
 

  
Abstract— This paper considers the problem of global practical 

tracking via output feedback control for a class of more general 
uncertain high-order nonlinear systems. Under a weaker growth 
condition, by introducing sign function and necessarily modifying the 
homogeneous domination approach, this paper proposes a new control 
scheme to achieve the global practical tracking. It is shown that the 
designed controller guarantees that the state of the resulting 
closed-loop system is globally bounded and the tracking error 
converges to a prescribed arbitrarily small neighborhood of the origin 
after a finite time. 
 

Keywords—output feedback, practical tracking, nonlinear system,  
homogeneous domination.  

I. INTRODUCTION 
HIS paper deals with the problem of global practical output 
tracking by output feedback for a class of more general 

high-order nonlinear systems described by 
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where T
1( , , ) n

nx x x R= ∈ and u R∈  are the system state and 
the control input, respectively. For 1,i = …, ,n ( , , )i t x uφ are 
unknown continuous functions and 

1 : { [0, ) :i oddp R p q p≥∈ = ∈ ∞ and q  are odd 
integers, p q≥ } ( 1, , 1)i n= −  are said to be the high orders of 
the system, with np  obviously equal to one (which is not a 

limitation since we can easily set : npv u=  in the case of 
non-unity np ) and ry is a reference signal to be tracked. 
Although in the  usual tracking problem the reference 
signal ( ), [0, )ry t t ∈ ∞ as well as its derivates are assumed to be 
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known, but in our problem only the error 1 ry x y= − between the 
output 1x and the reference signal ry are assumed to be 
measureable. Hence only y is allowed to use in the design of the 
control. There are two reasons to restriction the only 
measurement to be the error signal. One, in some practice 
control applications, is inevitable that the error signal is the one 
to be directly measured. For example, in a missile guidance 
system, instead of measuring the absolute position of the 
moving target, that is signal ry , the onboard radar keeps 
measuring the distance/error between the missale and the target 
[1]. The other one is assuming only error signal also makes the 
actuator design simple, as the controller does not depend on the 
signal to be tracked explicitly. In this way, the controller is more 
adaptive to different reference signals[2]. 

The problem of global output tracking control of nonlinear 
systems is one of the most important and challenging problems 
in the field of nonlinear control and lots of efforts have been 
made during the last decades, see [1-11], as well as the 
references therein. With the help of the nonlinear output 
regulator theory [3], [4] and the method of adding a power 
integrator [12-14], series of research results have been obtained 
[5-7]. For details, in [8], practical output tracking via smooth 
state feedback for nonlinear systems was considered. 
Compared with state feedback control, the theory of output 
control developed slower, because there is no general and 
effective method to design a nonlinear observer. Recently, in 
[9-11] and [2], the practical output feedback tracking problem 
was also investigated for a class of nonlinear systems with 
higher-order growing unmeasurable states, extending the 
results on stabilization in [15-18]. 

In [9-11] and [2], the following condition on the uncertain 
term ( )iφ ⋅  is assumed: 

( )1( ) ( )
1( , , ) i i ir r r r

i it z u C x x Ct tφ + +≤ + + +          (2) 

where 0C > , 0τ >  or 1 2 12 ( (2 1)) 0np p p n τ−− + < <  are 
constants and ir ’s are defined as 1 11, 0,i i ir r p r τ+= = + >  

1, ,i n=  . Nevertheless, from both practical and theoretical 
points of view, it is still somewhat restrictive to require system 
(1) satisfying such restriction. To illustrate the limitation, let us 
consider the following simple system: 

3 5
1 2 2 11 , , rx x x x u y x y= + = = −    
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wwhheerree  1 2 1,p p= = 3 5
1 1xφ = and 2 0φ = . For the simple system, 

it is easily verified that the works [9-11] and [2] cannot lead to 
any output feedback tracking controller because of the presence 
of low-order term 3 5

1x dissatisfied the growth condition. 
Naturally, an interesting problem may be proposed:       

(i) Is it possible to further relax the nonlinear growth 
condition on τ  in (2)?  

(ii) Under the weaker assumption, how can one design an 
output tracking controller for the nonlinear system (1) 
by output feedback?  

In this paper, by introducing a combined homogeneous 
domination and sign function approach, we shall solve the 
above problems.  

II. MATHEMATICAL PRELIMINARIES 
At first, we give the following notations which will be used in 

this study. 

