
Abstract— Biodiesel, the most possible alternative of diesel fuel, is 
produced through transesterification of vegetable oil using 
chemical or enzyme catalytic methods. In this study, a 
mathematical model for enzymatic transesterification is proposed 
using fractional order differential equation. Optimal control 
approach on the system dynamics is adopted to maximize 
biodiesel yield. Necessary conditions for the optimality of the 
system are derived using Hamiltonian. The optimal control 
problem is solved numerically by developing iterative schemes 
through Matlab. Results obtained from simulating the proposed 
model, are compared to the existing results and found to be 
satisfactory. 

Keywords—Biodiesel, Mathematical modeling, Enzymatic 
transesterification, Fractional optimal control problem (FOCP). 

I. INTRODUCTION 

iodiesel is gaining the most importance due to 
diminishing petroleum sources and the environmental 

consequences of exhaust gases from petroleum based engines. 
It is considered as the most appropriate alternative fuel for 
diesel engines. A number of pro- cesses have been developed 
for biodiesel production involving chemical [1] or enzyme 
catalysis [2] or supercritical methanol [3]. Enzymatic 
process for biodiesel production has gained a favourable 
attention because of its environmentally friendly nature, its 
mild reaction conditions, biodiesel recovery and high purity 
glycerol as by-product [4]. 

Mathematical modeling approach for the enzymatic 
production of biodiesel using different feedstock has been 
investigated by researchers [5, 6]. Cheirsilp et al. [7] 
established mathematical models for lipase- catalyzed 
biodiesel production in a batch system consisted of palm oil, 
enzyme, water and various ethanol concentrations.  
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Liu et al. [8] have investigated the transesterification of waste 
cooking oil catalyzed by immobilized lipase establishing a 
mathematical model and determine the kinetic parameters 
used in the system. Basir et al. [6] established a mathematical 
model for biodiesel production from Jatropha oil using 
enzymatic process. Optimization of biodiesel production 
from vegetable oil has been studied using optimal control 
approach by some researchers using classical integer order 
differential equations [6, 9]. But there is no mathematical 
model of biodiesel synthesis available using fractional 
differential equations. In other fields also, the application of 
dynamic optimization or optimal control using fractional 
calculus is very few [13, 10]. 

Recently researchers have shown that fractional calculus is a 
powerful modeling tool to describe some biochemical, 
mechanical and electrical dynamic systems [11, 12]. In their 
work Toledo-Hernandez et al. [13] propose a fractional 
fermentation model which is based on experimental data and a 
non-linear fitting approach that includes fractional integration 
by which fractional orders is incorporated. They have 
established the feasibility and capabilities of fractional 
calculus as a tool for modeling dynamic systems in the area of 
process systems engineering. 

Motivated by the above works, in this article, we have 
proposed a fractional order model of enzymatic 
transesterification.  Enzyme catalyzed reaction suffers mass 
transfer limitation problems initially and enzyme inhibition by 
dead end complexes produced in the process.  Stirring is 
applied to avoid these problems in the system [15]. System 
requires optimal control on stirring for optimum production in 
a cost-effective way. Thus we have applied mathematical 
control approach on mixing intensity in the formulated 
fractional ordered system to avoid mass transfer limitation 
problem. Thus, the fractional optimal control problem (FOCP) 
for the system is provided and Euler-Lagrange optimality 
conditions for the FOCP are derived.   Numerical simulation 
using fractional order system and the FOCP have been 
provided to illustrate the main results using numerical iterative 
schemes through Matlab. 
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In the next section we provide the required 
definations and general formation of fractional 
optimal control problem.

II. FRACTIONAL CALCULUS AND FOCP

To model the dynamical system with fractional differ-
ential equation, it is necessary to use an appropriate 
definition of the fractional derivative. In fact, the defi-
nitions of the fractional order derivative are not unique and 
there exist several definitions such as Riemann-Liouville, 
Caputo etc [16]. Left-sided Caputo frac-tional derivative 
can be defined as:

C
a D

α
t g(t) =

1

Γ(n− α)

∫ t

a

g(n)(s)

(t− s)α−n+1
ds (1)

and right-sided Caputo fractional derivative is defined
as:

C
t D

α
b g(t) =

(−1)n

Γ(n− α)

∫ b

t

g(n)(s)

(t− s)α−n+1
ds, (2)

where α is the order of the derivative and
n − 1 < α < n, Γ is the gamma function and
n is considered as an integer.

