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Abstract— This work is devoted to the asymptotic solutions of
integral boundary value problem for the Inter-linear second order
differential equation of Fredholm type. Studying an integral boundary
value task, obtaining solution assessment of the set singular perturbed
integral boundary value problem and difference estimate between the
solutions of singular perturbed and unperturbed tasks; determination
of singular perturbed integral boundary value problem solution
behavior mode and its derivatives in discontinuity (jump) of the
considered section and determination of the solution initial jumps
values at discontinuity and of an integral member of the equation, as
well, creation of asymptotic solution expansion assessing a residual
member with any range of accuracy according to a small parameter
by means of Cauchy task with an initial jump, at that selection of
initial conditions due to singular perturbed boundary value problem
solution behavior mode and its derivatives in the jump point. In the
paper there applied methods of differential and integral equations
theories, boundary function method, method of successive
approximations and method of mathematical induction.

Keywords—Asymptotic solutions, differential equations, integral
boundary problem, integro-partial differential equations, method
substantiation, singular, small parameter. About four key words or
phrases in alphabetical order, separated by commas.

I. INTRODUCTION

HEME actuality. Overall interest of mathematicians in
singular perturbed equations determined with the fact, that
they function as mathematical models in many applied tasks,
connected with processes of diffusion, heat and mass transfer,
in chemical kinetics and combustion, in the problems of heat
distribution in slender bodies, in semiconductor theories,
quantum mechanics, biology and biophysics and many other
branches of science and engineering. Singular perturbed
equations is an important class of differential equations.
Theory of singular perturbed equations developed in the 50-
th, starting with fundamental works of an academician of
Russian Academy of Sciences Tikhonov A.N [1-3],
considering the qualitative theory of ordinary differential
equations with small parameter upon derivatives. Tikhonov
A.N. proved the theorem on limit transfer, establishing a
connection between the solution of degenerated (unperturbed)
problem, obtained from the initial task upon a small parameter
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similar to zero and from solution of initial singular perturbed
tasks for the systems of nonlinear ordinary differential
equations.

Member-Correspondent of RAS Lyusternik L.A. and Vishik
M.l. [4,5] elaborated effective asymptotic technique of
singular perturbed linear ordinary differential equations and
the ones in partial derivatives; Vasiljyeva A.B. [6] developed
asymptotic technique of solution of initial problem researched
by Tikhonov A.N. RAS Member-Correspondent Imanaliyev
M.I. [7] elaborated asymptotic technique of solution of
singular perturbed systems of nonlinear integro-partial
differential equations, which gained further development in
many subsequent works and got named the boundary function
method. At present, there are various modifications of the
method thereof in the works of Trenogin V.A. [8], Butuzov
V.F. [9] and the others. In particular, there offered an angular
boundary function method for equations in partial derivatives
in the areas, the boundaries of which contain angular points.

Il. ASYMPTOTIC SOLUTIONS OF INTEGRAL
BOUNDARY VALUE PROBLEM

Setting up a problem. Let us consider the following
Fredholm-type integro- partial differential equation

L.y=gy"+A)y +B()y=

B b , 1)
= F )+ [[Ko (t, ) y(x,8) + Ky (£, X)y'(x, )] dx
0
with integral boundary conditions
1
y(0,6) =g + [ oo (V) y(t, ) + by ()y'(t, &)] t,
0
| @)
y(L &) =ay +[[co(Oy(t.e) + ey (M)y'(t, &) dt,
0
where & >0- a small parameter, a,,1=0,1 - certain

acquainted  permanents,

A(), B(t), F (1), b (1), ; (1),
K. (t,x), i=0,1 - certain acquainted functions, defined in
the domain D= (0<t <1,0< x<1)[10].

