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Capitulation of the 2-ideal class group of the fields K = Q(,\/q1¢2, /Dq133)
where p, q1, ¢ and g3 are distinct primes such that

P=E—-Q1=—¢=—g=1(mod4)

A. ELMAHI, A. AZIZI, A. MOUHIB, and M. ZIANE

Abstract—Let K = Q(,/q1q2,/Pq1G3), be real biquadratic
number field where, p, q1, g2 and g3 be distinct prime numbers
with p = —q G2 = —qs = 1 (mod 4). Let K be the
Hilbert 2-class field of K. Let K'” be the Hilbert 2-class
field of Kél) and K™ the genus field of K. We suppose that
K" # K® and Gal(K{" /K) = 7./27 x 7./27. We study
the capitulation problem of the 2-ideal classes of K in the
sub-extensions of Kél) /K and we determine the structure of
Gal(K$Y /K).

Keywords— fundamental unit, Hilbert 2-class field,
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1. Introduction

Let K be an algebraic number field and C its ideal
class group in the ordinary sence. Suppose L is a finite
algebraic number extension of K. Then there is a canonical
homomorphism

j:CK*)CL

induced by extension of ideals. Then ker(j) consists of those
ideal classes in K which capitulate in L. One of the main
goals in capitulation theory is to determine ker(j).

If Kél) is the Hilbert 2-class field of K, then by class
field theory the Galois group Gal(K. él) /K) and the 2-class
group Cy i of K are canonically isomorphic. Let Kén) be
the Hilbert 2-class field of K3" "), then K{" /K is a Galois
extension for each non negative integer n and

Kc KV Ky c

is the 2-Hilbert class tower of field K. terminates at Kél)
or K% [10].

In the following, we give some known results about
the structure of Galois group Gal(Kéz) J/K) where Cy g
is isomorphic to Z/27Z x Z/2Z (see, for instance, [4],
Section 1). Let K be an algebraic number field such that
Cox ~ Z/27 x Z/2Z, and let G be the Galois group of
K22) /K. Then if G’ is the commutator subgroup of G, we
have G’ = Gal(K2(2)/K§1)), and

G/G ~ Gal(K$V K ~ 7.)27. x 7,)21.
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Let @, Dy, S, be the quaternion, dihedral and
semidihedral groups of order 2™, So that in term of
generators and relations,

Qm = (w,y ¥ =y? =a,a® = Ly oy =a™');
Dy = (w,y 22" =y = Ly ey = 271);
S = (w,y [« = y? = Ly~lay = 2" 7).

By [2, Theorem 4.5, Chap 5] we have G is isomorphic
to Dy, Q. or S,,. The commutator subgroup G’ of G is
always cyclic: G’ = (z2). The group G has exactly three
sub-groups of index 2. Namely, (x); (z2,y) and (z2, zy).
When G is not the quaternion group of order 8, only one of
the three maximal sub-groups of G is cyclic. When m > 4
the other two maximal sub-groups of G are not abelian and
their maximal abelian factor groups are again isomorphic to
Z.)27 x Z/27Z. Of course, when G is the quaternion group
of order 8 its three maximal subgroups are cyclic and when
G is the dihedral group of order 8, its three sub-groups
are abelian. None of the proper factor groups of G is of
quaternion type. According to what we just said, the Hilbert
2- class field tower of K terminates in at most two steps.
It KV # K, then the Galois group Gal(K$® /KV)
is cyclic and Gal(KéQ) /K) is a quaternion, dihedral or
semidihedral group.

Let K = Q(\/q1¢2,/Pq1q3) be a biquadratic number field
where p = —q1 = —q2 = —q3 = 1 (mod 4). In this paper,
we first give a rank for some reel biquadratic number fields.
Then, in section 3 we give the Hasse unit index for some
real biquadratic number fields and we give the list of real
biquadratic number field K such that its 2- ideal class group
of K is isomorphic to Z/27Z x 7/2Z(Theoreme 3.4). In
the last section we give the 2-ideal classes of K, which
capitulate in the genus field of K. Consequently we prove
the following:

