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Control of the molten metal crystallization
process in the foundry mold

A. Albu, and V. Zubov

Abstract—The optimal control problem of the metal
solidification in casting is considered. The process is modeled by a
three-dimensional two-phase initial-boundary value problem of the
Stefan type. The mathematical formulation of the optimal control
problem for the solidification process is presented. This problem was
solved numerically using gradient optimization methods. The
gradient of the cost function was computed by applying the fast
automatic differentiation technique, which yields the exact value of
the cost function gradient for the chosen discrete version of the
optimal control problem.

Keywords—Adjoint problem, heat equation, optimal control,
Stefan problem.

I. INTRODUCTION

HE class of problems in which a material under analysis

transforms from one phase into another with heat release
or absorption is of great theoretical and practical interest. Such
problems arise in studies of many phenomena, among which
melting and solidification are the most important and
widespread.

The problems arising in practice do not reduce to the
description of processes involving phase transitions, but also
include control of these processes. Control of processes
involving phase transitions is interpreted as the choice of some
process parameters (controls) in such a way that the process is
as close as possible to a given scenario; for example, the
behavior of the liquid-solid phase boundary or a function of
temperature in some domain is closest to a required behavior.
An effective approach to solving this type of problems was
developed and applied in practice by the authors of this article.
The efficiency of the method is explained by the simultaneous
use of three basic elements.

First, during the solution of the initial-boundary value
problem that describes the process of heat transfer, the
statement of a boundary value problem in terms of temperature
is reformulated in terms of enthalpy. The reason for this is the
fact that, as one intersects the phase boundary, the temperature
changes continuously while the enthalpy undergoes a jump
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change.

The second element of this approach is a special iterative
algorithm proposed by the authors for solving nonlinear
systems of finite-difference equations obtained as a result of
approximating the initial-boundary value problem. The new
iterative algorithm is much more efficient than algorithms used
earlier: the modified Jacobi method and the modified Gauss-
Seidel method.

Optimal control problems for thermal processes with phase
transitions are usually solved numerically using gradient
methods. To ensure the efficiency of a gradient method, the
gradient of the cost function has to be computed to high
accuracy. The third element of the proposed approach is
connected with the fact that the gradient of the cost function of
the optimal control problem is calculated using the Fast
Automatic Differentiation technique ([1]). This method offers
canonical formulas that produce the exact value of the gradient
in a discrete optimal control problem. In [2] is formulated and
substantiated the statement that the time required to find the
components of the gradient of the objective function in optimal
control problems for thermal processes with phase transitions
by this method does not exceed the time of calculating two
values of the function.

The problem examined in this article also relates to the
problems of control of thermal processes with the phase
transitions. For several years the authors of this paper
investigated the different aspects of this complex and
practically interesting problem.

In [3] a mathematical model of metal solidification in the
considered setup was suggested, a finite-difference
approximation of the direct problem (of determining the
temperature at each point of the object and identifying the
solidification front) was proposed, and an algorithm for
finding the numerical solution of the direct problem was
described. In [4] the choice of a cost functional that models the
technological requirements for metal solidification was
discussed and optimal control problems for this process were
formulated.

In [5] the optimal control of metal solidification was
considered in the case where the mold has the simplest shape,
namely, a parallelepiped. In [6] and [7] new formulations of
the optimal control problem for the solidification process were
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proposed and studied. In [6] were considered three versions of
the new model of considered industrial setup in the case of a
mold of simplest geometry - a parallelepiped. In [7] the new
formulations of the optimal control problem are considered for
the case of a mold of complex geometry.

The present work is the final one. Here is represented the
complete algorithm, which is based on the indicated above
three basic elements, and with the aid of which the problem in
question was solved very effectively.

The problem under consideration models the solidification
of molten metal in casting. It is known that the quality of the
resulting casting depends on how the process of cooling and
solidification of molten metal proceeds. According to
numerous studies of this process, for a product of high quality
to be obtained, it is desirable the shape of the phase boundary
to be as close to a plane as possible and its speed to be close to
a prescribed one.

Fig. 1 represents the longitudinal projections of an actual
mold, which is filled with liquid metal. The mold and the metal

inside it are heated up to prescribed temperatures T, and

STATEMENT OF THE PROBLEM

Tinet » respectively. Next, the object (the mold and the metal

inside it) begins to cool gradually under varying external
conditions.

The solidification process is controlled using a special
industrial setup, which consists of upper and lower parts. The
upper part is a furnace with the object moving inside it. It is
modeled by two vertical parallel walls joined above by a
horizontal wall (“ceiling”). The walls and ceiling of the
furnace are heated up to a prescribed rather high temperature.
The lower part of the setup is a coolant representing a large
tank filled with liquid aluminum whose temperature is
somewhat higher than the aluminum melting point (about
1000°K degrees). In this work we consider a version in which
two lateral walls of the mold (on the sides where there are no
furnace walls) are heat-insulated. This model also describes
the situation when several molds are lined up in the furnace
and are located near from each other.

%%

et

Fig. 1. Schematic view of the mold (two projections).

The metal-filled mold is slowly immersed in the coolant.
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The liquid aluminum has a relatively low temperature, which
causes the solidification of the metal. However, the object
gains heat from the furnace walls, which prevents the
solidification process from proceeding too fast. The problem is
to choose a regime of metal cooling and solidification (such
control parameters) at which the solidification front has a
preset shape and moves at a speed close to the preset one.

The computational domain of the problem (domain Q) is

the area of the mold and the metal inside it, I" is a piecewise-
smooth boundary of Q. The cooling of the metal and the

mold is governed by the three-dimensional non-stationary heat
o oT
K

e A e

OH 0
ot ox

(x,y,2)eQ.
Here, T is the temperature of the substance at the point with

coordinates (X, Y, Z) attime t.
The thermal conductivity has the form:

0
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K(T)= K(T), (x,y,z)e metal,
CK(T),  (x,y,z)emold,
k81 T<T,
K,(T)= Ku=Ks 7y KsTe ki T,<T<T
' T,-T, T,-T, ' 7
Ky, T>T,,
ko, T<T,,
KalT)- ko, To<T.

The heat content function H (T (X, Y, Z, t)) is defined as

Hy(T),  (x,y,z)emetal,
H(T(x,y,z,t))=
Ty.21) {Hz(T), (x,y,2)emold,
PsCs T, T<T,
H,y(T)= pSCS(TI_Z__E)'FPS?/T_-l,_Osi/I}, T<T <T,)
2 1 2 1

pLeL(T —To)+psCsTo+ o5y, T 2Ty,

Ho(T)= poCoT .
where y is the specific heat of melting.

