with Estimated Streaming Terms) approach is 
utilized to treat all of the governing equation to have the same 
solution process as follow [23], [24] 

( ) ( )
( ) ( )
( ) ( )

( )

1 2
1

2

2
1

2
2

1 3 2
6

2 3 2 1
2

1 3 2
2

. 1
6

j j ja
d a a ai i i

ja
d a a a i

ja
d a a a i

ja
d a a i

CH H C C C C H

CC C C C H

CC C C C H

CC C C H

+
+

−

−

 = + − − − +  
 − − − − −  
 + − − − −  
 + + −  

 (14) 

in which j
iH  is flow depth at thi t∆ (spatial step) and 

thj t∆ (time step), and aC and dC are advective and diffusive 
Courant numbers, respectively 

2
. .,a d

U t D tC C
x x
∆ ∆

= =
∆ ∆

, (15) 

Regions of stability for the QUICKEST scheme may be 
written as [25]: 

( )( )
( )

( )( )
( )

2

2

3 2 1 1
6 1 2 2

0
3 2 1 1

6 2 1 2

a a
d a

a
d

a a
d a

a

C C
C if C

C
and C

C C
C if C

C

 − −
 ≤ < − ≥
 − −
 ≥ >

−

 (16) 

 

 

Table Ι  Expansion and the governing equations of  ( )( ) ,mH x t   in 

terms of the orthogonal Gaussian random variables 
Term Governing equation 

( ) ( )

( ) ( )

1

1

1

,

,i i
i

H x t

H x tξ
∞

=

= ∑
 

( )
( )

( )

( ) ( )

1 0
*

21 1
2U D 0

i
n

i i

H Hf x
t t

H H
x x

∂ ∂
−

∂ ∂

∂ ∂   + − =   ∂    ∂
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( ) ( )

2

2

, 1

,

,i j ij
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∞

=
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( )

( )
( )

( )

( ) ( )
( ) ( )

( )

2 1 1
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22

2
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2 2

1
2

0

ij j i
i j

ij
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H H H
f x f x

t t t

HHf x f x U
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H
D
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∂ ∂ ∂
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∂
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3
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n
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=
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V. ILLUSTRATIVE EXAMPLE 
KLE approach is applied to a hypothetical channel to 

compute higher-order flow depth moments, and verified by 
comparing its results with those of MCS. A hypothetical 
channel of length 100L m=  is considered with a first-order 
solitary wave with maximum height of a within normal 
distribution and mean value of 0.05a m= , centered at / 2x L= . 
Moreover, the water depth is kept constant at 0 1h m= over the 
channel ends, advective velocity 2.5 /U m s= , and diffusion 
coefficient f. Schematic of the initial condition over the 
channel and wave propagation sketch at different times are 
shown in Fig.1. Effects of different various degrees of spatial 

variability, 2
hσ  , on flow depth variance, 2

Hσ , were 
investigated. MCS was examined for about 1000 realizations 
and the moments of the flow depth were computed for 
different correlation lengths and variances of the input random 
variable.  

VI. RESULTS AND DISCUSSION 
The effects of input random variables including diffusion 

coefficient, initial, and boundary conditions on flow depth 
variance were investigated using MCS. Then, KLE approach is 
applied to quantify uncertainty of initial condition. The 
sufficient number of terms to be incorporated in ( ),H x t  and 
the effects of spatial variability of the random initial condition 
on flow depth variance were discussed. 

A. Investigation of diffusion coefficient on flow depth 
In this section, the effect the variance of diffusion 

coefficient, 2
Dσ , is investigated on  flow depth variance 2

Hσ . 
Boundary and initial conditions are considered without any 
uncertainty. As shown in Fig.1, flow depth variances were 
solved via MCS for some time levels from the beginning of 
wave propagating. 2

Hσ is gained up to 7 26 10 m−×  on the peak 
wave which is due to the role of the random field D in (1). The 
maximum values are declined as 2

Hσ decreased. Due to the 
diffusion properties of flow, the maximum depth variances are 
flattened over the time. 

B. Investigation of boundary conditions on flow depth 

In the following, 2
Hσ is computed for random boundary 

conditions, ( ) ( ) 00, ,H t H L t H= = .  Same as before, other 
parameters were considered without uncertainty. As shown in 
Fig.2, flow depth variances were computed for different

0
2
Hσ .   

For 
0

2 20.25H mσ = , the flow depth covariance is computed 

approximately 20.24m at the upstream end, but it is equal to 
zero at the downstream one. Due to the flow direction, the 
support domain of the propagating wave is reached to the 
downstream end for various

0
2
Hσ . As 

0
2
Hσ is decreased, the 

flow depth covariance is attenuated, however, one could be 
seen an identical trend for all

0
2
Hσ . It seems necessary to note 

that for a certain time level, the domain of changes in 2
Hσ is 

covered a certain range of the channel length. This means that 
because of the flow velocity direction, the results are affected 
only according to the upstream boundary condition at first. 
Then, with respect to time t, downstream condition is played 
an important role to calculating 2

Hσ .   
 