Theorem 1.1. Let p, q1, q2, q3 be distinct primes with
P = —q —q2 —g3 = 1 (mod 4) and K =

Q(\/q192, /Pq1q3)- Assume that the 2-ideal class group of
K is lsomorphlc to /27 x 7.]2Z, then:

1. IfK% K%l) we have Gal( K% /K) is abelien.
2. If Ky 2 # K, 2 e have Gal(K. 2)/K) is dihedral.
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2. Rank of 2-ideal class group of some real
biquadratic number fields

The following notations will be used throughout the

paper:

K a real biquadratic number field

k=Q(y/m) a quadratic subfield of K with

odd class number

E the group of units of k

N the norm map

r the number of primes of k which

are ramified in K e a positive integer defined by

2¢ =[E: ENN(K"))

€, the fundamental unit of Q(y/m)

h(K) the class number of K

ho(K) the 2-part of h(K)

h(m) the class number for the quadratic

number field Q(,/m)

Cs, i the 2-ideal class group of K

K®) the genus field of K

KV the Hilbert 2-class field of K

K$? the Hilbert 2-class field of K"

Qi the hasse unit index of the

biquadratic number field K

(%) the Hilbert’s 2-th power

norm residue symbol mod P

Lemma 2.1. We keep the same notation as above, the rank
of Cs i is equal to r-e-1.

Proof. See [1]

Remark 2.2. We have:

1) e=0 if and only if -1 and &, are norms in the extension
K/k.

2) e=1 if and only if -1 is a norm and &, is not a norm, or
-1 is not a norm and &,, or —¢&,, is a norm in the extension
K/k.

2) e=2 if and only if -1, ¢, and —¢,, are not norms in the
extension K /k.

O

Lemma 2.3. Let F be a real quadratic number field
with fundamental unit ¢ and discriminant D. Suppose that
Npg(e) = 1. Then there exists a positive square free
integer m dividing D such that m ¢ is a square in F.

Proof. See [5]

Remark 2.4. In the proof of lemma 2.3 [see 5], the integer
m is norm in the extension F/Q.

O

Lemma 25 Let P, q1, Qq2, q3 be distinct primes
with p = = —q —q3 1 (mod 4), and

K = Q(\/m, \/M) Then, we have:

1) e=0 if and only if one of the following conditions is

satisfied:

(i) (1) = (1) = 1.

(ii) (;1) (%) (q1q2) -1

1) e=1 lf and only if one of the following conditions is
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satisfied:

() () = —(82) = 1.
(i) (4 = () = (20) = -1
i) (%) = () = () = 1.

Proof. The discriminant of Q(,/q1q2) is equal to g1z, by
lemma 2.3 there exists an integer m|q;gs such that m is a
norm in the extension Q(,/q1¢2)/Q [see remark 2.4] and
VMEqq, € Q(/q1q2). Since £4,4, is the fundamental unit
of Q(,/q1G2) then m must be contained in {qi,¢2}. Either
way, we can conclude that:

\/(hsthqg € @(\/qqu) OT\/quihqz € @(\/ CI1CI2) (1)

Consequently €4,4, = q1u? or £4,4, = q10? with u and v
are in Q(1/q1¢2)-
It is easy to see that the primes of Q(,/q1¢z) ramified in K
are exactly those lying above p and ¢3. Denote S = {p, g3},
and P a prime ideal of Q(,/q1g2) which is ramified in K
lying above ¢ € S,

-if £ remain inert in Q(,/q1¢g2), then we have:

~Lpags, _ Nowame(=1),pads,
(D) _ ¢ : )=
€qi1q2,P9193\ N@(\/Q1Q2)/Q(€q1@)7pq1q3 .
-if £ is decomposed in Q(,/q1¢z), then we have:
(Cma P03 ) _ (QIU2»pQIQS) _(LPnds) (0
P P P 2

Using remark 2.2, the lemma 2.5 follows immediately. [J

Lemma 2.6. Let p, q1, q2, q3 be distinct prime numbers
with p = —qq —q3 = —q3 = 1 (mod 4) and K =
Q(\/4192, \/Pq1q3)- Then the 2-ideal class group of K is of
rank equal to 2 if and only if the following condition is
satisfied:

P
q1
Proof. By lemma 2.1 the rank of C5 g is equal to r-e-1. The

positive integer e is given by lemma 2.5. One can compute
the positive integer r and the lemma follows. O

Lemma 2.7. Let p, q1, q2, q3 be distinct prime num-
bers with p = —q1 = —q2 = —q3 = 1 (mod 4) and

= Q(/9143,/P71Gz2). Then the 2-ideal class group of
L is cyclic if and only if one of the following conditions is
satisfied:

2 (2 () )

2) = (B = (1192) = 1.