Here, C5, C_, Cp, Ps, PL+ P kSy kLy qu le
T,, and T, are prescribed constants (the indices L and S

denote the liquid and solid phases, respectively). The
thermodynamic coefficients (the density of the substance, the
heat capacity, and thermal conductivity) have a jump at the
metal-mold interface. Two conditions are required to hold at
this surface; namely, the temperature and the heat flux must be
continuous. The metal can be simultaneously in two phases:
solid and liquid. The domain separating the phases is
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determined by the narrow range of temperatures [Tl,TZ], in

which the thermodynamic coefficients and the content function
vary rapidly.

A distinctive feature of this problem is that the substance
under study undergoes phase transitions (from liquid to solid
states and back) accompanied by heat release or absorption
(Stefan-type problems). The law of motion of the phase
boundary is not known beforehand and has to be determined.

All the heat exchange conditions on the boundary I" of Q
can be written in the general form oT + S T,=¢. Here, a,
B and @ are given functions of the coordinates (X, Y, z) of
a point on I' and of the temperature T, while T, is the

derivative of the temperature T in the outward normal
direction 7to I.

The cooling of the mold and the metal inside it occurs due
to the interaction of the object with its surroundings. It is
important to note that the different parts of its outer boundary
are under different thermal conditions (i.e., the laws of heat
transfer with the surroundings are different in these parts).
Moreover, the parts themselves and the thermal conditions
affecting them vary with time.

If the point is in the molten aluminum, then in this case it is
necessary to take into account:

1) the heat lost by the body due to its own radiation;

2) the heat gained from the surrounding liquid aluminum;

3) the heat transfer due to conduction between the liquid
aluminum and the body.

If the point is outside the molten aluminum, then in this case
it is necessary to take into account:

1) the heat lost by the body due to its own radiation;

2) the heat gained from the emitting walls of the furnace;

3) the heat gained from the emitting surface of the liquid
aluminum;

4) the heat gained from the emitting surface of roof.

One of the basic mechanisms of heat transfer in this problem
is thermal radiation. To determine the heat flux coming to the
surface of the object from hot surfaces, it is necessary to solve
a rather complicated boundary-value problem. In [8] a
mathematical model of heat transfer process due to radiation
from the heated surface to the mold is proposed. During the
simulation of this process the special features of the considered
experimental setup were taken into account. An algorithm for
calculating the heat flux based on the constructed model was
proposed. It is based on the final formula, obtained from the
integration of general relations, which describe the
propagation of thermal radiation.

The evolution of the phase boundary is affected by many
parameters (for example, the furnace temperature, the
temperature of the liquid aluminum, the depth to which the
object is immersed in the liquid aluminum, the velocity of the
object relative to the furnace, etc.). Of special interest in
practice is the dependence of the phase boundary on the
velocity of the object moving in the furnace. For this reason, as
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a control function we use the velocity of the mold in the
furnace. If we do not control the speed of the motion of the
object, then “bubbles” of liquid metal form and collapse inside
the casting during the process of crystallization, which results
in a casting of poor quality.

To find a control function satisfying the technological
requirements, we formulate an optimal control problem for
metal solidification. This problem consists of choosing a mode
of metal cooling and solidification in which the solidification
front has a preset shape (it is desirable the front to be a plane
orthogonal to the vertical axis of the object) and moves at a
speed close to the preset one.

The velocity of the mold relative to the furnace (control
function) is determined by solving the following optimal

control problem. We introduce two classes of functions: K1
and Kz. Let A« and B« be a priori given constants (more
specifically, A« is the Z -coordinate determining the initial

position of the object relative to the furnace and B« isthe Z -

coordinate determining the position of the object relative to the
furnace at the maximum depth to which the object is immersed

in the coolant). A function T'(t) is said to belong to the class
Kl if T(t) is continuous and piecewise smooth for
t €[0,00) and satisfies the constraints A« < T(t) < B« and
0(0)=A«. The class K, consists of all piecewise
continuous functions U(t), t €[0,00), that are obtained by
differentiating functions from Kl. A valid control will be a

function of class K.

A major element of any optimal control problem is the cost
functional. The studies dedicated to the choice of a functional
satisfying the technological requirements for the process of
metal solidification are carried out. The basic cost functional is
defined as:

I (u)

ty(u)
[ [ [z v t) = 2P dxdydt.
(s

_ 1
RAORON
Here t; is the time at which the solidification front is initially
formed, 1, is the time at which the metal becomes completely
solid, S = S(t) is the projection of the phase boundary onto
a plane perpendicular to the vertical axis of the mold,

(X, Y, Z i (X y,t)) are the actual coordinates of points on

the phase boundary at the time t, and (X, Y, Z*(t)) are the

desired coordinates of points on the phase boundary at the time
t. The coordinates of the phase boundary are determined from

the following equation: T(X,Y,Zy (X, y,t,u(t)),t) =Ty,
where T, is the temperature of the solidification of metal,

which isequal to Ty =(Ty +T,)/2.
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Functional |(u) is the time-average rms deviation of the

actual phase boundary from the desired one. It is designed to
ensure that the front velocity is close to the desired one and
provides the flattening of this surface. The optimal control

problem is to determine a control U(t) € IZZ that minimizes
the cost functional.

I1l. ALGORITHM FOR DETERMINING THE TEMPERATURE FIELD
OF THE OBJECT

The first element of the solution of the optimal control
problem is the direct problem (finding the temperature at each
point and determining the solidification front). The numerical
algorithm for solving the direct problem is based on the heat
balance equation. Additionally, we proceed from the problem
formulation in terms of temperature to that in terms of heat
content.

The object under study is approximated by a body
consisting of a finite number of parallelepipeds. This body is
mentally placed in an auxiliary parallelepiped whose sizes
coincide with those of the object.

We introduce a coordinate system tied to the moving mold.
The Oz axis is directed vertically upward, the OX axis lies
in a horizontal plane and is directed from left to right, and the

Oy axis is chosen so that OXyz is a right-hand coordinate

system. The origin O is placed at the front bottom left vertex
of the auxiliary parallelepiped.
The time grid is defined by introducing grid nodes

{tj}, j=0,J, with the steps ch=t) ¢ i=17J.
We also introduce two spatial grids (generally non-uniform):
grid {Xn}, n=0,N; {yi}, i=0,1;
{Z, }, I =0,L: withthe mesh sizes:

the basic

hY =Xpq =Xy, N=0,N=L hY =y -V, i=0,1-5

h|z =711, I =0,L-1;
and the auxiliary grid
Xo=Xy; X =X, ,+h /2, n=LN; Xy, =Xy;

Vo=VYor Vi=Yiathli/2, i=L1 ¥,=VY;
. JA . 11 -

The basic grid is constructed so that all the outer surfaces of
the approximating body and all the metal-mold interfaces are
coordinate surfaces of this grid. Note that each of M
parallelepipeds that comprise the object contains points
(X, ¥i, 2y ) of the basic grid for which n*(m) <n < N*(m),

i(m)<i<1™(m), I"(m<l<L'(m), m=1LM. (Forthe
object shown in Fig. 1, M =5))

The surfaces of the auxiliary grid are parallel to those of the
basic grid, while the nodes of the former lie at the midpoints of
the segments joining the nodes of the latter. The planes

ISSN: 1998-0140

Volume 11, 2017

Xzyn, y:yi' and Z=Z|
elementary cells. An elementary cell is assigned the indices
(n, i,l) if the cell vertex nearest to the origin coincides with

divide the object into

the grid point (Yn, Yi,7|). The volume of such an
elementary cell is denoted by V,,;; and its outer surface by
Spil - Let’s denote the average temperature in the cell as

Tt (t).