Solution of Y(t,&) singular perturbed integral boundary
value problem (1), (2) at & small parameter vanishing will not
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tend to a solution Y (t) of an ordinary unperturbed (singular)
task, obtained from (1), (2) at £ =0:
Ly =AY +BMOYy=F(t)+

1
+ [ [Ko (6,700 + Ky (&, ) 7' ()] dx
0

with boundary conditionat t =0 orat t =1, but tends to the
solution Y, (t) , changed, unperturbed equation
LoYo(t) = F(t) + A(t) +

b , , ©)
+ [ Kot X)yp () + Ky (6, X) yp ()] dx
0
with changed boundary condition at the point t = 0;
1
Yo(0) =2y +Ag + [ M)y () + b O)Yo®]dt  (4)
0
or with changed boundary condition at the point t =1:
1
Yo =2y +A; + [[co (1) Yo () + ¢ (t) o ()] dt (5)
0

Assume, that:

I. Functions A(t), B(t), F(t),b; (t),c;(t) u K;(t,x),i=01 are
sufficiently smooth in the domain D=(0<t<1,0<x<1);
1. Function A(f) at the segment [0,1] satisfies inequation:
A(t) >y =const >0,0<t<1;

I1l. Number A =1 at sufficiently small &
of the kernel J(t,s, ) :

J(t,s,&) = J(t, s)+0[a+e( IA(X dx]}

is not a proper value

A(t) Kalt S)+I Ko (t X)K (%, 8) + Ky (£ )K (%, s)]dx}o[ﬁe[s{”x dx]}

where the function K(t,s) expressed with a formula

K(t,s) = exp(j—wdx}

s AK)
IV. True an inequation:
1
A% =1—[[(bg (s)K (5,0) +b; (5)K'(5,0)) +
0

+ (bl(s) + }(b0 (K (t,s) + b, (DK'(t,s) dt)ﬂa(s) ds =0,
where function o (t) has a view
1
o(t) = p(t) + [R(t,$)p(s)ds ,
0

and function R(t, s) —kernel resolvent J (t,s), and function
@(t) may be represented as

olt) = I [Ko (t, x)K (%,0) + Ky (t, X)K'(x,0)] dx

At)

V. True an equation:
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R, 0K (x0) 4 ) @0
A(X) A(0)

Ki(s.0) } R( 0K (60) o Ve Lt —
AS) AWM
dX]+

1 [Ki(t0) +i R(t, X)K, (x,0)
A(0)

A 5 AKX
R(s, x)K(x,0)

dx}is}dt #0,
A(X)

1(SYO)+‘1[
AS)

Al = N[K(10)+j|<(1s)a(s)ds]+ (O)IK( )[

7£co(t){N[K(t,0)+£K(t,s)o-(s)ds] A(O)jK(t s)[

—}cl (t){N(K '(t,0) + o (t) +jl. K'(t, s)a(s)ds}-
0

K1(s,0) +-1[

A(O) oK [ AG)

where

1+0y(0) 1
- A { Alzt)) AQ) {b1(5)+j by (1)K (t,5) + by (K (t, 3))dt}
RS 0K (X0) oo

[ Kis.0) } g
As) 5 A

With reference to 1.7, section 1 it can be seen, that solution
y(t,&) of integral boundary value problem (1), (2) at the

point t =0 is limited and its first derivative y'(t,&) at the

point t=0 has unlimited growth of the order O(EJ at
&

& — 0. Hence, for creating the boundary value problem

solution asymptotics (1), (2), let’s preliminarily consider an

auxiliary Cauchy problem with an initial jump, i.e., consider an

equation (1) with initial conditions at the point t = 0:

1
y(0,2) =ag + [ oo ()y(t, ) + by (Dy'(t, £)] dit (6)
0
y(0.2) ==,
&
where o = a(g)— regularly dependent on & permanent,
represented as:
a(g)zao ooy + o, +- (7

Let us define a(g) in such a way, that the solution

y(t,a,&) of the problem (1), (6) was the solution of
boundary value task (1), (2), i.e., to fulfill the second condition

(2):
1
yLa,8)=a +[[co Oyt a,8) + i (V)Y (e, 2)]dt.  (8)
0

Creating asymptotic solution of Cauchy problem with an

initial jump. Solution y(t,&) = y(t,a,&) of Cauchy
problem (2.1), (2.6) we will search as the sum:
yt.e) =y, (O +w,(2), 9)

where 7=t/& - boundary-layer independent invariable,
Y. (t) -solution’s regular part, defined at the section [0, 1] and
W, (7) -boundary-layer part of the solution, defined atz > 0.