The left-sided Riemann-Liouville fractional deriva-tive is 
defined as below:

aD
α
t g(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

g(s)

(t− s)α−n+1
ds (3)

and right-sided Riemann-Liouville fractional deriva-
tive is:

tD
α
b g(t) =

(−1)n

Γ(n− α)

dn

dtn

∫ b

t

g(s)

(t− s)α−n+1
ds, (4)

where α represents the order of the derivative and
n − 1 < α < n, Γ is the gamma function and n
is considered as an integer and a > 0, b > 0 are
constants. We use the operator Dα

t for Left-Caputo
derivative throughout the article.

An additional issue to consider is the fact that fractional 
derivatives are defined using integrals, so they are non-
local operators. The fractional derivative in time contains 
information about the function at earlier points, so it 
possesses a memory. Therefore, fractional differential 
equation implies non-local dynamics and involves memory 
effects [18].

In [19], Agrawal presented a general formulation and 
the derivation of the optimality conditions for an FOCP. 
A short description is given below:

Consider the following control induced system
with fractional order derivative:

Dα
t x = f(x, u, t), x(0) = C0. (5)

Here, x is the state vector and t is the time. The ob-
jective function can be defined as

J(u) =

∫ t

0
g(x, u, t)dt,

Now, the control problem can be described as:

Minimize J(u) =

∫ t

0
g(x, u, t)dt,

subject to the system (5).

The state system is given by

Dα
t x = f(x, u, t), x(0) = C0, (6)

where, u(t) is the control parameter and the costate
system with y(t) as the costate vector can given by

Dα
tf
y =

∂g

∂x
+ y

∂f

∂x
, y(tf ) = 0. (7)

The optimal control function u∗ satisfies the following
relation

∂g

∂u∗
+ y

∂f

∂u∗
= 0. (8)

Equation (6), (7), and (8) represent the Euler-Lagrange 
optimality conditions for the FOCP with Caputo fractional 
derivatives. If the order of the fractional derivatives i.e. α 
becomes 1, the above system of equations reduces to the 
classical optimal control problem (OCP).

III. FRACTIONAL ORDER MODEL FOR BIODIESEL
SYNTHESIS

To describe a simple mathematical model for enzyme 
catalytic transesterification reaction of Jatropha Curcas oil, 
the following assumptions have been taken:

Biocatlytic catalyzed transesterification (using Li-pase) of 
Jatropha Curcas oil with an alcohol (A) may be proposed 
to involve two-step mechanisms. The first step consists of 
hydrolysis of Jatropha Curcas oil or TG to produce 
acylated enzyme (AcE) and release of glycerol as only by 
product through a complex C1
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(E.T ). Here E stands for enzyme. The second step
is the esterification of methanol (A) with AcE to form
the desired product i.e. BD with the release of free
enzyme (E) through a second complex C2 (AcE.A)
[6, 20, 21].

E + T
r1

r−1

[E.T ]
r2

r−2

AcE +G,

AcE +A
r3

r−3

[AcE.A]
r4

r−4

E +B,

To account for the inhibition of reaction by methanol in 
the system kinetics, here, a competitive inhibition is 
assumed when a AL molecule combines with the E to 
produce a dead-end complex, complex C3 (E.A)[8]. All 
the mechanistic steps for the biodiesel pro-duction can 
be represented by the following sequence of reactions:

E +A
r5

r−5

[E.A]. (9)

Here, r1 and r−1, r2 and r−2 are the rate constants for 
the reversible formation of complex C1, acylated enzyme 
and by product glycerol respectively in the first step of 
biodiesel formation. r3 and r−3, r4 and r−4 are the rate 
constants for the reversible formation of complex C2 and 
biodiesel formation respectively in the final step. For the 
inhibition reaction, r5 and r−5 are the rate constants for 
the reversible formation of dead-end complex C3. 