Any elementary cell is either completely filled with a single
medium (metal or mold) or some part of it is filled with one

medium and the remaining part with the other. Let an”
denote the part of V,;;; filled with metal and Vn2i| denote the
part of V,;; filled with the mold material. Similarly, S%“ is
the part of S that is adjacent to an” and Sr%" is the part

of S, that is adjacent to Vn2i| .

If the object is a parallelepiped, all the elementary cells are
also parallelepipeds (Fig. 2a). If the object is of complex
geometry, then, at the interfaces of different parts of the object,
there arise new elementary cells of complex shape that were
not encountered earlier. They have the form shown in Fig.
2b,c. Such cells always have faces on the outer boundary of

the mold. As a result, the configuration of Sr?“ becomes more

complex. The complex configuration of the cells must be
considered when determining heat fluxes in such cells.

Fig. 2 Forms of computational cells

The numerical solution of the direct problem is based on the
heat balance equation. For the cell indexed by (n,i,l), this
equation has the form

J{I [Hl(TnjilJrl)_ Hl(TnjiI )]dv +JJ2J [Hz(Tn’}Fl)— HZ(TnjiI )] v =
] KO 05+ [ O )05

th | sh Shil

Here, TnjilzTnil(tj)’ while Kl(fnil(t))'(fn(t))nil and
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Kz(fnil(t))-(fn(t))nil are the heat flux densities through the

cell surface for the metal and the mold,
Integration of the left part of last equality gives

[Vai (Tl Vi (T ) |-
[le (n,,)+Vm|H (Tml)]

respectively.

nil

=flﬁx(m0)<(MNsm+ ®
+?1ﬂKmu»(<mNsm

Next, the formulation of the boundary value problem in
terms of temperature is reformulated in terms of enthalpy. The
considered computational domain is inhomogeneous (contains
metal and the material of the form). In order to better take into
account the geometry of cells, and how they are filled, the
concept of the so-called “total density of heat content” in the

cell is introduced. Let M, :an“ IV, be the volume
fraction of the metal in the elementary cell indexed by
(n,i,l), and let @ :Vn2“ IV, be the volume fraction of
the in this by
= (Tml)+d)m|H (T ) the total heat content

mold cell. Denote

=M. H

nil

i

nil — nil

density in the cell (n, I,I) at the time tj . Taking into account
the relations defining H;(T) and H,(T), we obtain an

expression for E L (T 1):

nIITml, TnII <T,
L (Th)= bl,,Tn,, b2,  T,<T)<T,
diTd +d3, T >T,
where @, = M psCs + @it P Cop
b = M (0sCs + ps AT, =T))+ @ P4,Cop
bt = M ps AT (T, = Ty).
Ao = n.|PLC|_ + @ P Cop
duit = My - (ps 2+ (psCs — pie) - T,).
The temperature Tm| is defined as the inverse of
ErfiI(TnJ;I):
Ea : El <ay,T,
ann
i =pEl)=1E 'bfb' a,T, <EJ, <dT,+d2,,
nil
dZ
W El > diT,+dj.
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The functions Kl(Tn{I) and K (Tml) can also be

expressed in terms of E L :

Kl(TnJil )E Ql(EnjiI ):

Ks, El <E,
= :(E::kESl " kSEz::;El, E, <EJ, <E,,
ke, Eh > E,,
Kz(Tnlﬁ )E QZ(Enjil ):
kq,l, EnII < E;,
R e,
Ko, » EJ >E,,
E =psesTi  Ep=pslesT +7),
Es = poCo (T3 —6), Eq = ppCo (T3 +6), 5 <<Ts.

Function EJL (T ],

temperature in the metal behaves as a function H;(T), i.e. ina

) as a function that depends on the

narrow temperature range [Tl,TZ] is changing very quickly,

almost abruptly. For this reason, iterative methods for solving
systems of equations that approximate the heat balance
equation converge poorly.

The temperature T! nil @s a function that depends on the total

density of heat content does not change so quickly, and when
the specified conditions are satisfied, the algorithms for
solving the direct problem are guaranteed to converge. Taking
into account this fact, in the equality (1) let us pass from the

variable Ty (t) to the variable E; (t):
VniI '(Ej+l Enll)

nil

tj+1
= | AR @)+ Al ()
t) n|I n|I

where Al(EniI(t))_ ( nll( )) ﬂn( nll( ))

AZ(EniI(t)) QZ( nll( )) ﬁ”( nll( ))
i=0,J-Ln=n"(m),N"(m)i=i(m),1 (m); |
I=1"(m),L'(m);m=1,M
Equation (2) is the heat balance equation, written in terms of

enthalpy function for any cell of the object being investigated.
Equation (2) is discretized in time using the Peaceman-

Rachford scheme, two-layer implicit scheme with weights, and
a locally one-dimensional scheme ([9], [10]). The results

()

s |dt,
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produced by the three difference schemes were compared with
each other.

The locally one-dimensional scheme performs with a large
time step (thus saving CPU time) and is easy to implement, but
is considerably inferior to the other schemes in terms of
accuracy. Solution using an implicit scheme with weights seem
physically more justified. A large number of calculations of
the direct problem was carried out at a sufficiently wide range
of input data (the furnace temperature, the temperature of the
liquid aluminum, the depth to which the object is immersed in
the liquid aluminum, the velocity of the object relative to the
furnace). All calculations have shown that the use of the
Peaceman—Rachford scheme gives the same accuracy of the
solution of the direct problem as the two-layer implicit scheme
with weights, but with the aid of the Peaceman—Rachford
scheme the direct problem is solved considerably faster (see
[4]). This scheme has a sufficiently large time step and
requires much less CPU time than the implicit scheme with
weights. The Peaceman—Rachford scheme was used to solve
the optimal control problem.

We introduce the following notation, which is used to write
the time discretization of (2) in a more compact form:

AE= JTAE)Ms+  [[A(E )d5+”A2( )ds
ShirUSH S sz

RE= [[A(E)s+ [[A(E)s+ [[A(E)ds.
SaiFUsp” Sai "Usg” sa

AE= [[AE)Ms+ [[A(E)s+ [[A,(E)ds
SHMUSE At Usa S

Here, S%f denotes the part of S%” that belongs to the plane

X = X,,1, while S%ﬁ_ denotes the part of S%” that belongs

to the plane X=X, . The surfaces Srl]%fr,. S%ﬁ_,
Sﬁﬁ“, Sn” , are defined in a similar manner. The
surfaces S,?i)fd, Sﬁﬁ’d and Sﬁﬁd are additional ones

2xd

occurring in cells of complex geometry. For example, Sj)

the part of Sn” that belongs to the plane X = X, . When some

or all additional surfaces are absent (in the latter case, the cell
has the shape of a box), their surface areas are set equal to
zero.