Preliminarily multiply equations (1) by & and further insert
formula (9) into equation (1). Thereupon we obtained:



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

2L (1) + AV (1) + B)Y, () + 0, () + Aler)W, (7) +

1
-MMHMAﬂ=§OHfHMGJWA@+M&@%Uﬂw+

+gj{|< (t, x)w( ]+ K, (t, x)w[ ﬂdx

where the point ()— a derivative per z beyond integral
members and a derivative per x in integral members. If we

OSsﬁizoo

make replacementx = &5, dx = &ds, , then
&

from here it follows that:

&2y5(0) + ARV, (1) + BO)Y, )+, () + AW, (7) + B(er)w, (7) = (10)

= eF(t) + g'lf[KU(t, )Y, (X) + Ky (t, X)y5 (x)] dx +
0

+ g]o[d(o(t,ﬁ)wg(s) + K (t, ss)W, (s)] ds
0

And now let’s write out separately the equations with
factors, dependent on t, and separately equation with factors

dependent on 7 [11]. Then from (10) we obtain following
equations separately for y_ (t) and separately for w_(t) :

&y, (1) +ADY: (1) +BOY. (1) = F(t)+

+?Kan@y4n+Kun@yxmLW+ (12)
+ ]O[gKO (t, &)W, (9) + Ky (t, s)W, (5)] ds
0
W, (2) + A(eT)W, (z) + éB(eT)W, () = 0. (12)
Let’s insert (9) into initial conditions (6), (7):
Y. (0)+w,(0) =a, +j[bo(t)yL (1) +by (1)y; (1) + by (D)W, ( j+ by (eT)W, (;ﬂ dt=(13)

:[r L dt-sdr o< rgl:w]:ao +j[b0(t)y5(t)+bl(t)y;(t)]du
& & 0

+ T[&bo (eT)w, (z‘)+ by (e7)W, (7)] dr,
0

yg(0)+ w,(0)=1 [a0+sa1+s @+
Solutions Yy, (t) and W, (7) of equations (11) and (12) we
will search as following series in terms of a small parameter & :
Ve (®) = Yo + ey () + 2y, () +--,
W, (t) = W (t) + ewy (t) + W, (t) +-+-.
Functions A(er), B(er), bj(er), and K;(t,es) expand in
series of Taylor development:

(14)

A(er) = A(0) + A (O) TH+...+—= A"(O) (e7)? +.
B(er) = B(0) +$er +. B”(O) = (e1)? +.
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b (s7) = b(0)+b(0) +bi"(°)2(ff)2+..., i—01 (15)
K, (t,5) = K, (1,0) + 0O +@(as)2+... i=0.1.

Inserting transformations in due form (14), (15) in the
equations (11), (12) we obtain

(Y5 ) + ey +£7y3 (0 +..) + ADY (1) + &1 (O + 7Y, () +-) + BO(YoO) + &1 (1) +
(16)

+ety, )+ = F(t+f[ X006 (0 + 8100 + &7y, () +--) + Ky (L XY () +

+ay1(X) +&2y5(x) +~~-)}1>< + j{e[Ko(t,O) +&sKq (t,0) + (&)* I;g(t,O) +“.]X
5 ]

x (wo(s) F W (S)e + W, (S)e? + )+ K, (t,0) + &sK{ (t,0) +(6$)2}2<¢+m]x

x \Vitg (5) + Wiy (8) + iy (5)2 + - )| ds;
{ ]

Vilg (2) + eW(z) + &2y (2) + - + (A(0) +$rs+m(rs)2

B(O) LB'O
o (ze)?

£)°+..)%

+..)%

17)

x(Wo(r)+ew1(r)+g W, (7) +--) + (B(0) + ——=
x (Wo (2) + ew, (7) + £2 Wz(r)+~-)70.

Similarly insert transformations (14),

conditions (13). Thereupon we obtain:
Yo(0) + &1(0) + 7Y (0) + -+ Wy (0) + ewy (0) + 2w, (0) +--- =

(15) into initial

1
=ap +I[bo(t)(Yo(l)+6Y1(l)+62)'z(t)+“‘)+bl(t)(Y(u(t)HYi(t)+SZY'2(1)+“')]dt+ (18)
0

0(0)

+T{ [[bo(0)+bo(0)£r+ (e7)2 +- ](Wo(TH‘EWI(T)+€2W2(r)+~.)]+
0

+ [bl(O) +b{(0)er + b1(0)

