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Abstract—Most of previous work discussed about trajectory 

optimization for one phase either ascent or gliding. This paper 
introduced the full trajectory optimization for different vehicle 
dynamics, and how be linked these two dynamics in one optimal 
trajectory. The full path optimal trajectory is important for 
many applications like aerospace industry, computing rocket and 
missile launch trajectories. Another goal in the paper how to set 
the final constraints for the ascent phase to meet the initial 
requirements for gliding phase.  Finally, full analysis for different 
final constraints at gliding phase was done to improve the 
algorithm and to be sure, it is suitable for different constraint 
problems.    

Keywords— Trajectory optimization, optimal control, Multi 
constraints nonlinear programming   

I. INTRODUCTION  
Trajectory optimization has been a topic of considerable 

research of launch vehicles for over 40 years in practical 
engineering application where the optimal control theory is 
commonly applied to obtain optimal solutions. “The objective 
of an optimal control problem is to determine the control 
signals that will cause a process to satisfy the physical 
constraints and at the same time minimize (or maximize) some 
performance index” As defined by Kirk. Possible performance 
indices include time, fuel consumption, or any other parameter 
of interest in a given application [1, 2]. 

Trajectory optimization of the hypersonic vehicle is a 
difficult problem due to various constraints of thermal load, 
total load, and dynamic pressure. Numerous researches are 
being carried out in this field. Lin Ma, Zhijiang Shao, Weifeng 
Chen, Xinguang Lv and Zhengyu Song have optimized the 
problem of fuel-optimal lunar ascent phase using constant-
thrust propulsion [3]. Tawifiqur Rahman, Zhou Hao used 
Legendre and Gauss pseudospectral methods to optimize the 
trajectory problem of a hypersonic vehicle [4]. Fariba Fahroo 
and I. Michael Ross solved the problem of Bolza arising in 
Trajectory Optimization [5]. Michael A. Paluszek and 
Stephanie J. Thomas compared three different global indirect 
approaches for solving the problem of finding optimal 
trajectories for low-thrust spacecraft [6]. Numerical algorithms 
for trajectory optimization for flight vehicles are currently 
studied. Huang GuoQiang, Lu YuPing, and Nan-Ying 
summarized the basic principle, characteristics, and application 
for all kinds of current trajectory optimization algorithms [7]. 
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One of the most general solutions to the optimal control 
problems is the calculus of variations and Pontryagin’s 
maximum principle. By applying these methods determine the 
first order necessary conditions for a solution, these necessary 
conditions reduce the optimal control problem to a two-point 
boundary value problem. For most problems, the boundary 
value problem is difficult to solve analytically, so numerical 
techniques are used to determine an approximation to the 
continuous problem. Numerical methods fall into Direct and 
Indirect methods [8].  

Some of the Indirect methods are multiple shooting, quasi-
linearization, and collocation which approximating the solution 
to the continuous necessary conditions.  The advantages of 
indirect methods are the high accuracy and emphasis the 
solution satisfies the necessary optimality conditions. The 
disadvantage that the necessary optimality conditions must be 
derived analytically, the convergence is small, so a good initial 
guess is required and also a guess is required for costate, finally 
for path constrained problems the constrained and 
unconstrained arcs should know a priori [9]. 

Direct methods transcribe the continuous optimal control 
problem into a Nonlinear Programming Problem (NLP), which 
can be solved by well-developed algorithms. One of the most 
advantages the optimality conditions do not need to be derived, 
large radius of convergence, no need for a guess of the costates 
and finally the switching structure does not need to be known. 

Another approach based on spectral methods used to 
parameterize both the states and controls. Piecewise 
polynomials used to approximate the differential equations at 
collocation points, states and controls can also be parametrized 
using global polynomials which typically have faster 
convergence rates than traditional methods. This method 
provides accurate state and control approximations. 