The time discretization of (2) based on the Peaceman—
Rachford scheme has the form:

i 2T
Vil ‘(Erfnl Enll )_?A Enﬁllg + 3A En’.Tm
T~ 27 N T~ 3
+ 3A En|| 3 A ErflIZI3 gAzEnlil +
+ %Kz ErfiTlIS + %Kz Er:-iJIrl’
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j=0,J-Ln=n"(m),N"(m);i=i"(m), 1 (m);
I=1"(m),L'(m);m=1L,M

| )

Here,
jH/3 _ ] jr2/3 _ j
The values Vni|Erfifll3 and VnilEgiT2/3 are added to and

subtracted from the left-hand side of (3) and the result is
divided into three equations (with splitting into the X, y and

Z directions) to obtain the following three subproblems:

X -direction:
j+1/3 U3 T~ i T+ i
\ '(ErfiJIr Enn )_ 3A EnJJ gAyEnJil +§Az Edi
Yy -direction:
Vi (B3 - B )= TR BG4 LR BG4 DR EL
Z -direction;
/ 4 / /
anl (ErflJIrl EnllJIrz 3) gA Erf.Tl +§AxEr{JZ 3 + :_:,)AyEnjlﬁl'2 %

j=0,J-Ln=n"(m),N"(m);i=i"(m), 1 (m);
I=1"(m),L'(m);m=1M

|

internal surfaces of an elementary cell are approximated in the
usual manner. For example,

Q,(E) )+ (Edan)

}.

The thermal conductivities Ql(Enj”) and Qz(Enjn) on the

o (Ed) sue = ; =RJ,
Ql(,; W - (ELy )2+ (Eh)_ R,
- afel),, e k)
* ofel), - 0 (E) )+291(En",i_1,| ) e

The notation Iilj and R‘ for the surfaces S'2" and S'7
EnJ”) namely, B}, B, BiJ :

are introduced in a similar manner.

ol +BT,=¢ the

boundary T of the object can be rewritten in the general form

KT, = (r(T)T +a(®) -

Since
KZ(T)' (XyZ)ESn” {
the last expression splits into two:

K(T):{
O (E)B,(E)r = (n(BENBE)+au®)r, (xx

and similar notation for QQ (
B/ glj,and E~3,j_1

i-1’
Boundary conditions on outer

1
nil »

¥2)es
y,z)e Sr?il’

(E). (
Q,(E) (

Kl(T)’ ( ylz)esnll X

X

)Esnﬂ'
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Q,(E)B,(E)lr =(n(BE)B(E)+a, (1) r. (X2)eSs -
In [11] these two boundary conditions were described in

detail and expressions for rl(ﬂ(E)), 09,(t), r,(B(E)),

and q, (t) were derived.
In the above three subproblems, the outward normal
derivatives ﬂ”(E) are approximated by the formula

B,(E)=(V B,n). For example,

j il J * *
Bn(E,] .|)Szlx+ _W’ n=n"(m),N"(m)-1,
i pl .
Bn(E ”")szx— ——M, n=n"(m)+1N"(m).
nil n—1

where ,Brf“ =,8(Em|)

We also introduce the function L™ (n,i) defined as the

number of cells of the object with the first index equal to N
and the second index equal to i .

Since the object is symmetric about the vertical axis and is
located symmetrically about the furnace centerline, for
simplicity, the algorithm is described for a quarter of the
object. For n=0 and i =0, the symmetry conditions are
used as boundary conditions.

With the notation introduced, the spatial approximation of
the first subproblem inside the domain under consideration can
be written as

.1 ﬂj+§ ﬂj+§
3 J+1 Ix+p j+Y3 Fn+Lil — Fhil
En|I En|I Wil Sn|I Rn - x
hn
1 1 1
1 l+§ J+§ j+§
_gk R”g Brit > = Bt SZHB ﬁnml B
il Bt — T 2l hi_
n-1 n
1 i+
Szx—B“g B _:Bn—l,ll
~“nil Pn-1 hX +
n-1
.+l
ZXd 3
n|I r.2 IBnI| ﬂnll +q2 Sn2i>|(d +
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r{:lrl Srlu)frﬁij ﬁnj,i+ll,’lly_ﬂnll Sml RJ ﬂnll hyﬂn i1l
i
+S§i%/+B] ﬂn |+l|y IBFII| Sml BJ IBFII' yﬁnl -1l
h, h’.
g2vd j% j%
Shil | 2 :Bnll Bair® +0; sav +
Slz+ j ﬂnji,l+1 B ﬁnll S J :Bnll :Bnl I—1
nil hz n|I 1-1
| I—l
822+ J ﬂnl 1+1 ﬁml 822— J IBHH ﬂnl I—l
nil hZ nil h
| 1-1
j 1
r?lid r2 ﬂnll ﬂnll 2 sr%ifd !

j=0,J-Ln=L,N"(m)-% i=11"(m)-1;

I=1L"(n,i), m=1M

) r j+1
where Wr{iJlrl =

3\/nil
The last relation holds for internal cells of Q whose lateral

faces do not belong to its outer boundary. If any of the surfaces
1x— Slz—
nil " nil

Ix+

nil !
domain, then the corresponding term in the heat balance
equation is approximated taking into account the boundary
conditions. For example, for n =0, the second and fourth
terms in the first square bracket in the last equality vanish (for
more detail, see [11]).

The last two subproblems are approximated in a similar
fashion.

The system of nonlinear algebraic equations resulting from
the spatial approximation of the above-indicated three
subproblems are solved consecutively in the direction X, Yy

reaches the outer boundary of the

and Z by the proposed in [2] iterative method. For this reason,
the function of the temperature ,B(E) in these equations is

represented in the form IB(Em,) ml EnII ml , Where
1/ay, Em/ <ay T,

un|I = 1/bnll’ nllTl < En// < dnlIT +dn|| )
1/dnll’ n|| Zd IT +dn|l '
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Oa
b7

EJ <ay Ty,

nil nil n||T < En” < dn”T +d
—d2/d} >dL,T, +d3

This view of the temperature function is substituted in all
obtained systems of equations. Further these systems of
equations are reduced to the so-called tridiagonal matrix form
and are solved iteratively by applying Gaussian elimination.