Notations: nR  denotes the real 𝑛𝑛-dimensional space and 
: [0, )R+ = ∞ . For any vector 1( , , )T n

nx x x R= ∈ , denote  

1: ( , , ) ,T i
i ix x x R= ∈  1, ,i n=  ,  ( )1 2

2
1

: n
ii

x x
=

= ∑ . A sign 

function sgn( )x  is defined as: sgn( ) 1x =  if 0x > , sgn( ) 0x =  
if 0x = , and sgn( ) 1x = −  if 0x < . For any Rα +∈  and 

x R∈ , the function [ ]x α is defined as [ ] sgn( )x x xα α= .  A 
function : nf R R→ is said to be kC -function, if its partial 
derivatives exist and are continuous up to order , 1 .k k≤ < ∞   

A 0C  function means it is continuous.   A C∞ function means 
it is smooth, that is, it has continuous partial derivatives of any 
order. Besides, the arguments of functions (or functionals) are 
sometimes omitted or simplified, whenever no confusion can 
arise from the context. For instance, we sometimes denote a 
function ( ( ))f x t by ( )f x , ( )f ⋅ , or f . 

First, we recall some important definitions regarding to 
homogeneous systems (For more details, see, e.g,. [19], [20], 
[22] and [21]). Now, let ( )1, , n

nx x x R= ∈ be a fixed 
coordinate, and 0s > , 0 ( 1, , )ir i n> = > be real numbers. 
Then: 

(i) A dilation ( )s x∆ is a mapping defined by 

( )1
1( ) , , , 0nrr

s nx s x s x s∆ = ∀ >  

 where ir are called the weights of the coordinate. For 
simplicity of notation, the dilation weight is denoted 
by 1( , , )nr r∆ =  . 

(ii) A function ( , )nV C R R∈ is said to be homogeneous of 
degreeτ if there is a real number Rτ ∈ such that  

{ }1( ( )) ( , , ), 0n
s nV x s V x x x Rτ∆ = ∀ ∈ − . 

(iii) A vector field ( , )n nf C R R∈  is said to be homogeneous 
of degree τ  if there is a real number Rτ ∈ such that 
for 1, ,i n=   

    { }1( ( )) ( , , ), 0ir n
i x i nf x s f x x x Rτ +∆ = ∀ ∈ − . 

(iv) A homogeneous p -norm is defined as 

  
1

, 1 , , 1
i

pp rn n
ip ix x x p∆ =

 = ∀ ∈ ≥ 
 
∑  . 

 For the simplicity, write x ∆ for ,2x ∆
. 

Next, in what follows, some useful lemmas are cited, which 
are used in the main body.  

LEMMA1[20]. Given a dilation weight 1( , , )nr r∆ =  , suppose 

1( )V x  and 2 ( )V x  are homogeneous of degree 1τ and 2τ , 
respectively.  Then, 1 2( ) ( )V x V x is also homogeneous with 
respect to the same dilation Δ.  Moreover, the homogeneous 
degree of 1 2( ) ( )V x V x  is 1 2ττ + . 

LEMMA22[20]. Suppose : nV R R→ is a homogeneous function 
of degree τ with respect to the dilation weight ∆ . Then, the 
following holds: 

(i) iV x∂ ∂ is also homogeneous of degree irτ −  with ir  
being the homogeneous weight of ix . 

(ii) There is a constant 0σ > such that ( )V x x τσ ∆≤ . 
Moreover, if ( )V x is positive-definite, there is a 

constant 0ρ > such that ( )x V xτρ ∆ ≤ . 

Now, we introduce several technical lemmas which will play 
an important role and be frequently used in the later control 
design. 
Lemma3[5]. For any real numbers 0, 0x y≥ > and 1m ≥ , the 
following inequality holds: 

( ) ( )( ) 1
1

mmx y x m m y
−

≤ + − . 

Lemma4[23]. For all ,x y R∈  and a constant 1p ≥  the 
following inequalities holds: 

(i) 12p p p px y x y−+ ≤ + , 

( )1 1 1p p px y x y+ ≤ + ( ) ( )112
pp p x y−≤ +  

If 1
oddp R≥∈ ,  then 

(ii) 12p p p px y x y−− ≤ −  and      
( ) 111 1 2 .pp pp px y x y−− ≤ −  

Lemma5[23]. Let ,c d be positive constants. Then, for any 
real-valued function ( , ) 0x yγ > , the following inequality holds: 

( , ) ( , )c d c d c dc dc dx y x y x x y y
c d c d

γ γ+ +−≤ +
+ +

. 