Spectral methods were applied to optimal control problems 
using Chebyshev polynomials and then developed the 
Legendre pseudospectral method using Lagrange polynomials 
and collocation at Legendre-Gauss-Lobatto (LGL) points. 
Finally, Gauss Pseudospectral Method (GPM) has been shown 
to satisfy the optimality conditions for a large class of problems 
[8, 10]. 

GPM proved an efficient way to solve the trajectory 
optimization problem, and besides it has high precision and fast 
rate of convergence, it equivalences the Karush-Kuhn-Tucker 
(KKT) condition and the Hamiltonian Boundary Value 
Problem (HBVP). 

Full path trajectory optimization is very important in the 
field of a ballistic missile to get the optimal trajectory and 
optimal control along the full path many types of research 
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discussed the ascent phase and reentry phase separately, but a 
few discuss the full path.  

For ascent phase, H. Xu and WanchunChen [11] provide 
the ascent guidance of solid-rocket-powered launch vehicles 
subject to the terminal velocity, terminal local flight path angle, 
and terminal angle of attack constraints. Da Zhang, Xuefang 
Lu, L. Liu, and Y. Wang [12] described an online 
reconstruction algorithm using Gauss Pseudospectral method to 
ascent phase trajectory. P. Lu, L. Zhang, and H. Sun [13] 
developed methodology and algorithms for on-demand 
generation of optimal launch vehicle ascent trajectories from 
lift-off to achieving targeting condition outside the atmosphere. 
G. Dukeman [14] developed an algorithm which solved the 
calculus-of-variations two-point boundary value problem 
starting at vertical rise completion through main engine cutoff, 
taking into account atmospheric effects. 

For reentry phase K. Z. a. W. Chen  [15] proposed two 
examples for optimization implementation using Easy Gauss 
pseudospectral method EGPM in the paper, first is maximum 
downrange without path constraints during the second multi-
phase trajectory satisfying waypoint and a no-fly zone.  P. Lu 
[16] developed predictor-corrector reentry algorithm for 
inequality constraint which met the appropriate augmentations 
of altitude rate feedback. The method successfully applied to 
three very different vehicles, a capsule, a shuttle class vehicle, 
and a high-lifting hypersonic gliding vehicle. Z. Hao, L. 
Jiafeng, C. Wanchun, and T. Rahman [17] provided reentry 
trajectory optimization phase, divided the reentry phase into 
two phases descent phase and glide phase. In descent phase, the 
angle of attack is set to fit the glide condition with the path 
constraints while in glide phase the attitude-velocity profile 
designed to maintain the safe flight corridor.  

For full path trajectory optimization, M. H. Gräßlin, J. 
Telaar, and U. M. Schöttle [18] proposed NonLinear 
Programming (NLB) based on guidance strategies on 
autonomy, accuracy and mission flexibility for the ascent flight 
of the reusable launch vehicle Hopper during the space plane 
X-38 for reentry.   

This paper describes full path trajectory optimization with 
multiple constraints using Gauss Pseudospectral method and 
how the full path trajectory divided into ascent phase and 
reentry phase. In ascent phase, the trajectory divided into 4 
phases to get smooth and continuous control variable which it 
will be square the derivative of the angle of attack. Then the 
terminal point for the ascent phase will be the initial point for 
reentry phase. For reentry phase how to satisfy the terminal 
constraints, the control variables will be the sum of the square 
of the derivatives of the angle of attack and bank angle and 
finally the linkage between these two phases to get the full path 
trajectory optimization.  

II. ASCENT VEHICLE MODEL 
For the ascent phase 3-DOF kinematic model used for 

describing the vehicle dynamics without considering the earth 
rotation as follows [19]:  

 ẋ = v cos(γ) (1) 

 ḣ = v sin(γ)  (2) 

 v̇ =  
T cos(α) − D

m
− g sin(γ) (3) 

 γ̇ =  
T sin(α) + L

mv
−

g
v

cos(γ) +
v
r

cos(γ) (4) 

 ṁ =  −
T

Isp g0
 (5) 

Where x, h is the down range and height respectively, v is 
the velocity vector, α is the angle of attack, γ are the flight path 
angle and m is the mass, T is the thrust vector, g is the 
gravitational force. D, L is the drag and lift force and are given 
as [20]: 

 D =
1
2
ρv2Sref CD(Ma,α) (6) 

 L =  
1
2
ρv2Sref CL(Ma,α) (7) 

Where (ρ, Sref )are the air density of the current altitude and 
the reference area, respectively, CLand CD  are the lift and drag 
coefficients, respectively, which are the non-linear functions of 
the attack α angle and the Mach Ma . 