Determination of the solidification front in the metal was

carried out using the following algorithm. Let X, Yjand Z,

nil

nil —

vJ /b

nil »

nil nil » n|| nil -

be the coordinates of the spatial grid points. For each point
(Xy,Y;) €S (where S is the projection of the phase
boundary onto a plane perpendicular to the vertical axis of the
mold) we find an index I, such that one of the following
conditions is satisfied:

(BEL,. ) <Ty < BEL)UIBEL ) <T, <BEL, L)

In this case we assume:

(2,0 =2) T+ (2, B =21 B,
i _ni
ni,l,+1 nil,,

In the computation of the direct problem primary attention is
given to the evolution of the solidification front and to how it
is affected by the parameters of the problem. A special
software package [12] allowed us to take a look at the
dynamics of the metal crystallization process. It was developed
to visualize the results of calculation of problems, in which
complex dynamic processes are investigated, and allows to
reflect in a video the change of an arbitrary flat scalar field
over time and also distinguish arbitrary planar objects and
their boundaries, which could also be moving.

Z g (%o, i t) =

IV. SOLVING OF THE OPTIMAL CONTROL PROBLEM

The optimal control problem was reduced to an
unconstrained optimization problem and was solved
numerically with the help of gradient methods. Formulas for
gradient evaluation are derived using the Fast Automatic
Differentiation technique. This technique offers canonical
formulas producing the exact value of the cost function
gradient for a chosen discretization of the optimal control
problem ([1]). It should be noted that other methods for
computing the cost function gradient (for example, finite
differences) were found to be hardly applicable to solving this
problem.

In [2] is estimated the processor time required to compute
the gradient of the objective function by means of the Fast
Automatic Differentiation technique in optimal control
problems for thermal processes with phase transitions. Using
the example of an optimal control problem for the melting
process, the assertion that the time required to find the
components of the gradient of the objective function by this
method does not exceed the time of calculating two values of
the function is formulated and proved.
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To calculate the gradient of the objective function using the
Fast Automatic Differentiation technique, at first all the
equations approximating the direct problem are written in a
special canonical form, which is specified below.

Let us introduce the following notation. For all

i=0,1"(m), 1=0,L'(m), m=LM let (X,)
(xf), and (X,) denote the (N(m)+ 2)-dimensional

vectors:

(X o =

(E(ﬁon )ﬂon +0 )

shi
(X )nll RJ ﬂnll h:ﬂln Lil o n=1N*(m),
(Xm)lj\l (m)+L,il :(I’l( ,\j,*(m)“) N (m)il Ch )S:f:(m)n
(X f )(J;” = _(rz(ﬂojil )ﬁojil +0 )sgﬁ- :
(X f )rj]“ _ an—l ﬁnll Xﬁn Ll =1 N(m),

n-1
(Xf)lj\l*(m)+1,il :(rZ( l\jl*(m)il) N (m)il +0, )L;y(m)"
(Xd )rjm = (I’Z(,an”) 0 )Szm ., n=0,N"(m)+1.
For all n=0,N"(m), 1=0,L'(m), m=1M let

(Yp): (Y;) and (Yy) denote the (1"(m)+ 2)-dimensional

vectors:

(Y )nOI = (I’1< nol ),BnOI

shy-’
(Yot = 1ﬂ'hyﬂj“ =117 (m),
(Ym )nl (m)+Ll ( ( nJ| (m)l) njl*(m)l +qu )Lm

ni*(m) 1
(Yf )rj,m (rz( nol ),Bnm +QZ] 2
(Yf )rjm —1%’ i=117(m),
(Yf )rju (m)+1,1 :( ( njl*(m)l) njl*(m)l +q2j Xsnz.y:(m)l
(Yd )ml ( ( nll) nil +q2)szyd ) i:m-
For all n=0,N"(m), i=0,1"(m), m=1M let

(Zy): (z;) and (Z) denote the (L"(m)+ 2) -dimensional

vectors:

(Znhio =

(rl(ﬁmo)ﬂmo +0 )

1
1z-
SniO
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1 — 1 1
(Z )j . RJ ﬂnll ﬂnll 1121 L*(m) Sr?li+ '(Z )rJ1thI+1 _Sﬁif '(Z ):,,T r?nfd ( )rJuT J
m/nil — TM-1 ’ ’ + X+ j+ X— + X+ +
" hz—l Wrfllllsrlul (X )rJHlZ{I3 Sill ( rJ1|I2/3 Sl'?ll ( )r:+12/|?J
j 1 2x— j+2/3 2xd j+2/3
(Zm) ni, L (m)+1 ( ( nJiL*(m)) niL” (m) ql ngi( ) ’ r{IT I_ Snl)l( (X f ) + Snl)l( . (X )mT J+
niL (m 2/3 - 2/ j+2/
@) (e (ai )t 5 ) +wg.rllsﬁ.y.+- ;11. =SH O s b )
f 2 0 o™t 2 _
o T T ek P s (v i s (v, )l
(zf)l 71M, =1L (m), n=0,N"(m), |=o,| "(m), 1=0,L'(m), m=LM.
! h|—1 Define the two-dimensional vectors

e

i_ j
Z, ) =080 +ad).. 1=0Cm)+1 R S R O R
In these and subsequent formulas, the subscripts m and f il §2y- il g2+ nil Sﬁif*

nil

—

i i Sl_x+ Sl_x— Sl_y+
Zf )nl [y (m)+1 ( ( niL*(m)) nil” (m) q2 )S:iZL:(m) ! :IT = |:Sr2")|(+:|’ S;(IT = {S 2I>|<_j| ! Sr¥||+ = |:Sgl;’+ !
nil nil nil

denote the _metal and th_e mold, respectively. Th_e index d. says ( . (Xm);'” ( )J_ B (Ym)rjﬂl ( )J_ B (Zm),in ’
that the right-hnand side of the corresponding equality is — (Xp )ni, = (X ),- Yot s = j Lot )iy = (Z )j
f f