Table ΙΙ Statistical moments of the flow depth 

Flow depth ( ) ( ) ( )
3

0

, ,i

i

H x t H x t
=

≈ ∑  

Mean value 

( ) ( ) ( )

( ) ( ) ( ) ( )

3

0

20

1

, ,

, ,

i

i

ii
i

H x t H x t

H x t H x t

=
∞

=

〈 〉 ≈ 〈 〉

= +

∑

∑
 

Perturbation 
term 

( ) ( ) ( )

( ) ( ) ( ) ( )
3

2

1 1

, , ,

, ,i
ii

i i

H x t H x t H x t

H x t H x t
∞

= =

= − 〈 〉

≈ −

′

∑ ∑
 

Cross-
covariance 
between 
initial water 
depth and 
flow depth 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

*

31* *

1 , 1

; , , ,

, 3 ,

hH n n n

n n i ijj
n i j

C x y f x H x f x H x

f x H y f x H y

τ λ ω ω

τ τ
∞ ∞

= =

= =

= +

′ ′
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1

2 2

, 1

1 3

, 1

1 3

, 1

, ; , , ,

2 , ,
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3 , ,

H i i
i

ij ij
i j

i ijj
i j

i ijj
i j

C x t y H x t H y

H x t H y

H x t H y

H y H x t

τ τ

τ

τ

τ

∞

=
∞

=

∞

=

∞

=

=

+

+ +

∑

∑

∑

∑

 

Flow depth 

variance 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
1 22

1 , 1

1 3

, 1

, , 2 ,

6 , ,

H i ij
i i j

i ijj
i j

x t H x t H x t

H x t H x t

σ
∞ ∞

= =

∞

=

   = +      
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Fig. 1 Flow depth variances for diffusion coefficient variance, 

2 20.01D mσ = using 1000 MCS under different times 

 

C. Number of terms to be incorporated in ( ),H x t  

KLE approach was applied to compute mean flow depth 
profile at different times, and compared with results from MCS 
ones, as shown in Fig. 3. Incorporation of the first two terms in 
(7) makes the results in a good agreement with those of MCS 
(Fig. 3a). Incorporating two more terms, i.e., ( )2H and ( )3H , 
only slightly improves ( ),H x t (Figs. 3b and 3c). Indeed, 
numerical values of subsequent terms decrease one order of 
magnitude. For example, ( ) ( )1 ,H x t (with a certain number of 
terms considered in its expansion as illustrated in the next 
section) takes the value of 0.01m , however, values in order of 

0.001m was obtained in estimation of ( ) ( )2 ,H x t with 
sufficient number of terms considered in its expansion. 
Moreover, ( ) ( )3 ,H x t was gained at the order of 0.0001m ; two 

orders of magnitude smaller than ( ) ( )1 ,H x t . One may 
conclude that the more number of terms incorporated 
in ( ),H x t , the more accurate the results, however, 

incorporation of four terms ( ( )0H to ( )3H ) are doomed 
sufficient to expand ( ),H x t , because of the size of the 

disturbance, 0.05m , caused by the solitary wave. 

 
Fig. 2 Flow depth variances for variance of boundary conditions, 

0

2 20.25H mσ = using 1000 MCS under different times 

 

D. Effects of water depth variances on σH
2  

Fig. 4 compares flow depth variances from1st and 2nd order 
KLE approaches with those from MCS for different input 
water depth variances of 0.0025, 0.0064, and 0.0121 2m , and 
correlation length of 4 at 5t s= . As shown, for 2 2σ 0 0025h . m= , 
flow depth variances computed by 1st and 2nd order KLE 
were close to MCS ones with 1st order mainly overestimating 
MCS with a maximum error of 9% (Fig. 4a). As the variance 
increased, 1st order KLE results overestimated MCS again 
with a maximum error of 9%, however, 2nd order KLE 
underestimated MCS with a maximum error of 23% (Fig. 4b). 
Finally, for 2 2σ 0 0121h . m= , flow depth variances calculated by 
the 1st order KLE remained unchanged (with errors similar to 
those in previous cases), but high errors of up to 52% were 
observed for the underestimating 2nd order KLE (Fig. 4c). It 
may be concluded that as the input variance, 2σh , increases, 1st 
order KLE mainly overestimating results remain unchanged, 
however, 2nd order KLE results increasingly underestimate 
MCS results. It is concluded that for higher input variances, 
unlike our expectations, flow depth variance will not improve 
considerably by incorporation of higher order. 
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a) 

 
b) 

 
c) 
Fig. 3 Comparisons of mean flow depth profiles computed by KLE 

method (incorporating 2, 3, and 4 terms) with those derived by 
MCS (for 1000 realizations) at (a) 5t  s= , (b) 10t  s= , and 

(c) 15t  s= . 

E. Investigation of probability distribution of flow depth 
As a conclusion, the probability distribution of the random 

flow depth is examined. The results of flow modeling for 
single mode standing wave were subjected to the Klomogorov-
Smirnof test and the probability distribution of the random 
variable is determined. Given the normal distribution for input 
random variable, the normal distribution for the random flow 
depth was expected. In this regard, the Klomogorov-Smirnof 
test was applied to compare cumulative distribution function 
(CDF) of the present work with standard normal CDF. As 
shown in Fig. 5, KLE results would be as accurate as standard 
normal CDF, therefore, the values of flow depth have normal 
distribution. 
 

 
a) 

 
b) 

 
c) 

Fig. 4 Comparison of flow depth variances computed by1st and 2nd 
order KLE with MCS, when a) 2 2σ 0.0025h m= , b) 2 2σ 0.0064h m= , and 

c) 2 2σ 0.0121h m= ( 4h  mη = , for all the cases). 

 
Fig. 5 Comparison of cumulative distribution function of the present 

work with standard normal CDF 
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