 

TABLE I.  INITIAL AND FINAL CONDITIONS FOR ASCENT PHASE  

Parameter Symbol value Symbol value 

Downrange 𝑥𝑥0 0 𝑚𝑚 𝑥𝑥𝑓𝑓  Free 

Height ℎ0 2 𝑚𝑚 ℎ𝑓𝑓 70000 𝑚𝑚 

Velocity 𝑣𝑣0 30 𝑚𝑚/𝑠𝑠 𝑣𝑣𝑓𝑓 Free 

Flight path 

angle 
𝛾𝛾0 90° 𝛾𝛾𝑓𝑓  0° 

Mass 𝑚𝑚0 154200 𝐾𝐾𝐾𝐾 𝑚𝑚𝑓𝑓  Free 

Angle of attack 𝛼𝛼0 0° 𝛼𝛼0 0° 

 

For the ascent trajectory, the control variable chosen as the 
derivative of the angle of attack where the initial and final 
conditions for the ascent phase listed in Table 1. The 
performance index is the weighted square of the derivative of 
the angle of attack in stage 2 and stage 4 only because of the 
angle of attack set as zero in other stages during the ascent 
phase.  

 J =  �K1α̇2
2  +   K2α̇4

2  dt (8) 

So the final height is set to be constrained at specific 
altitude to be the initial condition for the reentry phase, also to 
reach suitable velocity acceptable for the reentry phase and 
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final flight path angle and angle of attack set to be zero at the 
end of the ascent phase. 

All the final conditions used as initial conditions for the 
linkage between the ascent and reentry phase. The linkage 
between the Stages in the ascent phases will as follows 

Linkage Constraints between the four phases in the ascent 
phase considered as: 

The initial state, time of phase 2 and the final state, time of 
phase 1 are the same 

 x0{2} − xf{1}, t0{2} − tf{1} = 0 (9) 

The velocity constraint at phase 2 grows up to M =
0.7 ~ 0.8, and the angle of attack is negative. 

 vf{2} −   0.8 ∗ 325 = 0 (10) 

The initial state, time of phase 3 and the final state, time of 
phase 2 are the same 

 x0{3} − xf{2}, t0{3} − tf{2} = 0 (11) 

The initial state, time of phase 4 and the final state, time of 
phase 3 are the same 

 x0{4} − xf{3}, t0{4} − tf{3} = 0 (12) 

The results of the optimized ascent trajectory using 
pseudospectral method GPOPSII, part one should start 
vertically (Vertical flight phase) from 0~t1 moreover, 
constraint the angle of attack set to be zero in this phase for a 
safe launch.  

Then the turning flight started from t1~t3 Which is the end 
of phase three, during these two phases (phases 2 and 3) the 
hypersonic vehicle completed its rotation. In part 2 the velocity 
constraint grows up until Mach reaches between 0.7 ~ 0.8 and 
angle of attack should be negative within 3 degrees. 

Finally, part four satisfies the terminal conditions for the 
ascent phase through the final height, flight path angle and 
angle of attack.  