calculated at the center of an additional surface for cells of nil (Y’ il nil
complex geometry. where n=0,N"(m), i=0,1"(m), 1=0,L"(m), m=1M.
With the notation introduced, the approximations of the Note that X+ ox— (n_m)_
above three subproblems can be written for all j=0,J —1 as nil. = Sn+Lil? e '
follows: Sn|I Sn Jd+L0 (i =0, I*(m) _l); and I’fIT = rfi_,l+1’
X -direction: —_— —
(1=0,L'(m)—1), where m=1,M .
Eni”+1/3 E JII + ngﬁ [sifr (xm)rllfl/;”l siﬁ— -(Xm)r:ﬁm + We also ianuce notation for the following scalar products
2 3 oy i+1/3 2%d 3 (forall m=1,M ):
+ Sni>|<+ -(X f ),::]1/” - Snl)l( '(X f )J-Jrl/ + Sni)l( (Xd );:1/ J+ S i X— i e
i+ligly+ 1y- 2y+ ) Xl’f” _( nil 1(X mf ) nil )' n=0,N"(m),
+ Whil |_Sn|I ’ n |+1I Sn|I ( )nl| + Sl (Yf il J = | ( . ( )j )
— X * 1]
Wrm—ll__ ﬁl?/ . n|| + Sr?l?/d Yd il J+ N (m)+L,il N"(m)il ? N (m)+L,il
. _ j i=0,1"(m), 1=0,L"(m);
Wr{II:L|_SI:I1-IZ|Jr ( )m 1+1 Sr%lzl ( )n|| Sﬁj* ( )rjﬂ,l-*—lJ . ( )?, ( ), O, ( )
22— 22d ] Y (S 1o\ ) i=0,1"(m),
+ Wit |- Sa ‘(Zf )n” +Sai (24 )rjm J ~n_ ! nil _ m)
CONY =0T 1-0T I vERR A LA ' (S
n=0,N(m), i=0,1'(m), I=0,L(m), m=1LM, n, 1" (m)+L,l a1 (m)l? \'mf ¥ (m)+a,l
n=0,N"(m), 1=0,L"(m);
Yy -direction: ~. . (m) (m) :
+2/3 +1/3 +]e1y+ j+2/3  aly- j+2/3 Zn]” :( ﬁﬁ,(sz )]1 ) 1=0,L(m),
Ea7 = B i syt - (v )20 - s -( L N S I
2 213 2y- 213 | 2yd 213 ni, L (m)+1 niL"(m)’ Lo L (m)+1
LA D Ak L \PD M AV o PR
n=0,N (m), i=0,1"(m).
jfelx+ | J+J/3 Ix- j+1/3 2x+ j+1/3
+ Whil lSnll n+1|| —Sai (X )ml + Sl (Xf)n+1,ill+ With the notation introduced, the last three subproblems can
,{,Tl|_ SA - (X ‘ )J.Ws +824 (X, ),1151/3J+ be written in the following compact form:
. N P41/ _ i+1/ . i+1/ X -direction:
+wn’..1[8$f. (2 - sh @) i 2
3 1 3 3 2xd j+1/3
J+l|. g2z -(Z )J+l/3 524 (z, )J_+l/3J’ EnJIJ,']/ —E) +wl (anjlj/,, XnJ,T]/ +SA9 (X4 )r’]f/ )+
n|| nil f nil nil §
]+1 2yl
n=0, N*(m)' i=0,1 (m), | =0, L (m), m=1M; nII (Yn i+1,1 Yn|| + SniI (Yd )ml)
+w“1z 71 4824 (z.) ) @)
7 _direction: nil ( ni,l+1 n|| nil ( d )ml)
2/3 1 - j+1 dirantinn-
B = BN el sh - (2o )it - Sh - @a )i+ y -direction:
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EJI3 = ESR wint(Vie2is g irs o (v, Y23 ),
1 1/3 1/3 2xd 3
Pwl(R s _ g s g2 () Y1s),
1 1/3 > j+1/3 2zd 3
Fwi(Z sz s g2 (7, Y113, ©)
Z -direction:
j+1
Bt = Bl wit(Zo, — Zi v 820 (z,)1 )+
1 2/3 2/3 2xd j+2/3
n‘.T (XnJ:LiI _eri|+ +Sni)l( '(Xd)nil )+
1 2/3 2/3 2vyd j+2/3
rflJIr (Ynll:ll Ynller + Sni?l '(Yd )nil )' (6)
n=0,N"(m), i=0,1"(m), 1=0,L'(m), m=LM
j=0,J-1.

Equations (4)-(6) are the canonical form of the chosen
discrete version of the direct problem.
The cost functional |(u) is approximated by a function

1[ .
2(t, —t,)

Here, jl is the index of the time grid point corresponding to

F (u) with the help of the trapezoidal formula:

g, G0 i)e i, g
I(u)=F(u)= fre Y (cdanit)fianf

=i
the time '[1; j2 is the index of the time grid point

corresponding to the time tz ;

ZZ(Z‘—Z Fhoh:

Zr:-i :Zpl(xnvyi’tj)’ Z*J :Z*(tj);

are the indices of the spatial grid points along the OX and
QY axes, respectively, that define the boundaries of the cross
section (the largest cross section of the metal filled part of the

object); mesS = (Xa, = %o, )X (¥;, =¥, ) - The value

Z, Xy, Yi ,tj) is defined at the end of the third section.

n’n’i’andi
12 1 2

ie.,

According to the Fast Automatic Differentiation technique,
each equation of the chosen discrete version of the direct
problem (4)—(6) is written as

Ed =((n.i,l, J')’A(n,i.l.j)’U(n,i,l,j))-
Here, A(

()

denotes the set of all (with all

v
nil,j) Eaﬁy
indices o, B, v, and v,) that enter into the right-hand side

of (7), and U(

nilj) is the set of all components of u”

(u“ =u(tv)) that enter into the right-hand side of (7).
Although the control U ! depends only on the time index j ,

the set U( ) is equipped with the spatial indices NN, /,

nil,j
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and | to stress that the effect of this control is different at
different spatial points.

The components of the gradient of F(u) are computed

from the components of the vector {UJ} by using the
following relation, which is a generalization of that used in [1]:

©)

daF _oF

du! ou’ (8)
+ > ‘I’UTJ- ((a,ﬂ, YA gy Yiaprm ) DL
(a.Byv)eKn,it i

where pgﬁy are the conjugate variables determined by

solving the system of linear algebraic equations

p' _ OF

nil — aEnn

+ Zi lPT ((a’ﬂ!yiv)’A(a,/;’,y,v)’U(a,/i’,y,v))p;ﬁ’y’
(a.8,7.v)eQni.j) Eni

j=1,J,n=0,N"(m),i=0,1"(m),I=0,L°(m), m=1L M .

The index sets and K(

i) n”j)aregivenby

_(n,i a, ﬂ Vv nll EA(a,ﬂ,y,v)}’
K(n,i,l,j) = {(a,ﬂ,%v)iuj eu(a,ﬂ,y,v)}'

System (9) for computing the conjugate variables pr{“ is

s Q
={

usually called the adjoint problem.

We introduce the following notation for some derivatives,
which is used to represent the adjoint problem in a compact
form:

;o oX] P oX{ -
D ) 9%l (D ) = nil_ . n=1,N"(m),
( x+)n|| 5En.| ( x—)nll aEr{—l,iI

. oX)
(D )(Jm 5 EO'I (Dx— )on =0,

0il
_ oXJ.

; . N (m)+L,il

(Dx+ )IJ\I*(m)+1,iI =0, (DX— )fl\l*(m)+l,il o OE! '
N™(m)il

YV i=0,1"(m) ad V 1=0,L'(m)  (m=1M);

i oY) - oY ] *
D j il D J. —_~ nil I=1,| (m),
( y+ )nll 0 Eml ( y- )nll aEnl 1

i oY}
(Dy+)rJ10| aEn(;II ' (Dy )nOI 0.

n
_ oY .

j _ i . n,I (m)+1, .