Lemma6[24]. For ,x y R∈  and 0 1p< ≤  the following 
inequality holds: 

( ) .
p p px y x y+ ≤ +  

When 1,p a b= ≤ where 0a > and 0b > are odd integers 
12 .pp p px y x y−+ ≤ +  

Lemma7[25]. If 1
oddp a b R≥= ∈ with 1a b≥ ≥  being some 

real numbers, then for any ,x y R∈  
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1
1 12 sgn( ) sgn( )

ba ap p bx y x x y y−− ≤ − . 

Lemma8[8]. If [ ]: , ( )f a b R a b→ ≤  is monotone 
continuous and satisfies ( ) 0f a = , then 

( ) ( )
b

a
f x dx f b b a≤ ⋅ −∫ . 

This paper deals with the practical output tracking problem 
by output feedback for nonlinear systems (1). Here, we first give 
a precise definition of our practical tracking problem [9], [11]. 

The problem of global practical tracking by an output 
feedback: Consider system (1) and assume that the reference 
signal ( )ry t is a time-varying 1C - bounded function on [0, ).∞  
For any given 0ε > , design an output controller having the 
following structure 

1( , ), (0)
( , ),

ny R
u y
ζ α ζ ζ

β ζ

− = ∈


=



                    (3) 

where ,α β are some smooth functions, such that 

i)     All the state [ ] 2 1( ), ( ) nx t t Rζ −∈ of the closed-loop 
system (1) with output controller (3) is well-defined 
on[0, )+∞ and globally bounded. 

ii)     For any initial state [ ](0), (0)x ζ , there is a finite 
time : ( , (0), (0)) 0T T xε ζ= > , such that         

1( ) ( ) ( ) , 0ry t x t y t t Tε= − < ∀ ≥ > .          (4) 

In order to solve the global practical output tracking problem, 
we made the following assumption: 

Remark1.  Assumption1, which gives the nonlinear growth 
condition on the system drift terms, encompasses the 
assumptions in existing results [9-11] and [2]. Specifically, 
when 0τ ≥ , it reduces to Assumptions in [9-10] and [1-2]. 
When τ  is some ratios of odd integers in 

1 11[ 1 , 0]n
ll p pτ −=∈ − ∑  , it encompasses the condition used in 

[11]. This means that the system studied in this paper is less 
restrictive and allows for a much broader class of systems. 

Assumption2. The reference signal ( )ry t  is continuously 
differentiable. Moreover, there is a known constant D >0, such 
that 

( ) ( ) , [0, )r ry t y t D t+ ≤ ∀ ∈ ∞∀ . 

Now, we state the main result of this paper as follows: 

Theorem1.  Under assumptions1-2 on system (1), the global 
practical output tracking problem stated above  is solvable by 
output controller of the form (3). 

III. OUTPUT FEEDBACK TRACKING CONTROLLER DESIGN 
In this section, we will ingeniously combine homogeneous 

domination theory and sign function approach to solve this 
output tracking problem. Before designing the controller,  
introduce the following new coordinate transformation:   Letting  

1 0,κ =  1 1( 1)i i ipκ κ − −= +  for  2, ,i n=  , define 

1
1 : , : , 2, , , :i n

i iz y z x M i n v u Mκ κ += = = =      (7)             

where 1M ≥  is a rescaling gain to be determined later. Then, 
the system (1) can be described in the new variables iz as 

1

1

( , , ), 1, , 1,
( , , ),

ip
i ii

n n

z Mz t z v i n
z Mv t z v y z

y
y

+= + = −

= + =






                    (8) 

where  

1 1( , , ) : ( , , ) ,
( , , )

( , , ) : , 2, , .
i

r

i
i

t z v t x u y
t x u

t z v i n
M κ

y φ
φ

y

= −

= =





 

Now, using the relation 1 11 ( )j j jr p pτκ −= +  , one can obtain 
the inequalities for 2, , , 1, ,j i i n= =   

( )

1 1

1 1 1 11

1 2 1 11

1 1
1

1 1
1

, 0
1

1 1
,

1

0 1

1, 0

0, 0 1

j

j j

j j i i ji i
j i j
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l
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n

l
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τ
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− −=

−
=

−
=


≤ ≥ +

 + −− ≤

+



> > −


≤ ≥

≤ > > −


∑

∑

∑

>

>>

>>

>

>

 

(9) 

which implies ( ) 1i i i i ir r vM Mκ τ κ+ − −≤ for some 0 1iv< < . 