To consider the states differential equations for the glide 
phase, we should convert the previous equations to the 3-D 
dynamics equation by adding static parameter ψ to the state 
equations of ascent phase as follows: 

 

Mx =

⎣
⎢
⎢
⎢
⎡
1 0 0
0 cos �

π
2 − lat� sin �

π
2 − lat�

0 −sin �
π
2 − lat� cos �

π
2 − lat�⎦

⎥
⎥
⎥
⎤
 (13) 

 

Mz =

⎣
⎢
⎢
⎢
⎡ cos �lon +

π
2� sin �lon +

π
2� 0

−sin �lon +
π
2� cos �lon +

π
2� 0

0 0 1⎦
⎥
⎥
⎥
⎤
 (14) 

Where lat is the latitude, lon is the longitude and the 
transformation matrix from space to ground Cgs  moreover, its 
transpose Csg  calculated as follows;  

 Cgs = Mx ∗ Mz  (15) 

 Csg = Cgs ′ (16) 

Considering the radius of the earth R =  6378145 to 
calculate the position corresponding to the earth as a function 
of latitude and longitude then put them as a vector Rs  as 
follows; 

Rx_s   =   R ∗ cos(lat) ∗ cos(lon) 

Ry_s   =   R ∗ cos(lat) ∗ sin(lon) 

Rz_s   =   R ∗ sin(lat) 

 
Rs   =   �

Rx_s
Ry_s
Rz_s

� (17) 

Where Xg    is the position, and Vg is the velocity vectors  on 
ground coordinates and calculated as follows; 

Rw   =   R ∗ cos(lat) ∗ Omega; Omega is the earth rotation                                        

Xxg   =   xf ∗ cos(ψ)                                                          

Xyg   =   xf ∗ sin(ψ)                                                          

Xzg   =   yf                    

 
Xg   =  � 

Xxg
Xyg
Xzg

� (18) 

 Where Vg is the velocity vector on ground coordinates and 
calculated as follows; 

Vzg   =   vf ∗ sin(gammaf)                                                    

Vxg   =   vf ∗ cos(gammaf) ∗ cos(ψ)   +  Rw                    

Vyg   =   vf ∗ cos(gammaf) ∗ sin(ψ)            

 
Vg =    � 

Vxg
Vyg
Vzg

� (19) 

Finally, the position and velocity vector r and v are 
calculated on space coordinates as follows; 

 r  =   Csg ∗ Xg   +   Rs  (20) 

 v  =   Csg ∗ Vg  (21) 

There are some bounds for static parameter such as azimuth 
angle 

ψ = � lower bound = 0
upper bound = pi

� 

At the end of this phase, optimized ascent trajectory 
calculated with achieving the terminal constraints which it will 
be the initial conditions for the following part (reentry part).   

III. REENTRY VEHICLE MODEL 
For reentry phase 3-DOF Common  Aero-Vehicle (CAV)  

dynamics used over spherical and rotating earth used as 
follows [16, 21]: 
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 r ̇ = V sin(γ) (22) 

 
θ̇ =  

V cos(γ) sin(ψ)
r cos(φ)  (23) 

 
φ̇ =

V cos(γ) cos(ψ)
r

 (24) 

 

 V̇ = −
D
m
− g sin(γ)   + ω2r cos(φ) (sin(γ) cos(φ) −  cos(γ) sin(φ) cos(ψ)) (25) 

 
γ̇ = 

1
V
�

L cos(σ)
m

+�
V2

r
-g� cos(γ) +2ωV cos(φ) sin(ψ)� 

      +�𝜔𝜔2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) (𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) + 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾) 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓))� 

(26) 

 
ψ̇=

1
V
�

L sin(σ)
m cos(γ) +

V2

r
cos(γ) sin(ψ) tan(φ) -2ωV(cos(φ) tan(γ) cos(ψ) - sin(φ))� 

     + � 𝜔𝜔2𝑟𝑟
𝑐𝑐𝑐𝑐𝑐𝑐 (𝛾𝛾)

𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓)� 

(27) 

 

Where r is the radial distance, θ is the longitude, φ is the 
latitude.  V is the relative earth velocity,  γ is the flight path 
angle, ψ is the azimuth angle, m is the mass of the CAV 
vehicle, g = μ

r2 is the gravity acceleration where μ is earth’s 
gravitational constant. 