(Dy+ )n,l*(m)+1,l - Y (Dy—)n,l*(m)+l,l - 0 EJ !
nl*(m)l
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VY n=0,N"(m)and V I=0,L'(m) (m=1M);
VA .ozl .
D J & “nil , D J_ — .n|I , |=1,|_ m),
( z+)n|l aEnJII ( z—)nll aEnJ”_l ( )
~ 0Z1
I _ ni0 _
(D, o = oE) (D, )y =0,
val
(D )j -0 ( )j . _ azni L(m)+
z+ /ni,U(my«1 — Y =/ni,L'(m)+1 — f .,
e aEn|L (m)
V n=0,N'(mand V i=0,1"(m) (m=1M);
o 0(X,)] o o(Yy)]
D J — 2\ d /il , D ] — 2\ d/nil ,
( xd)ml aEan ( yd)n” aEnJ”
j a(z )nl
(DZd ):II| aErf” : '
vn=0,N"(m),Vi=0,1"(m),vI=0,L"(m),m=1L M.

In [11] a detailed description of the conjugate equations is
given, which are obtained in the case of studying the object of
the simplest form - a parallelepiped. Here we give a compact

form of the adjoint problem for calculating the quantities pr{il

in the case of the object of complex geometric form, which is
represented in Fig. 1. The compact form of these equations is
possible if we formally assume:

Pl = pN (my+Lil p” -1 prj,l*(m)+1,| -
pn' -1 pr:i,L(m)+1 =0,

p11+|1|/3 = p,i]tl(s)ﬂ'” = pr{ill’f’ = p:j];/(?n)ﬂ,l -
= pr{iﬂg - prfii’{fm)u =0,

Pl = plil+ir/n?)>+l,il = Pl = prfjgér?r)\)ﬂ.l B
=pii’= prfiff*/(?;n)ﬂ -

(n=0,N"(m), i=0,1"(m), 1=0,L"(m),
j=1J, m=1M).

Initial Conditions for the Conjugate Variables
To obtain the conjugate variables at the last time level

j =J, the following system of linear algebraic equations is

solved for pJ, with all ¥n=0,N"(m) and all
vi=0,1"(m), (m=LM):
ISSN: 1998-0140
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J

P = Wri'i,l—l(Dz+);]1i| pr\1]i,l—1 + Wy (Dz—)ni,l+1 Pait —
— Wy (Dz+)rjli| P _WrJ]i 11(D, —)ii 141 prii,l+1 +
+ W Srﬁd( zd )nl| pml + a F /a En|I ’

nil
| =0, L**(n,l).

(10)

First Subproblem for the Conjugate Variables

+2/3

The conjugate variables pm, at the time sublevel

(j+2/3), j=J-10, are computed by solving the
following linear algebraic system of equations for all
n=0,N"(m) andall |=0,L'(m), (m=1L,M):
/ j+2/3 /
pai?"* =wiity (0, ) pdi2 +
j+1 j+2/3 213\ j+2/3
cwiit (0, )7 -0, )57 kit - ay
i 2/3 /
—wn{ﬁl,. (0, )2 el +

j+l 2yd( )J+2/3 j+2/3 j+2/3
n|| Sn|| Dyd nil n|I +§n|l '

where
j+2/13 _ A j+1 j+1 Jj+2/13 [ j+1
nil pnll +Wn =1,il (Dx+)ni| pn 1,il +
j+1 j+2/3 J+2/3) j+1
+ Wi ((DX—)n+1iI _(D +)ni| Pnil” —

J+2/3 | j+l
Dx )n+1|| pn+1|l +

j+1 i+2/3 Jj+1
+Wn,i—1,| (Dy+) i pn i-1,1 +

nil
(D, )2 (D, )i Jpii -

j+l ( )]+2/3 j+l
Wn|+1| D n,i+1,l n|+1l+

j+1 2xd j+2/3 J+l
W, (Dxd) n|I +

nil n|I nil
j+1 oF

J+182yd(D )]+2/3 L 9T
Whil ™ nil yd Jnil Pril j+2/137
0 Enll

=0,1"(m).

Second Subproblem for the Conjugate Variables

j+1/3

The conjugate variables Py at the time sublevel

(j+1/3),
following linear algebraic system of equations for all
i=0,1"(m) andall 1=0,L'(m), (m=1L,M):

Jj=J-10, are computed by solving the

P =wit, (D, )5 D +
SwhE (D, - (D, )5 ek~
- Wr{irllil (D, )rjli/uf pr{illlll3 +
WS (Dyg o PR + £,

154
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j+1/3 _ L j+2/3 j+l J+1/3 | j+2/3
nil - pnll +Ww n-1,il (Dx+ )nll pn—lll +
i+l J+l/3 J+1/3)
+ Wy (( - )

n+1|| nil
j+l j+1/3 j+2/3
Wn+1|| (D )n+1|l pn+1|I +
j+l o 2xd j+1/3 j+2/3
Wml Sn|I ( )nll pnll
j+1 Jj+L/3 | j+2/3
+Wn|| 1(Dz+)nil pnll -1 +
i+ j+1/3 J+l/3) j+213
+ Wi ((D )nil+l (D) i
j+l j+1/3 _j+2/3
Wnl 1+1 (D )nl 1+1 pnl 1+1 +
j+l g 2z j+1/3 j+2/3 j+1/3
Wn|I Sn|I (D )nll pnll +0F /o En|I ’

n=0,N (m).

j+2/13
nil

Third Subproblem for the Conjugate Variables

The conjugate variables pr{il at the jth time level,
(j=J—-10), are computed by solving the following linear
algebraic system of equations for all izm and all
1=0,LU'(m), (m=LM):

P =Wy (D oy Pais +
+ Wml ((Dz— )r{i,l+1 - (Dz+ )rj;il )pr{il -

(13)
- Wr{-i,l+1 (D, )rj;i,l+1 pr{-i,l+1 +
Wi Srﬁd( zd )rjﬂl P+ Ed
Eh=pat® +Wr{ﬁ (Dy+ )rjm r{ﬁﬁ +
+ Wr{iJlrl ((Dy— >r11 i+l (Dy+ )rjm )pr{irlls -
—wnjﬁl,. (O, ). pAi +

]+1 2yd( )j j+1/3
Wil Snll Dyd nil Pril +

j+1

j+1/3
+ Wnl | 1(

)ml pnll 1
i ((szm,.ﬂ (D, )Yy o

j+1 j j+1/3
— Whi (Dz—)ni,|+1p i+ T

ni,I+1 ni,I+1
d i i3, OF
r{lTlsrfli ( zd )n|| prllil—1 ’ a En|| '
1 =0,L7(n,i).