We denote the concentration of T, E, AcE, C1, C2, C3, A, 
B and G as CT , CE , CAcE, CC1, CC2, CC3, CA, CB and 
CG respectively. Now from the above assumptions, we 
can formulate the set of differential equations given below:

dCE

dt
= −k1CTCE + k−1CC1 + k4CC2

−k−4CECB − k5CECA + k−5CC3

+ksCACC3,

dCT

dt
= −k1CTCE + k−1CC1,

dCAcE

dt
= k2CC1 − k−2CAcECG − k3CFCA

+k−3CC2,

dCB

dt
= k4CC2 − k−4CECB,

dCA

dt
= −k3CAcECA + k−3CC2

−k5CECA + k−5CC3,

dCC1

dt
= k1CTCE − k−1CC1 − k2CC1

+k−2CAcECG,

dCC2

dt
= k3CAcECA − k−3CC2 − k4CC2

+k−4CECB,

dCC3

dt
= k5CECA − k−5CC3 − ksCACC3,

dCG

dt
= k2CC1 − k−2CAcECG, (10)

with the initial conditions

CE(0) = CE0 , CC1(0) = 0, CAcE(0) = 0,

CA(0) = CA0 , CT (0) = CT0 , CC2(0) = 0,

CB(0) = 0, CG(0) = 0and CC3(0) = 0.

(11)

Mixing in the reaction system has significant effect on
overall reaction rates. Here, we use ks as the effect of
stirring on reaction rate and the term can be defined as
Boltzmann sigmoid form [22]:

ks =
a

1 + e−b(F−c)
, (12)

where F is the speed of stirrer and a, b and c are con-
stants. Thus, the effect of stirring on reaction rates can
be expressed as [23, 24]:

ki = ksri. (13)

i=1,2,...,9. ri are given in Table 1.

Currently, in various research fields, numerous thoughts 
have been focused to the models of fractional-order 
equations [18, 26]. The significant of these model systems 
is the non-local features that do not appear in integer-order 
differential operators. Thus fractional differential 
equations involve a memory.

Generally, enzymes acts as catalyst and convert 
substrates into products. Microorganisms’ activity 
forms the major source for enzymes. Microorganisms 
growth depends on the medium they situated. Thus, we 
can assume that the dynamic behaviour of a living 
microorganism does not depend only on their present 
conditions but also on their state at earlier points. 
Therefore, the dynamics of biological reactions can in 
general involve memory [14, 17]. On that basis here, 
we extend the above model with incorporation of the 
fractional-order differential equations into the 
mathematical model of integer-order system.

Now, the modified system of equations with the
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concept of fractional-order is given below:

Dα
t CE = −k1CTCE + k−1CC1

+k4CC2 − k−4CECB − k5CECA

+k−5CC3 + ksCACC3,

Dα
t CT = −k1CTCE + k−1CC1,

Dα
t CAcE = k2CC1 − k−2CAcECG

−k3CAcECA + k−3CC2,

Dα
t CB = k4CC2 − k−4CECB,

Dα
t CA = −k3CAcECA + k−3CC2 − k5CECA

+k−5CC3,

Dα
t CC1 = k1CTCE − k−1CC1 − k2CC1

+k−2CAcECG,

Dα
t CC2 = k3CAcECA − k−3CC2

−k4CC2 + k−4CECB,

Dα
t CC3 = k5CECA − k−5CC3 − ksCACC3,

Dα
t CG = k2CC1 − k−2CAcECG, (14)

with the initial conditions given in 11.

A. Non-Negativity of Solutions

Here, we first prove the positivity of the solu-
tions. Next, we will show the solution, with
x(0) > 0, is always positive whenever the solu-
tion exists and the solutions will remain in ℜ5

+,
where ℜ9

+ = {x ∈ ℜ9 : x ≥ 0} and x(t) =
(CT , CE , CAcE , CC1, CC2, CC3, CA, CB, CG).

For the proof of the theorem about nonnegative 
solutions, we need the following Lemma:

t

Lemma 1 : (Generalized Mean Value Theorem): Let 
f(x) ∈ C[a, b] and Dα ∈ C(a, b] for 0 < α ≤ 1, then
we have

f(x) = f(a) +
1

Γ(α)
Dα

t f(ξ)(x− a)α, (15)

with 0 ≤ ξ ≤ x, for all x ∈ (a, b].

Remark 1: f(x) ∈ C[0, b] and Dα
t ∈ C(a, b] for

0 < α ≤ 1 then it is clear from Lemma 1 that if
Dα

t ≥ 0, for all x ∈ (0, b) then the function f is non
decreasing and if Dα

t ≤ 0 for all x ∈ (0, b) then the
function f is non increasing for all x ∈ [0, b].