The aerodynamic forces acting on CAV vehicle as follows; 

 L =  
1
2
ρV2ClSref  (28) 

 D =  
1
2
ρV2Cd Sref  (29) 

Where ρ = ρ0exp⁡(−h H⁄ ) is the atmospheric density 
where ρ0 is the standard atmospheric pressure from the sea 
level, h is the altitude. Sref  is the reference are for CAV 
vehicle. Cl  and Cd  are lift and drag coefficients, respectively.  

There are two kinds of CAV, one of them is called AMaRV 
or CAV-L and the other HPMARV or CAV-H. The lift-to-drag 
ratio for CAV-L is 2.0-2.5 range while the lift-to-drag ratio for 
CAV-H is 3.5-5.0 range, CAV-H used for modeling the reentry 
trajectory optimization due to its ability for gliding without 
power through the atmosphere [22].    

It assumed that the lift and drag coefficients dependent only 
on the angle of attack as follows: 

 Cl = kl1α + kl2 (30) 

 Cd = kd1α2 + kd2α + kd3 (31) 

Wherekl1 = 0.04675,kl2 = −0.10568,kd1 =
0.000508,kd2 = 0.004228 and kd3 = 0.0161. The reference 
area of CAV-H is 0.4839 m2. The mass of CAV-H is 907 Kg.  

To suppress the oscillation in the reentry trajectory, we 
should keep the two-order derivative of flight path angle zero. 
So the command angle of attack and the bank angle used to 
calculate the proper flight path angle. The negative feedback 
signal defined as the deviation between the proper flight path 
angle and the actual flight path angle. 

The special flight path angle γm   calculated from command 
angle of attack and bank angle that keep the second-order 
derivative of flight path angle zero as follows [21]; 

 γm=
D

- v2m
H

-gm- 2m2v2

r2 + 2m2g
rρcLSref cos(σ) - 2m2g

2

v2ρcLSref cos(σ)

 

 +
ċL cos(σ) -cL sin(σ) σ̇

vcL cos(σ)
H

+ gcL cos(σ)
v

+ 2mv
r2ρSref

- 2mg
rρvSref

+ 2mg2

rρvSref

 

+
D

- rρv2cLSref cos(σ)
2H

- rgρcLSref cos(σ)
2

- mv2

r
+mg- mrg2

v2

 

+
D

- ρv4cLSref cos(σ)
2Hg

- v2ρcLSref cos(σ)
2

- mv4

r2g
+ mv2

r
-mg

 

(32) 

Where the lift coefficients and drag force used in the above 
equations calculated from the command angle of attack and 
bank angle. For the reentry trajectory, the control variables 
chosen as the derivative of the angle of attack and the bank 
angle.  

Consider the following equations; 
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 Cl2 cos(σ2) =  Cl1 cos(σ1) + K(γ − γm ) (33) 

 Cl2 sin(σ2) = Cl1 cos(σ1) (34) 

Where Cl2 is the actual lift coefficient and Cl1 is the 
command lift coefficient. σ2 is the actual bank angle while σ1 
is the command bank angle and K is the negative feedback 
gain.  

So the actual angle of attack and bank angle can be 
calculated from the above equations as follows; 

 
σ2 = tan−1 �

Cl1 sin(σ1)
Cl1 cos(σ1) + K(γ − γm )� (35) 

 
α2 =

1
kl1

�
Cl1 cos(σ1) + K(γ − γm )

cos(σ2) − kl2� (36) 

Now rewrite the dynamics equation again but with 
integrating the trajectory-oscillation suppressing scheme that is 
mention above;  

 

 r ̇ = V sin(γ) (37) 

 
θ̇ =  

V cos(γ) sin(ψ)
r cos(φ)  (38) 

 
φ̇ =

V cos(γ) cos(ψ)
r

 (39) 

 V̇ = −
D2

m
− g sin(γ)   + ω2r cos(φ) (sin(γ) cos(φ) −  cos(γ) sin(φ) cos(ψ)) (40) 