3 (B)=(8)=~(b)= () =-1
9 (5= =@l=w=-1

Proof. With the same technique used in proof for lemma
2.5, one can compute a positive integer e for biquadratic
field L, and using lemma 2.1 we verify that the 2-ideal class
group of L is of rank equal to 1, if and only if one of
condition 1), 2), 3), 4) of lemma 2.7 is satisfied. ]
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3. The Hasse unit index for some real bi-
quadratic fields

Lemma 3.1. Let p, ¢q1, g2 and q3 be a distinct prime
numbers such that, p = —q1 = —q2 = —q3 = 1(mod 4) and

(£) = (L) = —(E) = 1. Then the biquadratic number

field, K = Q(\/q1q2, \/Pq1q3) contains the following units:

VEara2€parass VEa1a2Epazas

Consequently Qi = 4.

Proof. The discriminant of Q(,/pq1gs) is equal to pgigs,
then there exists an integer m|pgiqs such that | /Mé,q 45 €

Q(\/pq1g3). Since €pq,q, is the fundamental unit of
Q(\/pq1q3) then m ¢ {1,pq1gs}. On other hand since
(q%) = —1 then p,qs3,q1q3,pgs are not a norms in the
extension Q(y/pqiqs)/Q so m ¢ {p,q3,pgs,q1q3} and
we have |/Mépqq € Q(/Pqigs) such that m|pgigs and

m & {1,p,q3,pq3, 4143, Pq1, Pq1q3}-
Either way we can conclude that:

V@1Epgias € Q(v/Pa143) (2)

With the same reason we have:

vV 42Epgaqs € Q(vp(I2q3) (3)

Consequently,using (1), (2) and (3), we obtain that the unit
VEGa2Epaiass \/EarazEpaags are contained in K consequently
Qg =4. O]

Lemma 3.2. Let p, q1, q2 and qs be distinct prime numbers
such that, p = —q1 = —qz2 = —q3 = 1(mod4), and
(£) = (&) = (&) = 1. Then the biquadratic number
field, K = Q(\/q1q2,/Pq1G3) contains exactly one of the

following units:

\/€Q1 q2 Spfh q2» \/617612 q3 EPQz q3» \/E(h q2 51”11 q2 61”12 q3

Consequently, Qx = 2.

Proof. The discriminant of Q(,/pq1gz2) is equal to pgigo,
then there exists an integer m/|pq;go such that,

VMepgias € Q(/DPA1G2), since €,q,4, is the fundamental
unit of Q(/pq1q2) then m ¢ {1, pqiqz}, therefore:

VMepgia: € QV/Pa1¢2) (4)
With m € {p, q1, 2, pq1,Pq2, q1q2} similarly we have,

VMepgias € Q(v/Paias) (5)

With m € {p, q1,93,pq1,193,q1q3} consequently using (1),
(4) and (5) we obtain that exactly one of the units

\/6(11 a3 Eplh q2» \/gplh q2 €PQ2Q37 \/€¢Z1(I2 5P¢I1 q2 51’42113

is contained in K, so Qx = 2.
O

Lemma 3.3. Let p, q1, q2 and q3 be distinct prime numbers
such that, p = —q1 = —q2 = —q3 = 1(mod4), and
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(qﬁl) = ( >) = ( . Then the bigquadratic number

field, L = Q(\/q 1q3,,/ Q1QQ) contains exactly one of the

following units:

VEa1a5Epa1a2s VEpa1a:€pa2as> VEq142€pq1a2€paaas

Consequently Qr, = 2.
Proof. We have:

V@iEaes € QVa1g3) (6)

Using (3), (4) and (6) we obtain that exactly one of the
unit,

VEaq143€pa192+ \/€pa192€pasas > \/€q192€pq192Epgaas
is contained in L so Qp, = 2. O

As a consequence we have the list of real biquadratic

number fields K = Q(\/q1¢2, /Pq1¢3) such that Cy ¢ is
isomorphic to Z/27 x Z./27.