(e7)* + )(Wo(f)+M1(T)+62Wé(f)+---)}dr,

Yo(0)+ey1(0)+ & Y'z(t)+"'+;(Wo(0)+éW1(0)+62W'z(0)+"-):
zi(ao +eay +&2ay +-).
&

We compare factors at like powers & . Thereupon from (16)
we obtain
) 0 , (190)
A®)YH () +B(1)Yo (1) = F O + [[Ko &, x) Yo (9 + Kyt )5 (0] dx + Aq 1),
0

Ak (1) + B« (1) = Fe (1) +

1 (19y)
+ [[Ko (6. X)yi (9 + Ky (6 x) v 0] dx+ Ay 1), k=1
0

where

%®=j&@mmsms MGFI&&@M@N&

Fe () =-yk 1(‘)*JH (t,0)wy 4 (5) + 5K (t.0)w 2(5)+*K (t.0)wy 4 (5) +

(20)
- (E:)! KD 00w, (s)]+[sK1’(t,O)wk,l(s)+32—! K{ (O » (S)+”'+S|<T Kl‘k)(t,o)wo(s)ﬂ ds,
k>1.
Similarly, dealing with (2.17) we will have:
Wo (2) + A(0)Wo (7) =0, (210)
W, (7) + AW, (z) = D, (7), (21))
where a function @, (z) is expressed throughw; (z), i<k:
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Dy (7) == A OV () +-+ 7~ A(“)(O)wom} (22)

—[BO)Wy 1 (7) + B'O)Wje_p (£)4 -+ —— B(k 1)(0)w0(1)} k>1.

(k nt
Now we compare in (2.18) the factors at like powers & :
¥(0) +w, (0) = a0+j' by (1), () +b, (£) o (t) ] dt + b, (0)[w dz, Wy(0) = a, (230)

(230

1 © o
Yic (0) + Wi (0) = [[bo (©)yic (1) + by (©)yic ()] dt + b, (0) [ vi () + [ [(bg O)wies () +
0 0 0

(D (0)
(k-1)!

k
D (OW () +ooo+ wo(r>]+ [zbi(O)v‘vk,lm *e +’k—!bé“<0>v'vo(r>ﬂ dr

Yt (0) + W, (0) = &, k>1.
Let us consider the problems (19,), (21,) and (23,), defining
zero-order approximations Y, (t) and w, (7). It follows
from here, that supplementary condition (23;) is insufficient
unambiguous definition Y, (t) and W,(z) from equations

(190), (21y). For zero-order approximation unambiguous
definition there is needed three initial conditions, and initial
conditions (23,) consist of two conditions. For one missing
initial condition we use a condition of boundary-layer

solution W, (7) , i.e.,
Wy () =0, Wy (0) = 0.

For this purpose, we integrate an equation (21,) according to
7 from 0 to oo. Thereafter, owing to boundary layer rating
W, (7) we obtain

W (0) + A(0)w, (0) = 0. (24).
From that expression with account of initial condition (23,) for
W, (7) we obtain: &g + A(Q)w, (0) =0
From here we will find the missing
forw, (7):

initial condition

wo (0) = A(O) (25)

Let’s refer to the equation (19,) with an initial condition (23y),
(25). As the function A, (t) , entering into an equation (19), is
defined with the formula (20), then in virtue of boundary layer
rating W, (7) and (25) we have:
80(1) ==Ky 10wy 0) = - K, (10)
Thus, equation (19¢) with an initial condition (23;) due to
(25), (26) will be as follows:

1
A)YH () + B() Yo (t) = F(X) + Ag (1) + [ [Ko (t, X) Yo (X) + Ky (t, X) v (¥)] dx
0

(26)

1
Yo(0) =ag +Ag + [ by (0)yo () + by (©)yo ()] dt,  (27)
0
where
(1+b,(0))
0=~ %o
‘;(0) (28)
0
Bolt) =gy K00
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By this means, zero-order approximation Y, (t) of the

solution regular part vy, (t), 0<t<1 is defined from

integro-differential equation of Fredholm-type first order with
an integral initial condition (27), and values of initial jumps at

the point t =0 and an integral member of the equation
Ay, A, (1), entering into the problem (27), are defined from

the formula (28), and zero-order approximation W, (7) of
boundary layer of the solution w,(z), >0 is defined

from the equation (21,) with initial conditions (23,), (25) [12]:
W (7) + A(O)V'vo (1) =0,