Theorem 1: There is a unique solution
x = [CT , CE , CAcE , CC1, CC2, CC3, CA, CB, CG]
for the initial value problem given by (14) and the

Table 1: Values of parameters used for numerical cal-
culations of for enzyme catalysed reactions at 40oC
[8, 20].

Parameters Value (unit)
r1 7.5128 molL−1 hour−1

r−1 0.1147 hour−1

r2 0.1032 hour−1

r−2 0.0988 molL−1 hour−1

r3 1.937 molL−1 hour−1

r−3 0.0323 hour−1

r4 1.9230 hour−1

r−4 0.0011 molL−1 hour−1

r5 0.1213 molL−1 hour−1

r−5 0.03887 hour−1

solution remains in ℜ9
+.

Proof. The existence and uniqueness of the solution of 
(14) in (0, ∞) can be obtained from [17]. We need to show 

that the domain ℜ9+ is positively invariant.

Since,

Dα
t CE |CE=0 = k−1CC1 + k4CC2

+k−5CC3 + ksCACC3 ≥ 0,

Dα
t CT |CT=0 = k−1CC1 ≥ 0,

Dα
t CAcE |CAcE=0 = k2CC1 + k−3CC2 ≥ 0,

Dα
t CB|CB=0 = k4CC2 ≥ 0,

Dα
t CA|CA=0 = k−3CC2 + k−5CC3 ≥ 0,

Dα
t CC1|CC1=0 = k1CTCE + k−2CAcECG ≥ 0,

Dα
t CC2|CC2=0 = k3CAcECA + k−4CECB ≥ 0,

Dα
t CC3|CC3=0 = k5CECA − k−5CC3 ≥ 0,

Dα
t CG|CG=0 = k2CC1 ≥ 0, (16)

by Remark 1, the solution will remain in ℜ9
+. So we

can say that on each hyperplane bounding the non-
negative hyperspace, the vector field points into ℜ9

+.
Therefore the non-negative octant ℜ9

+ is a positively
invariant region.

B. The Fractional Optimal Control Problem (FOCP)

Here, the main objective is to control the rate of stirrer, so 
that we can get maximum yield of biodiesel. Also, it is our 
object to minimize the cost function. We use a control 
variable u(t), which represents the stirring activator input 
at time t satisfying 0 ≤ u(t) ≤ 1. Also u(t) = 1 represents 
the maximal use of stirrer.
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Figure 1: Numerical solution of fractional model system for different values of α and other parameters as given in
table.
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Figure 2: Numerical solution of fractional model system for different values of α and other parameters as given in
table.
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Figure 3: Numerical solution of the FOCP for α = 0.95 and α = 1 and other parameter values as in Table 1.
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Introducing control into the system (14) we have,

Dα
t CE = −k1CTCE + k−1CC1 + uk4CC2

−uk−4CECB − uk5CECA

+uk−5CC3,

Dα
t CT = −uk1CTCE + uk−1CC1,

Dα
t CAcE = uk2CC1 − uk−2CAcECG

−uk3CFCA + uk−3CC2,

Dα
t CB = uk4CC2 − uk−4CECB,

Dα
t CA = −uk3CAcECA + uk−3CC2

−uk5CECA + uk−5CC3,

Dα
t CC1 = uk1CTCE − uk−1CC1 − uk2CC1

+uk−2CAcECG,

Dα
t CC2 = uk3CAcECA − uk−3CC2 − uk4CC2

+uk−4CECB,

Dα
t CC3 = uk5CECA − uk−5CC3,

Dα
t CG = uk2CC1 − uk−2CAcECG, (17)

where, Dα
t is symbolised as the Caputo fractional

derivative. The above system can be written in the
form as below:

Dα
t x = f(x(t), u(t)),

(18)

where,
x = [CT , CE , CAcE, CC1, CC2, CC3, CA, CB, CG]. 
We need to minimize inhibition of enzyme which is 
measured through complex C3 and maximize biodiesel 
yield. So the objective function with P > 0, Q > 0 and R 
> 0 as weight constants is defined below:

Minimize J(u) =

tf∫
t0

[Pu2 −QC2
B +RC2

C3]dt,

subject to the system (17).
(19)

Here, the aim is to find the optimal control function u∗(t) 
for the system (17) that minimizes the functional J(u).