Now, using Assumption1, Lemmas3-8, 1M ≥  and above the 
fact that,  the following inequalities can be obtained: 

1 1( )
1 1 1 2( , , ) r rt z v C z Ctψ +≤ +  

( )( ) 2
1

1

( )1 2
1

1

( , . ) ( )

   ( ) , 2, ,

i jj i j i

i

i ji

i

i r rr r
i j

j

i r rv
j

j

Ct z v C M z t
M

CC M z t i n
M

tκ t κ
κ

t

κ

ψ
++ −

=

+−

=

≤ +

≤ + =

∑

∑ 

      

(10) 
where 1 2, 0, 0iC C ν≥ > are some constants.  

Step1.  We first construct a state feedback  controller for the 
nominal nonlinear system of (8) 

12 , 1, , 1, ,i np p
i nz Mz i n z Mv y z= = − = = 

         (11) 

where 1
oddip R≥∈ for 1, , 1i n= − . Following [26], one can 

construct a state feedback controller globally stabilizing system 
(11) in the following form: 

[ ] [ ]
1

11

1
( )

n
n in

rn
r rr

n n i i
i

v z z
µ

µ µµβ ξ β
+

++

=

 
= − = −  

 
∑   (12) 
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where oddRµ ∈  is such that { }1max 1,i n irmτ ≤ ≤≥ +  

, 0 ( 1, , )i n i i i nβ β β β= > = > are the appropriately 
determined controller gains and nξ is determined recursively 
via  

[ ] 11
1 1 1 10,                    

rrz z z
µµξ∗ ∗ = = −    

[ ] [ ]

[ ] [ ]

22 22
2 1 2 2 21

11

,

, .ii ii

rr rr

rr rr
i i i i ii

z z z

z z z

µµ µµ

µµ µµ

β ξ ξ

β ξ ξ

∗ ∗

∗ ∗
−−

 = − = −  

 = − = −  

       (13) 

Further, one can construct a homogeneous observer 

1 2ˆ ˆ ˆ ˆ[ , , , ]T n
nz z z z R= ∈  for system (11) in the form 

[ ]
[ ]

2 11

11

2 1 2 2 1 12

1 1 1

ˆ ˆ,       

ˆ ˆ ˆ, , 3, ,i ii

r rp

r rp
i i i i i i i

ML z z L z

ML z z L z i n

η η

η η −−
− − −

= − = +

= − = + =






             

(14) 
where 1 1ẑ z y= = and 0 ( 1, , 1)sL s n> = −>  are the observer 
gains to be determined later. Then, by certainty equivalence 
principle, we can replace iz  with ˆiz  in (12) and obtain an 
output feedback controller  

[ ] [ ]
1

11

1
ˆ ˆ( )

n
n in

rn
r rr

n n i i
i

v z z
µ

µ µµβ ξ β
+

++

=

 
= − = −  

 
∑    (15) 

where 1 1ẑ z=  and 1 2ˆ ˆ ˆ ˆ[ , , , ]Tnz z z z=  . 

Now, define 

[ ]

( )1 1

T
1 2

T
1 2 1 2 12

: , , , , ,

( ) : , , , , , , , , ,n

n n

p p
n n n n

Z z z

F Z z z v z f f

η η

η η−
+ −

=

 =  

 

  

  

(16) 
where 1 2 2 3 2 1: , : , , :n n n nf f fη η η+ + −= = =  

 . Then, the 
closed-loop system (11) with the output feedback controller 
(15) can be rewritten in a compact form as 

( )1 1
T

1 2 1 2 12( ) , , , , , , , , ,np p
n n n nZ F Z z z v z f fη η−

+ −
 = =  



   . 

(17) 
Moreover, it can be verified that ( )F Z is homogeneous of 
degreeτ with dilation weight 

[ ] [ ]
1 2

1 2 2 1 1 2 1 2 1

for , , for , ,

, , , , , , , , , ,

n n

n n n

z z

R R R r r r r r r
η η

− −∆ = =
 

  

 

.  (18) 

Then, with these results and notations, the following 
proposition can be obtained [26]. 