Wo(0) == &
Now, let us consider the problems (19,), (21x), (23x), defining
k-approximation vy, (t), w,(z) of the solution y(t,e) of

Cauchy task with an initial jump (1), (6). From here, it follows
that supplementary condition (23y) is not enough for

unambiguous definition of y, (t) and W, (7). To define the

(29)

Wy (0) = .

missing initial condition we use the condition of boundary
layer rating solution W, (7):

Wy (o0) = W, () =0, k>1.
We integrate an equation (214) according to 7 from 0 to oo

and use the boundary-layer rating condition. Then we obtain
[13]

W, (0) + AQ)w, (0) = —]Ocpk (r)dr, k=1 (30)
0

If to take into account an initial condition (23,) for w, (0),

then from here we have an initial condition for w, (7) :

wkm)=—7$5{ak—y&1w)+T®k@xn} k=1 (31)
0

Let us point out, that improper integrals, entering into (2.30),
(31), converge (see below). The problem (19,), (23,) due to

the function boundary layer rating W, (7) has a view:

A)Yk (1) +BO) Yk (1) = Fe () + Ay () +

i 32
+[[Ko (6 9y (9 + Ky (6, )Y} (9] dx (32)
0

k>1.

1
Yic(0) = ~(L+Dby (0)wi (0) + [[by ©)y () +by ()i O] dt + 2.,
0

where F (1),
presented as:

A (t) expressed by formulae (2.20) and a, is

Tk—lbék—l) ©)
(k=1)!

©
a =]

0

{bo O)wi1(7) + Do Q)W () +--- + Wo (1)] + (33)

k
[rbl(O)wk 4@+ b1<0)wk 2(2) + -+ b Oy (T)H d
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Therefore, the task (21y), (23,) for W, (z) with account of
(31) receives a view:
Wy (7) + A(O)W (7) = D (),

wy (0) =- ay = Yia(0)+ T‘Dk () df} ' (34)
0

Yi1(0),

L
A(0)

W, (0) = o — k>1,

where @, (7)expressed by the formula (22) [14].

Thus, k-approximation vy, (t), k>1 of the solution
regular part y.(t), 0<t<1 defined proceeding from the
problem (32), k-approximationw, (), k >1 of the solution
boundary-layer part w_(z),
(34).

Determination of solution asymptotic coefficients of
Cauchy problem with an initial jump

Let us consider the problem (27) to determine zero

approximation Y, (t) of the solution regular part y (t) . From

>0 is defined from the problem

here, we have the following task:

Vs ) +% Yo(t) = Fo(t), (35)
Yo(0) = ag +Ag + g [bo (®)yo (1) + by (©)yp ()]t
where the function F; (t) has a view
Fo(t) == [F () + A0 0]+ —= A0 | (1Ko €076 00+ K, €00y ]ax: (36)

A(t)
and Agy,Ay(t) expressed by formulae (28). Solving the

equation (35) according to the known formula for the first-
order linear equation, we obtain,

t
Yo(t) = Yo (0)K(1,0) + [ K(t,8)Fo(s)ds,
0

where the function K(t,s) has a view from the condition Il1.
We insert formula (37) into (36):

Fol) = A (F(t)+A (t))+—jK (t, x)[yo(O)K(x 0)+jK(x s)FO(s)ds}dXJr

(37)

(t)

TAD

+ ¥o(0) T
At) o

JKo @)K (x,0) + Ky (6, )K'(x, o)]dx+ [}Ko(t,x)dxjK(x,s)FO(s)ds+
0

At)
+ j K, (t,s)Fo(s)ds + } Ky (t, x)dxj K'(x,8)F, (s)ds} .
0 0 0

Applying Dirichlet formula for double integral of the formula
(38) and introducing indication:

fo(t) = ()(F(t)+AO(t))+ yO(o)j[K (t, K (x,0) + Ky (t, X)K'(x,0)]dx (39)
we obtain the following mtegral equation of Fredholm
1 [
Fo(t) = fo(t)+ [ I (t,5)Fy(s)ds, (40)
0

where the kernel J(t,s) has a view from the condition I11. As
the kernel J(t,s) according to the condition I11 is not located
on the integral equation spectrum (40), then integral equation
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(40) at the section [0,1] has the only solution F,(t) and is
expressed by the formula