Theorem 3.4. Let p, q1, g2 and q3 be distinct prime num-
bers such that, p = —q1 = —q2 = —q3 = 1 (mod 4) and
let K = Q(\/01G2, \/Pq1G3) be a biquadratic number field.
The 2-ideal class group of K is isomorphic to 7./27 x 1] 27
if and only if the following condition is satisfied:

p p p
—_— =)= —|—) = ].
q1 ) <Q2 ) <Q3 )
Proof. In [7] the class number for K is given by:
Qx h(pg193)h(pg2gs)
4

assume that Cy i ~ Z /27 x Z /27, then rank(Cs )= 2. By
lemma 2.6 we have

h(K) =

p p
—)=(=)=1.
(J1) ((Jz)
1 If (q%) = 1, by [3] we have 4|h(pq1g3) and 4|h(pgaqs3).
On other hand by lemma 3.2, Qx = 2, therefore

8|h(K). Consequently C3 x is not isomorphic to
Z/27 x 7./ 2.
2) If (£) = —1, by [3] we have,

h(pq1q3) = h(pg2q3) = 2 (mod 4) and by lemma 3.1
we have Qi = 4, then ho(K) = 4. The 2-ideal class
group of K is isomorphic to Z/27Z x Z/27.

Suppose now that (2) = (2) = —(Z) = 1, by lemma 2.6
we have rank(Cs i )= 2, by [3] we have,

h(pqrgs) = h(pq2q3) = 2 (mod 4) and by lemma 3.1 we
have Qi = 4, then ho(K) = 4. Consequently Cs g is
isomorphic to Z/27 x 7Z./27Z. The theorem follows. O

4. Proof of theorem 1.1

Throughout this section we suppose that:
Cox ~7Z/2Z X Z/2Z.
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4.1. Necessary and sufficient conditions such that
1 2
K £ 18

The genus field of biquadratic field K =
Q@G vpaiGs) is K = QP /@142, v/7143)-
We  introduce  the  biquadratic = number  field
L = Q(/014,/P71q2), then K™ /L is unramified.

The 2-ideal class group of L is cyclic [see lemma 2.7],
then the fields K*) and L have the same Hilbert 2- class
field K* . Therefore

1 oo 1
h(KyY) = Sh(K™) = Th(L)
Consequently
KV £ K o on(KY) o 4h(K®) < 8|h(L)

Lemma 4.1. Let p, q1 and g2 be a distinct prime numbers
such that, p = —q1 = —q2 = 1 (mod4),

and (£) = (£) = (&) = 1. There exist X, Y, k, | such that
q1 q2 q1

pqi = k2X2 4+ 21XY +2mY?, —q = 1% — 2k>m, denote

2
o= (L), and B = cLibSa sl );H/), we have:

8|h(pqrq2) if and only if a == 1.

Proof. See [3] O

Let o and 3 the integres defined in theorem 5 we have
a following theorem.

Theorem 4.2. Let p,q1,q2 and qs be a distinct prime
numbers such that,

pP=—q1 = —q = —q3 = 1(mod4).

If the biquadratic number field, K = Q(\/q1q2,/P71G3)
has 2-ideal class group isomorphic to /27 X 7./27, then:

K £ K2 if and only if (£)=1and a=p=1.