Proposition1.  The observer gains 0, 1, , 1iL i n> = −>  and the 
controller gains 1, , 0nβ β >>  can be recursively determined so 
that the closed-loop system (11) with (15) admits a Lyapunov 
function ( )V Z for system (16) such that 

(i) ( )V Z  is positive definitive and proper with respect to Z  

(ii) ( )V Z  is homogeneous of degree 2µ τ− with dilation (18) 

(iii) the derivative of ( )V Z  along (11)-(14)-(15) satisfies 

2( ) ( )V Z F Z Z
Z

µγ ∆
∂

≤ −
∂

                        (19) 

where 0γ > is a constant, 2 1 2
1

in r
iiZ Z−

∆ =
= ∑  and 

( 2 )1
1 1

( 2 )1 1

(2 )

2 1

[ ] (2 )
1 1[ ]

2

[ ] [ ]

[ ] , .

ii
i i

i

r ri i
i

i i
r ri i

i

n n rz r r
n i iz

i i
n z r r

i i i i i
i

V V U s z ds

s ds L z
µ τ

µ τ

µ τ µ
µ µ

µ τ

γ
γ γ η

∗

− − −
− −

− − − −

− −
∗

= =

− −
− −

=

 = + = − 

 + − = + 

∑ ∑∫

∑∫
 

Step2. Next, an output controller archiving the practical 
tracking for the entire system (1) will be constructed using the 
coupled controller-observer design method [26] with the result 
in the first step.  

Using the notations (7) and (8), it is easy to see that the 
closed-loop system (8) with (15) can be written in a compact 
form as 

( ) ( ) ( ) ( ) ( ) T
1 2 3, , , , , 0, , 0nZ MF Z ψψψψ   = + ⋅ ⋅ ⋅ ⋅  

  .  (20) 

     Now, it follows from Proposition1  that there exist suitable 
observer gains 0 ( 1, , 1)iL i n> = −>  and controller 
gains 0iβ > ( 1, , )i n=   which ensure the existence of a 
positive definitive and proper Lyapunov function ( )V Z with the 
homogeneous degree 2µ τ− satisfying 

2( ) ( )  for some 0V Z F Z Z
Z

mγ γ∆
∂

≤ − >
∂

.               (21) 

Hence, the time derivative of ( )V Z along the trajectory of (20) 
satisfies 

( )2

1

( )( ) .                 (22)
n

i
ii

V ZV Z M Z
Z

µγ ψ∆
=

∂
≤ − + ⋅

∂∑  

Further, using (10), one obtains 

1 2

2

( ) ( )1
1 1 2

1

( )

( )           i ii
n

r r r r

ii

V Z M Z

V ZC M z z
Z

µ

ττ n

γ ∆

+ +−

=

≤ −

∂ + +∂∑



 

( )
2

1

1 ( ) .i i

i

n
r r

i
ii

V Zz C
ZM

τ
κ

+

=

∂+ + + ∂∑    (23) 

Since, by Lemma2 and Proposition1, ( ) iV Z Z∂ ∂  is 
homogeneous of degree 2 irµ τ− − , the term 

  ( )1 2 ( )( ) ( )
1 2

( ) i ii i r rr r r r
i

i

V Z z z z
Z

τττ  ++ +∂
+ + +

∂
    (24) 

is homogeneous of degree 2µ , and hence it follows from 
Lemma1 and Lemma2 that for each 1, ,i n=   there exists a 
constants 0iλ > such that  

( )1 2 ( )( ) ( ) 2
1 2

( ) i ii i r rr r r r
i i

i

V Z z z z Z
Z

τττ  µλ++ +
∆

∂
+ + + ≤

∂
 . 

(25) 
Furthermore, it follows from Lemma1 and Lemma5 that there 
are positive constants 1 2 2, ,a a a  such that 
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( ) ( ) ( )( )
( )

( )

11 1 1

1 1

2 2 2 ( )1 2
2 1

1

2 2 ( )
2

2 ( )
2 1

2 2 ( )
2

( )

,
2

( )

, 2, ,

iii i i

i i i

rr r r

r r

rr r

i

r

V ZC a M Z M
Z

M Z a M

V ZC a M Z M
Z

M Z a M i n

τµ τ µ τ µ τµ

µ µ ττ

τµ τκ κ τ

µκ µκ τ

γ

+− − − − − +
∆

− − − +
∆

+− − − +
∆

− +
∆

∂
≤

∂

≤ +

∂
≤

∂

≤ + =


 

Now, substituting (25) and the above into (24) leads to 

1 1

21
1

1

2 ( )(2 ) ( )
2

2

2
1 2

( ) ( 1)
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 (26)  

where   ( )2 2 2max ,a a a=  ,  
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(27) 

both of which are positive and monotonically decreasing to zero 
as M increases indefinitely. 