  
γ̇=

1
V
�

L2 cos(σ2)
m

+�
V2

r
-g� cos(γ) +2ωV cos(φ) sin(ψ)� 

       +�𝜔𝜔2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) (𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) + 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾) 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓))� 

(41) 

 
ψ̇=

1
V
�

L2 sin(σ2)
m cos(γ) +

V2

r
cos(γ) sin(ψ) tan(φ) -2ωV(cos(φ) tan(γ) cos(ψ) - sin(φ))� 

        + � 𝜔𝜔2𝑟𝑟
𝑐𝑐𝑐𝑐𝑐𝑐 (𝛾𝛾)

𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) 𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓)� 

(42) 

 

Where L2 is the actual aerodynamic lift force.  

The performance index chose to meet the requirements and 
constraints, also for smoothing the control parameter and the 
trajectory profile; 

 J =  �K1α̇1
2  +    K2σ̇1

2  dt (43) 

Where K1and K2 are controls weighting coefficients 

TABLE II.  INITIAL AND FINAL CONDITIONS FOR REENTRY PHASE 

Parameter Symbol Initial value Symbol Final value 

Radial 

distance 
r0 Alt0 + Re rf  Altf + Re 

Longitude  θ0 0° θf Free 

Latitude φ0 0° φf 4° 

Parameter Symbol Initial value Symbol Final value 

Velocity V0 6900 m/s Vf  2400 m/s 

Flight path 

angle 
γ0 0° γf  0° 

Azimuth 

angle 
ψ0 65° ψf  Free 

Angle of 

attack 
α0 Free α0 Free 

Bank angle σ0 Free σf  Free 

 

The initial condition for reentry phase listed in Table II as 
the initial altitude equal to  Alt0 = 70000 m, the initial 
longitude θ0 moreover, initial latitude φ0 equal to zero same as 
the initial flight path angle γ0 while the initial velocity  
V0 = 6900 m/s, initial azimuth angle ψ0 = 65°. Finally the 
angle of attack α0 moreover, bank angle σ0 is set to be free.  
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While the terminal constraints set for the final 
altitudeAltf = 30000 m, final latitude φf = 4°, final velocity 
Vf = 2400 m/s, final flight path angle γf = 0°, while the other 
states set to be free.  

The results in this phase represent the states achieved the 
terminal constraints with the control variables angle of attack 
and bank angle smooth. Last part how to link the two phases to 
be full path trajectory that explained in the next part. 

IV. LINKAGE BETWEEN ASCENT AND REENTRY PHASES  
In this section, we will discuss the full path optimized 

trajectory by linking the two phases with each other the ascent 
phase and the reentry phase. Also, discuss how to calculate the 
initial latitude and longitude for reentry phase from the position 
vector which is the end of the ascent phase and choose suitable 
performance index to make the control variables smooth and 
continues.  

The initial latitude and longitude can be calculated from the 
position vector as follows; 

 θ0 = tan−1 �
Ye

Xe
� (44) 

 φ0 = sin−1 �
Ze

R
� (45) 

Where (Xe Ye Ze) is the position vector, and R =
6367449 m is the radius of the earth. 

Linkage Constraints between the ascent and reentry phases 
considered as: 

The initial states, time of reentry phase and the final states, 
time of ascent phase are the same as follows; 

Initial radial distance of the reentry phase will equal to the 
terminal height of the ascent phase plus earth radius 

 x0{5}(1) − (xf{4}(2) + Re) = 0 (46) 

initial longitude of the reentry phase will equal to θ0  

 x0{5}(2) − θ0 = 0 (47) 

initial latitude of the reentry phase will equal to φ0 

 x0{5}(3) −φ0 = 0 (48) 

the initial velocity of the reentry phase will equal to the 
terminal velocity of the ascent phase  

 x0{5}(4) − xf{4}(3) = 0 (49) 

initial flight path angle of the reentry phase will equal to the 
terminal flight path angle of the ascent phase  

 x0{5}(5) − xf{4}(4) = 0 (50) 