Fo(t) = fo(t)+ } R(t,s) fy(s) ds, (41)
0

where R(t,s) - kernel resolvent J(t,s). Let us insert now

(39) into (41):
Folt) = ¥o(0) 7

PGCRROR

A(t)
¥o(0) ¢
LA O 4
+jR/§ j) (F(9)+A5)) ds + y"( )j[ Ko (6K (40) + Ky (t, K (x,0)] dx + yo(O)jR(t j) dsx

R(I’j)(F(s)JfA(s)) ds+

A(s)) +

[(Ko(s X)K(x,0) + Ky (s, x)K'(x, 0))dx} ds _—(F(t)+A(t))+

><I(KO (s, X)K(x,0) + Ky (s, X)K'(x,0)) dx :T(F(t) +AM)+]
0

+ yO(O)j[A(t) (Ko (t, x)K(x,0) + Ky (t, x)K'(x, 0))} dx +
+f R/S j) (Ko (5, XK (x,0) + Ky (5, K (x, 0))ds} dx.
Subsequently we have
Fo(t) = o(t) + Yo (0)a(t) , (42)
where the function @(t) is expressed by the formula
)= 55 FO+ 20+ [ [ E - aen s (43)

and the function o (t) is presented from the condition IV.

Now the formula (37) in virtue of (2.42) is presented in the
form of the formula

yo(t)zyO(O){K(t,O)+}K(t,s)o—(s)ds +}K(t,s)w(s)ds- (44)
0 0

For that

purpose, the formula (44) is inserted into initial condition (35).
Then we will have:

1
Y0 (0) = ag +Aq + Yo (0)f [(bg (5)K (5,0) + by (5)K '(5,0)) +
0

Let’s define unknown initial condition Yy, (0) .

+ (bl(s) +} (b (WK (t, ) +b (1)K (L, 9)) dt)o-(s)] ds +

1 1
+ {bl(s) + [ (bo (K (t,5) + by ()K (L, 5)) dt}a)(s) ds
0 S
Or
Yo (0){1—}[@0 (s)K(s,0) + b, (5)K'(s,0)) + [bl(s) + }(b0 (t)K(t,s) +b (HK'(t, s))dt]};(s)ds} =
0 s

—ay+Ag+ }{bl(s) + }(bO OK(E,5)+ by (OK(t, s))dt}a)(s)ds :
0 s
Thereupon we obtain the initial condition Yy, (0) :

¥o(0) =
Ag

—{aowﬁj[ (s)+}(b0(t)K(t,s)+b1(t)K’(t,s))dtja)(s) ds] (45)
where AO # 0 is expressed by the formula from the condition
IV. If an expression (45) is inserted into (37), we obtain the
solution Yy, (t) of regular part zero approximation of Yy, (t)

solution:

JIKo (t, XK (x,0) + Ky (t, X)K (X, 0)]dx+jR(t s) x
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Yo(t) = *|:ao +Ag + J[bl(s) + [(by (K (t,5) + by (K (t,5)) dt]w(s) ds} x

x K(t,0)+jK(t,s)F0(s) ds (46)
0
or with account of (42), (45) we have
yo(t) = —{ao +Ag+ j'(bl(s +j(b0 (DK (t,5)+by (5)K'(t,5)) dt]a}(s) ds} X
(46)

x[K(t,O) +[K(t,5)o(s) ds) +[K(t,s)a(s) ds »
0 0

where the function o(t) is defined by the formula from the
condition 1V, the function w(t) - from the formula (43), which
depends on Ay (t) and Ay, Ag(t) - from the formula (28).

Let us consider the problem (29) to determine zero

approximation W, (7),7>0 of boundary layer part
of W, (7) solution:
Wo(f)+ AW, (7) =0,
0)= 20 Wiy (0) = g . 47
Wy (0) = A(O) 0(0) =g (47)
Hence, directly follows
W (7) = age 0" (48)

Integrating the equation (2.48) with an initial condition (47),
we obtain

___ 70 2
Wo (7) AQ)
Therefore, zero approximations y,(t),w,(z) of solving

Cauchy problem with an initial jump (1), (6) are fully defined
and expressed by formulae (46), (49).