The obtained systems of linear equations for the conjugate
variables are the discrete version of the continuous adjoint
problem, which is consistent with the approximations of the
direct problem and of the cost functional. These systems of
linear algebraic equations were solved using tridiagonal
Gaussian elimination (see [9]). The sequential solution to these

three subproblems at j = J,0 produces conjugate variables in
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(J-1)+1/3
the following order: p,f”, pr(,f,_l)+2/3 Pril
J-1 1+41/3 1 0+2/3 0+1/3
Pri Pl pnil, Pril Pril
n=0,N"(m), i=0,1"(m), 1=0,L'(m), m=LM.

The derivatives (D )r‘;”, (D )rj1i| ,..., and the derivatives

of the cost function OF /0 EJII with respect to the state

variables are computed in a similar manner, as was shown in
[11].

The Gradient of the Cost Function of the Discrete
Optimal Control Problem

The control function u(t) in the optimal control problem is
defined as the time dependent displacement of the mold in the
furnace, namely, the Z coordinate ZSou(t) of the furnace’s
lower wall. This parameter is involved in the expressions for
() and q,(t) for cells that are outside the liquid
aluminum. The control function u(t) is approximated by a
piecewise linear function. More specifically, the control
function on the time interval [tj,tj+1] has the form

U(t)zzsﬂu(tjﬂ):Z M Therefore,
qJ+1/3 qJ+2/3 q q qu.

According to the Fast Automatic Differentiation technique
(8), the components of the function gradient are calculated by
the formula

j+l j+1/3 _ N j+2/3 _

and g,

dF oF
du! ou’
. 7
R s P I IR
mas0 o | MEm o gyl niL” (m)
N* ~.
+% (m)1 Z(:) —Wj-o azmo p-o
m=l n=0 =0 "ou n
7 (j-1)+2/3
o3 Rl S ma
So Sl T ou’ nt* (m)l
M N"(m)L"(m) oy l-ne2is
_wl ol 4]
+mZ::1 n=0 1-0 e ou! Pror |+
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M=

1" (m) L (m) ” ~£‘J‘(2)++21’ﬁ , X N 2yda(Yd)n|| 2]
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vector {U J } we have OF /ou’ =0. The derivatives
involved in last formula are calculated as described in [11].
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Note that the gradient of the cost function calculated using
the above formula is exact for the chosen approximation of the
optimal control problem.

The problem of optimal control has been solved for various
values of the basic parameters of the crystallization process
([7D. One version of the solution of the formulated
optimization problem is given below.

The computations were performed for a mold whose cross
sections are presented in Fig. 1. Its sizes and other parameters
of the problem were given in [13]. The temperature of the
furnace walls was set to 1920°K. The coordinate of the
required phase boundary varied with time at a constant
velocity of 2 mm/min. The initial control was specified as the
displacement of the mold at the constant velocity equal to 25
mm/min (Fig. 3). The corresponding cost functional was
[ (up) =8.56. After the optimization the cost functional value

decreased by a factor more than 3500 and became equal to
I (Ugpt (t)) = 0.0024 . The optimal control is shown in Fig. 3.

Also, the phase boundary was substantially flattened and at the
same time moved at the required speed. Using this control the
actual phase boundary nearly coincided with the required one.

4000

-—

. U(t)

Fig. 3 Displacement of the mold as a function of time

The problem of controlling the phase boundary evolution in
the course of solidification of metals with different
thermodynamic properties is studied in [14]. The numerical
results showed that the actual phase boundary under the found
optimal control nearly coincides with the desired one. Thus,
we can conclude that the approach proposed in this paper for
the control of the phase boundary evolution in solidification is
effective and can be applied to materials with various
thermodynamic properties.

REFERENCES

[1] Y. G. Evtushenko, “Computation of Exact Gradients in Distributed
Dynamic Systems,” Optimizat. Methods and Software, Ne 9. pp. 45-75,
1998.

AF. Albu, “Application of the Fast Automatic Differentiation to Solve
Problems of Heat Processes with Phase Transitions,” Doctoral
Dissertation in Mathematics and Physics (Dorodnicyn Computing
Centre, FRC CSC RAS), 292 p., 2016.

A. F. Albu and V. I. Zubov, “Mathematical Modeling and Study of the
Process of Solidification in Metal Casting,” Comput. Math. Math. Phys.
Vol. 47, pp. 843-862, 2007.

A. V. Albu and V. I. Zubov, “Choosing a Cost Functional and a
Difference Scheme in the Optimal Control of Metal Solidification,”
Comput. Math. Math. Phys. Vol. 51, pp. 24-38, 2011

[2

(3]

(4]

ISSN: 1998-0140

157

Volume 11, 2017

[51 A. F. Albu and V. I. Zubov, “Optimal Control of the Solidification
Process in Metal Casting,” Comput. Math.Math. Phys. Vol. 48, pp.
805-815, 2008.

A. F. Albu and V. I. Zubov, “Investigation of the optimal control
problem for metal solidification in a new formulation,” Comput. Math.
Math. Phys. Vol. 54, pp. 756-766, 2014.

A. F. Albu and V. I. Zubov, “Investigation of the optimal control of
metal solidification for a complex-geometry object in a new
formulation,” Comput. Math. Math. Phys. Vol. 54, pp. 1804-1816,
2014.

AF. Albu, “Calculation of the thermal radiation in the modeling of the
substance  crystallization process in the foundry practice,”
Informacionnye tekhnologii i vychislitel'nye sistemy, vol.65, Ne 1,
pp.°47-55, 2015.

A. A. Samarskii, “The Theory of Difference Schemes,” (Nauka,
Moscow, 1977; Marcel Dekker, New York, 2001).

Ch. Gao, Y. Wang, “A general formulation of Peaceman and Rachford
ADI method for the N-dimensional heat diffusion equation,” Int. Comm.
Heat Mass Transfer, Vol. 23, No. 6, pp. 845 — 854, 1996.

A. F. Albu, and V. I. Zubov, “Determination of Functional Gradient in
an Optimal Control Problem Related to Metal Solidification,” Comput.
Math. Math. Phys. VVol.49, pp. 47-70, 2009.

A. V. Albu and V. I. Zubov, “On visual support of the control of
dynamical systems,” Optimization and Applications (Vychisl. Tsentr
Ross. Akad. Nauk, Moscow, 2010), pp. 33-41.

A. F. Albu and V. I. Zubov, “On the influence of setup parameters on
the control of solidification in metal casting,” Comput. Math. Math.
Phys. Vol.53, pp. 170-179, 2013.

A. F. Albu, “Control of Phase Boundary Evolution in Metal
Solidification for New Thermodynamic Parameters of the Metal,”
Comput. Math. Math. Phys. VVol.56, pp. 756-763, 2016.

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]



	I. INTRODUCTION
	II. Statement of the Problem
	III. Algorithm for Determining the Temperature Field of the Object 
	IV. Solving of the Optimal Control Problem