Proof. We have Kél) # Kéz) < 8|h(L). Suppose now that
the condition of theorem 3.4 are satisfied. A class number
of L is given by:

_ Qrh(pqi1g3)h(pq1g2)

B 4

By lemma 3.3, we have Q1 = 2. On other hand by [3] we
have,

h(pqiqs) = 2 (mod 4), then h(L) = h(pq1g2). The lemma
4.1 %ives then necessary and sufficient conditions such that
KM £ kP O

h(L)

4.2. Generators of 2-ideal class group of K

Since ( 1 the ideal p splits completely in
Q(v/1q2), we have pog( /grg;) = Pi1P2 where Pi,i €
{1,2} are two distinct prime ideals in Q(,/q1¢2). More-
over, since p is ramified in K then Pox = yf, where
Vi€ {1, 2;» are two distinct prime ideals in K wich remain

inert in K*) = QP V102, V01 G3)-

Theorem 4.3. Assume that the 2-ideal class group of K is
isomorphic to 7,27 x 7./27. Then the two ideal class [V!]

q1q2)
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and [VL] generates the 2-ideal class group of K. With 1 is
the class number of Q(\/q1q2).

Proof. 1) Show that V! and )’} are not principal ideals.
Since 1 is the class number of Q(,/q1¢z). the prime
ideal P} and P} are principal. Therfore [V!] and [Vi]
are in C3 i. Applying the Artin reciprocity laws in
the extension K *) /K we find that )y and ), are
not principal ideals. It follows that J! and ) are not
principal ideals.

show that V!V is not principal ideal.

We have Nr/q( aig) (V1Y2) = P1P2 = Pog(yara):
supposing that ){ V4 is principal then V! V4 = (a) with
a € K. So Nk o(yqiq) = ploQ(\/m). It follows that
there exists a unit v of Q(/q1¢z2) such that plu is a
norm in K/Q(,/q1qz). Then we must have

2)

!
p'u,pqi4s
—) =1 (7).

Using the properties of Hilbert’s 2-th power norm
residue symbol mod P, we have (%flq?’) =1 and
(quqg aP(hlI:s) —_ (ql,%qlqg) —1. SO

1

P1
u, .
(L) 1 for any wnit u of Qe
1
1
Moreover we ha?/e (Bebds) — (= 2)l = (—1)! = -1,
consequently (~%£%42) = —1 which is in contradic-
tion with (7). Finally y{ yé is not principal ideal.
O

4.3. Determination of the 2-ideal class group of K
which capitulates in K *)

We have [V!] and [)}] generates the 2-ideal class group
of K. We denote by Q7 and Q5 the two prime ideals in
K®) such that Y0 = Q1 and Yooy () = Qo.

The;)rem 4.4. All 2-ideal classes group of K capitulate in
K&,

Proof. 1) show that V! )% capitulates in K ).

Since (£%) = —1 the number of prime ideals of
Q(\/@igz) which ramify in L' = Q(/gids,/p) is
equal to 1, by lemma 2.1 we have rang(Cy /) = 0.
Moreover, since p is ramified in L' = Q(,/q1q3, /D)
we have poy, = P’ 2 The class number of L' is odd, so
P’ is principal ideal. On other hand P’og ) = Q1 Q2
consequently Q; Q- is principal ideal. And we have
Q! Q) is principal ideal, it follows that Y} capitu-
lates in K (),

show that )y and )» capitulate in K (),

Let L = Q(1/q143,/Pq1G2) since (q;z?’) = —1and p
is ramified in L we have por, = S? with S is a prime
ideal in L, therfore Sog ) = Q1 Q2. We have Q; and
Qy are principal if and only if S is principal, indeed:
We now that if Q; is a principal ideal, then
N p(Q1) = S is a principal ideal. Conversely if

2)
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S is a principal ideal, by Artin reciprocity law applied
in the extension Kf)/ L, S split completely in K )
Therefore Q1 and Qs are splits completely in K?),
by Artin reciprocity law applied in the extension
K2(2) /K®) we have Q; and Q, are principal ideals.
-show that S is principal ideal.

We know that /24, = wu1/q1 + u2,/q3 with
uy,uz € Q [see proof of lemma 2.5] and

m = ’Ul\/q>2 + ’UQ\/@ with V1,V € Q
[see proof of lemma 3.1], therefore
VP\/Eqiastpaags 1S @ integr of L. Since
por = (\/P\/aiastranas) (€q1as€pa20) 0L = S, S
is a principal ideal. We conclude that Q; and Qs are
principal, then ); and ) capitulate in K (*), Hence
the theorem 1.1 follows.

O
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