To create any approximations w, (z), k >1 of the solution
boundary layer part we turn to the problem (34). Let us
consider the problem (34) for k=1:

Wy (z) + AQOVI (7) = @y (7) ,

e A0 >0, (49)

1 o0
w, (0) = —m{% —Y0(0) + gqh(r) dr} ,
W, (0) =, — ¥, (0),
where the function @, (7) due to (22) and (49) has a view

@4 (7) = —[A (0)Vy () + BO)W, ()] = {rA (0)ezg + B(0) —} AT

A(0)
From here, it can be seen that the function @, (z) is the first

degree boundary-layer multinomial of Lyusternik-Vishik [15].
It follows that, improper integral, entering into an initial
condition, converged. It is possible to make sure that the

solution W, (7) of the problem thereof has a view:
wy () = L (r)e A7 2 >0,
where L, (z)—a certain multinomial as regard to 7 . Therefore,

the solution w;(z) is a boundary-layer multinomial of

Lyusternik-Vishik. Let us assume that, solution of the problem
(34) to (x-1)- approximation is a boundary-layer multinomial
of Lyusternik-Vishik
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wi(r) =L (r)e A7 i=1xk-17>0, (50)
where L;(r)—a certain known multinomial according to
T .then it is possible to prove by an induction method that the
solution W_(7) to the problem (34) is Lyusternik-Vishik
multinomial:

w, () =L, (c)e 2@ >0,
where L, (7) —a known multinomial as regard to 7 .
Now let us turn to the problem (33) with account of (50) to
definey (t), k >1 of a regular of the solution Y, (t) of
Cauchy problem with initial (1), (6):

1
A®)YL 1) +BO)Y, (1) = Fe () + A, O+ [ [Ko & x)Y, () + Ky (t, )y ()] dx
0

(51)

Y. () =a, +A, +[lb, )y, ®)+b,(t, )y, ®)]dt x 1
° (52)

where functions F,_(t), A, (t) are expressed by the formulae
(20)and @, A hasa view:

©

-

0

Hbo )W,y (7) + 0§ QO)W,_y () +... + b(“ (0w, (r)]

( -y

[z’ol(O)wK 1(r)+ bl(O)wK2(1)+ 4+ b(K)(O)WO(r)Hdrv (53)

_(A+b(0))
A0)
Having divided an equation (52) to A(t) and solved it we
obtained:

K

{ak -vy.4(0)+ T(DK (r)d r} k>1.
0

Ve =y OKLO) + [KLIFL()ds, (54
0

Where the function F,_(t) has a view:

F) = {F )+, (t)+j(K (30, (9 + Ky (6, x)y, () | - (55)

A(t)
We insert (54) into (55). Then for F_(t) we obtain integral
equation of Fredholm type (40):

F®=f.® +}J(t,5)|?,<(5)d5, (56)
0

where a constant term f,(t) has a view:

ft)= (Fe®+A ) +y, (O)J'(Ko(t X)K(x,0) + Ky (t, X)K'(x, 0))dx} (57)

A(t)
An integral equation (56) due to the condition 11 at the section
[0, 1] has the only solution by means of resolvent R(t,s) of

the kernel J(t,s):

F (1) = fK(t)+}R(t,s)fK(s)ds. (58)

0

Inserting (57) into (58), we obtain
Fo () = o)+ Y, (0)a(t), (59)

where o (t) has a view from the condition IV and the function

@ (t) is expressed by the formula
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(1) = — (F. (1) + A, (1) + | RE) (60)

A(t) o Als)
Now the formula (54) by virtue of (59) presented as

t t
y 0=y, (O)[K(t,O) + K(t,s)o-(s)ds} + [K(t,5)o, (s)ds - (61)
0 0

(Fe(s) +A,(s))ds -

Inserting (61) into an integral initial condition (52), we obtain
an equation for determining y, (0) :

A% y.(0)=a, +A, + }[bl(s) + }(b0 (HK(t,s)+b (H)K'(t, s)dt)}a),\. (s)ds -
0 s

As in compliance with the condition IV, the value A =0,

subsequently defining an initial condition Yy, (0) and

inserting it into the formula (54), we will have the solution
Y (t):

1
Ve ® ==
Ao

l:aK +A, +}[b1(s) +}(bO (K (t,5)+ bl(t)K’(t,s))dtJa)K(s) ds}K(t,0)+
0 s

+jK(t,s)ﬁK(s) ds (62)
0

or due to (2.59):
1 {ax +A }[bl(s) + }(bo(t)K(t, s)+by (HK'(t,3)) dtJa)K(s) ds}
0 S

t) = —
Ve () X

{K(w)+}K(t,s)o(s)ds}+}K(t,s)w,((s)ds, k>1, (62)
0 0

where a,,A, and o, (t) are expressed by the formulae (53)
and (60), and functions K(t,s),o(t) have a view from the
conditions 11, 1V.