C. Optimal system for biodiesel synthesis

To find the optimal system we solve the equation (18). In 
case of our problem, the Hamiltonian function can be taken 
as:

H = g + yf, (20)

with

g = Pu2(t)−QC2
B(t) +RC2

C3,

yf =
∑

yifi

where, fi, i = 1 − 9 are the right sides of system (17). 
Using the optimality conditions defined by equations (6), 
(7) and (8), the Euler-Lagrange optimality conditions that 
minimize the objective functional (19) can be obtained.

Now, the state system has already been given by 
(17). Using relations (7), the costate system is derived and 
given below as:

Dα
tf
y1 = −uk1CT (y2 + y1) + uk−4CB(y7 − y1)

−uk−4CBy4 − uk5CA(y1 + y5 − y8),

Dα
tf
y2 = uk1CE(y6 − y1 − y2),

Dα
tf
y3 = uk3CA(y7 − y5)− uk5CT (y8)

−uk−2CG(y6 − y3 + y9),

Dα
tf
y4 = −2QCB − y4{uk−4CE + y7uk−4CE ,

Dα
tf
y5 = uk3CAcE(y7 − y5) + uk5CE(y8 − y1),

Dα
tf
y6 = uk−1(y2 − y6) + uk2(y3 − y6 + y9),

Dα
tf
y7 = uk4y4 + uk−3y3 − uk−3y7,

Dα
tf
y8 = 2RCC3 + uk−5(y2 − y8 + y3)

Dα
tf
y9 = uk−2CAcE(y6 − y3 − y9). (21)

with the boundary conditions: yi(tf ) = 0, where i =
1,2,...,9.

From equation (8) and equation (20), we get the
expression for optimal control function as:

u∗(t) = max

0, min

1,

−
6∑

i=1
yifi

2P


 .

If u(t) is replace by u∗(t) then equation (17) together with 
equation (21) represent the optimality system which is a 
two-point boundary value problem includ-ing a system of 
fractional differential equations.

IV. NUMERICAL SIMULATION

In this section, we have applied iterative techniques in 
solving fractional-order mathematical model (14) to 
achieve approximate solutions. There are several an-
alytical and numerical methods [12, 25] but we have
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followed the method as provided in [26, 27] for solv-ing 
system of fractional-order differential equations. We have 
also solved the optimal control problem by numerical 
iterative procedure in Matlab. 

The FOCP is a two point boundary value problem with 
state system and adjoint system. The state system is an 
initial value whereas adjoint system is a boundary value 
problem. We proceed through Matlab using the iterative 
scheme described below. 

We perform forward integration of the state variables from 
t0 to tf and similarly, using the final condition y(tf ) = 0, 
we perform the back-ward integration of the adjoint 
variables yi from tf to t0. The states system (17) is solved 
by the following iterative scheme:

CE(i) = [−k1CT (i− 1)CE(i− 1) + k−1CC1(i− 1)

+uk4CC2(i− 1)− uk−4CE(i− 1)CB(i

−1)− uk5CE(i− 1)CA(i− 1) +

uk−5CC3(i− 1)]hα −
i∑

j=1

m(j)c1(i− j)

CT (i) = [−uk1CT (i− 1)CE(i) + uk−1CC1(i

−1)]hα −
i∑

j=1

m(j)c1(i− j),

CAcE(i) = [uk2CC1(i− 1)− uk−2CAcE(i−
1)CG(i− 1)− uk3CF (i− 1)CA(i− 1)