Next, it will be shown that (26) implies the existence of a 
gain 1M ≥  which achieves the robust practical tracking for 
system (1). Since ( )V Z is homogeneous of degree 2µ τ− and 
positive definite, it follows from Lemma2 that there are two 
constants 2 1 0σ σ≥ > satisfying 

2 2
1 2( )Z V Z Zµ τ µ τσ σ− −

∆ ∆≤ ≤ .                          (28) 

Now, define  

11 ( ) 0
2

M G Mγ 
= ≥ − > 

 
M ,                            (29) 

and take an arbitrary M ∈M . Then, (26) together with (28) 
leads to the inequality 

2 (2 )
2( ) ( ) ( ) ( )V Z M V Z G Mµ µ τκ −≤ − +             (30) 

where 
2 (2 )

1 2( ) ( ) 0
2

M G M µ µ τγκ σ − − = − > 
 

.              (31) 

First, it will be shown similarly as in [5] that the state ( )Z t of 
closed-loop system (21) is well-defined on [ )0,+ ∞ and 
globally bounded. Since ( ) 0Mκ > is strictly monotonically 

increasing to 2 (2 )
2 0µ µ τγσ − − > as M → ∞ and 2 ( )G M is 

positive and strictly monotonically decreasing to zero 
as M → ∞ , it is easily seen that, for any given 0ε > , one can 
choose a sufficiently large M ∈M so as to satisfy 

( )1 21 (2 )
1 22 ( ) ( )G M M µµ τσ κ ε− − < .           (32) 

Next, introduce a subset by 

( )( ){ }2 22 1 2 1
2( ) 2 ( ) ( )n nZ V Z G M M Rµ τ µκ −− −Ω = ∈ ≥ ⊂  

(33) 

and let ( )Z t be the trajectory of (20) with an initial state (0)Z . 
Suppose ( )Z t ∈ Ω  for some [0, )t ∈ ∞ . Then it follows from (30) 
that 

2 (2 )
2

2

( ( )) ( ) ( ( )) ( )
( ) 0

V Z t M V Z t G M
G M

µ µ tκ −≤ − +
≤ − <



       (34)  

This implies that, as long as ( )Z t ∈ Ω , ( ( ))V Z t is strictly 
decreasing with time t , and hence ( )Z t must enter the 
complement set 2 1nR − − Ω  in a finite time 0T ≥ and stay there 
forever. Therefore, one can obtain the following relations: 

[ )

( )( )
0

2 2
2
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(35) 

which together with (27) lead to 
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(36) 

for 1, , 2 1i n= − . Thus, the solution ( )Z t of system (20) is 
well-defined and globally bounded on [ )0,+ ∞ .  

Next, it will be shown that 

1( ) ( ) ( ) , 0ry t x t y t t Tε= − < ∀ ≥ > .                   (37) 

This is easily shown from (27), (34) and (31) as follows:  

( )
( )

1

1
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σ κ ε
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= ≤
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          (38) 

Finally, since the choice of M ∈M depends on 0ε > , the 
finite time 0T > depends on 0ε > . Further, it is obvious that 

0T > is dependent on each trajectory of (20), or equivalently, 
on each initial state (0)Z of (20). Therefore, the finite 
time 0T > satisfying (36) is dependent on both 0ε > and (0)Z , 
i.e., : ( , (0), (0))T T xε ζ= . This completes the proof of 
Therorem1.  
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IV. CONCLUSIONS 
In this paper, an output feedback tracking controller for a 

class of high-order uncertain nonlinear systems was presented 
under weaker condition.  It was shown that the global practical 
tracking problem is solvable using the homogenous observer 
and controller, which can be explicitly constructed. First, we 
designed an output feedback controller for the nominal system 
without the perturbing nonlinearties.  Then, we utilized the 
homogeneous domination approach by introducing an 
adjustable scaling gain into the output feedback controller 
obtained for the nominal system.   Further, it was also shown 
that an appropriate choice of gain will enable us to globally 
track for a class of uncertain nonlinear systems in finite time. 
Finally, the proposed approach can also widen the applicability 
to a broader class of systems. 
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