Therefore, any regular part asymptotic approximations
Y, ([(),0<t<1xk>0 and boundary layer part
W, (r),7>0,x>0 of the solution y(t, &) of Cauchy problem

with an initial jump (1), (6) are constructed and expressed by
formulae (46), (49), (51) and (62) [16].
Lemma 2.1. Coefficients y, (t),w, (z),x > 0 of regular part

splittingat 0 <t <1 y,_(t) and boundary layer at >0 of
the function part W_(7) have following assessments:
v ) <c, =04,

d'w, (2)
dr!
where A(0) >0, C >0 a certain permanent, independent on ¢
and L(z)e A7 _Lyusternik-Vishik

multinomial.

Proof. Let us prove the assessments (63) by the method of
mathematical induction. First we will prove assessments (63)

for zero approximation Y, (t) and w, (7). Let us consider the

0<t<]

< CL(r)e™ 01 >20,xk>0" (63)

boundary-layer

solution W, (7) of the problem (47), which is distinctly
expressed by the formula (49):

o
A(0)

Wy (7) =— A0 >0,
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The function thereof is Lyusternik-Vishik boundary-layer

% (7) =1.

A0’
From here there directly follow assessments (63) for w, (7)
and Wy (z) [17].

Let us consider now the formula (46) and its derivative with
account of the function K(t, s) from the condition III:

multinomial of zero degree, i.e., C =

1 1
yo(t) = Alo{ao +Ag+ J’(bl(s) + J'(b0 (DK (t,s)+by (DK'(L,s)) dtj{o(s) ds:l x
0 0 z

CK(0) + Fy (1) + [ K'(1,S)Fo S) ds (64)
0

Herein A% #0 and A, are accordingly defined from the
condition IV and (28), functions F, (t), @(t) are accordingly
expressed by the formulae (42), (43), the function K(t,Ss)
takes the form from the condition Ill, and functions
b, (t),b,(t) and permanent a, derived boundary
conditions (2). From (46), (64) due to the condition | we
directly obtain values (63) for Yy, (t) and yg(t). Therefore,
values (63) have been
approximation Y, (t) and w, (7).

proved for zero

Let us assume, that assessed values (63) are true till (x-1)-
approximation inclusively. Let us prove assessed values (63)

for k-approximation Yy _(t) and W, (7). Proceeding from the
formula (51) we directly receive assessed values (63) for
W._(7) and W, (7). Let us consider the formula (62) and its
derivative

yL(t) = Alo{ak +A, +}[b1(s) +}(b0 MK () +b1(t)K’(t,s))dthK(s) ds}K’(t,O) +
0 s

0

+F(t) +jK’(t,s)|?K(s) ds (65)
0

where a,,A, and w,(t) are accordingly defined from (53)

and (60), and F, (t) is expressed by the formula (59).

Evaluating (62), (65) and taking into account the conditions I-
IV, (53), (59), (60), we obtain assessed values (63) for vy, (t)

and vy (t) . Lemma has been proved [18].

I1l. RESULTS

1.There have been created asymptotic Cauchy function
representations and boundary functions of an integral
boundary value problems by means of fundamental system of
singular perturbed linear like differential equation solutions.
There obtained Green functions, expressed with Cauchy
functions and boundary functions.

2.We obtained analytical solution representation of an
integral boundary problem.

3. We received in the space of continuous functions the
asymptotic per small parameter solution assessments of
integral boundary problem and it is stated that integral
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boundary value problem at discontinuity possesses the
phenomenon of zero order initial jump.

IV. CONCLUSION

Work’s outcomes represent a theoretical value. We obtained
asymptotic formulae for end problem solution Thesis’s results
can be applied in scientific researches on the singular
perturbed equation theory. Obtained asymptotic decomposition
solutions are applicable as initial approximations for numerical
techniques implementation.
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