+uk−3CC2(i− 1)]hα

−
i∑

j=1

m(j)c1(i− j),

CB(i) = uk4CC2(i− 1)− uk−4CE(i− 1)CB(i

−1)]hα −
i∑

j=1

m(j)c1(i− j),

CA(i− 1) = −uk3CAcE(i)CA(i− 1) + uk−3CC2(i

−1)− uk5CE(i)CA(i− 1) + uk−5CC3(i

−1)]hα −
i∑

j=1

m(j)c1(i− j),

CC1(i) = uk1CT (i)CE(i)− uk−1CC1(i− 1)−
uk2CC1(i− 1) + uk−2CAcE(i)CG(i

−1)]hα −
i∑

j=1

m(j)c1(i− j),

CC2(i) = uk3CAcE(i)CA(i)− uk−3CC2(i− 1)−
uk4CC2(i− 1) + uk−4CE(i)CB(i)]h

α

−
i∑

j=1

m(j)c1(i− j),

CC3(i− 1) = uk5CE(i)CA(i)− uk−5CC3(i− 1)]hα

−
i∑

j=1

m(j)c1(i− j),

CG(i) = uk2CC1(i)− uk−2CAcE(i)CG(i− 1)]hα

−
i∑

j=1

m(j)c1(i− j), (22)

The last term of the above equations stands for memory. 
The parameter m(j) is defined as CT0 = 1 mol/L, CA0 = 
6 mol/L, CF0 = 0.15 mol/L, CE0 = 1 mol/L, a = 
0.320 , b = 0.023 (rpm−1) are the initial conditions and h 
is the time step length, and we take h=0.01.

Similarly, iterative scheme for solving the adjoint sys-tem 
(17) backward-in-time with terminal conditions yi(tf ) = 
0 is developed.

The optimal control approach applied to fractional 
differential equation (FDS) and the effect of control is 
shown in Figures for different values of α. The figure 
reveals the changes in concentration by using two different 
values of the parameter α and other parameters as in Table 
1.

Numerically we solved the system kinetics for better 
understanding of the dynamical behaviour of the 
transesterification reaction in the presence of enzyme for 
the production of biodiesel.

Figure 1 represents the time dependent concentration 
profiles of triglycerides, enzyme, dead end complex and 
biodiesel of transesterification reactions. Pa-rameters are 
taken from in Table 1. 

It is seen that conversion of triglycerides is higher if we 
consider α = 0.9 rather than 1. Though initially the rate of 
biodiesel production for α = 1 is higher but at the end of 
the reaction the conversion of biodiesel is higher for α = 
0.9. This is due to the effect of memory and higher mass 
transfer can be observed for α = 0.9 than α = 1. Also, 
inhibition is higher in case of α = 0.9 as expected.

Figure 2 shows the effect of stirring on the system taing α 
= 0.9. It reveals that 300 rpm stirring is the best for 
biodiesel production using enzyme compare to 200 rpm 
stirring. Thus, stirrer has significant effect on biodiesel 
yield.

The optimal profile for the control variable is pre-sented in 
Figure 3. It shows the optimal profiles for the biodiesel, 
stirring. Here we observe the changes in concentration of 
the product by varying the value of α. Control profile of 
the system is also plotted for different value of α. 
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It is seen that more control on system is reduced if we 
consider the memory effect by taking fractional order 
model. Biodiesel concen-tration is optimized using the 
optimality system. We have compared the concentration of 
product obtained from integer order system and fractional 
system to see the combined effect of memory and optimal 
control on the system. For this we compare the 
concentration of biodiesel for two cases: case I: at 
optimum condition taking α = 0.9 and case II: at α = 1 
when no con-trol is applied to the system. This figure 
shows that concentration highly depends on the parameter 
α i.e. the order of the system. Taking into account the 
mem-ory and control, it can be seen that rate of biodiesel 
production is also increased significantly.

V. DISCUSSION AND CONCLUSION

Fractional derivatives are defined by using integrals, so 
they possess non-local kernels. Thus, the fractional 
derivative of a function at a given point in time contains 
information about all of the values of the function at earlier 
points. Thus memory in a living can be described by 
fractional derivative. So, it is better to use fractional 
differential equation when modeling enzymatic 
transesterification than classical order derivative.

Our results show that biodiesel yield is significantly 
influenced by memory effect. The Fractional optimal 
control problem is solved numerically and it offers a better 
prediction about biodiesel optimization. Thus, our 
analytical and numerical analysis would be helpful to 
experimental researchers to predict the dynamics of a 
system for enzymatic biodiesel production. It can be 
expected that the proposed fractional order model and the 
control theoretic approach can be successfully applied to 
experimental findings.

In conclusion, the proposed model is functional and 
more accurate than integer order system. Our pre-
dictions will be helpful for experimental researchers for 
biodiesel production which may be a route for the 
alternative renewable energy sources.
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