Initial azimuth angle of the reentry phase will equal to ψ0 
which is static parameter chose as  

 x0{5}(6) − ψ0 = 0 (51) 

Initial angle of attack of the reentry phase will equal to the 
terminal angle of attack of the ascent phase  

 x0{5}(7) − xf{4}(5) = 0 (52) 

Initial bank angle of the reentry phase will set to be free 
while initial time of the reentry phase will equal to the terminal 
time of the ascent phase  

 t0{5} − tf{4} = 0 (53) 

The performance index chose as the sum of weighting 
control variables squares in phase 2, phase 4 at scent phase and 
phase 5 at reentry phase  to continuous and smoothing the 
control variables along the full path as follows; 

 J =  �K1α̇2
2  +   K2α̇4

2 + K3α̇5
2  +   K4β̇5

2 dt (54) 

Where K1, K2, K3, K4 are weighting parameter for the 
performance index while  α̇2

2, α̇4
2 are the square of the control 

variables for phase 2 and phase 4 at ascent phase while α̇5
2, β̇5

2 
are the square of the control variables on reentry phase. 

V. GAUSS PSEUDOSPECTRAL METHOD FORMULATION 
The theory of GPM discussed in details by David Benson 

[10]. GPM transforms the optimal control problem into an NLP 
problem which is then solved using NLP solver. The principle 
of Gauss pseudospectral method discretizes the state and 
control variables of the dynamics equations at Legendre-Gauss 
(LG) points. Then differentiate the polynomials to approximate 
the derivative of the state variables and convert the differential 
equations to algebraic equations constraints. The integral parts 
of the cost function are approximated using the Gauss 
quadrature. The terminal states determined by the initial states 
and the Gauss quadrature. After the transcription above, the 
optimal control problems converted to nonlinear program 
problems with a series of algebraic equations constraints [8, 
23]. 

 
J = ϕ(x(−1), t0, x(1), tf) +

tf − t0

2
� g(x(τ), u(τ),τ; t0, tf)

1

−1
dτ (55) 

Subjected to: 

 dx
dτ

=
tf − t0

2
f(x(τ), u(τ), τ; t0, tf) (56) 

 Φ(x(−1), t0, x(1), tf) = 0 (57) 

 C(x(τ), u(τ), τ; t0, tf) ≤ 0 (58) 

Where x(τ) ϵ Rn , u(τ) ϵ Rm are the state and control 
variables, respectively; t0, tf   are the initial and final time, 
respectively. The optimal control problem for the above 
equations called continues Bolza problem where time variable 
τ ϵ [−1,1], t ϵ [t0, tf] can be transformed by the following 
equation: 

 t =
tf − t0

2
τ +

tf + t0

2
 (59) 
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       Then the state variable and control variable discretized 
by using a basis of N+1 Lagrange interpolating polynomial  ℒi  
moreover, a basis of N Lagrange interpolating polynomial ℒi

∗ 
then transcribed to a nonlinear programming problem. 

 
x(τ) ≈ X(τ) = �X(τi)ℒi(τi)

N

i=0

 (60) 

Where ℒi(τ)(i = 0, … … . , N)defined as: 

 
ℒi(τ) = �

τ− τj

τi − τj

N

j=0,j≠i

 (61) 

 
u(τ) ≈ U(τ) = �U(τi)ℒi

∗(τi)
N

i=1

 (62) 

 
ℒi
∗(τ) = �

τ− τj

τi − τj

N

j=1,j≠i

 (63) 

Equations (61) and (62) satisfy the properties 
 ℒi(τ) = �1, i = j

0, i ≠ j
�  (64) 

 ℒi
∗(τ) = �1, i = j

0, i ≠ j
� (65) 

Differentiate the expression in Eq.(49)  

 
ẋ(τ) ≈ Ẋ(τ) = � X(τi)ℒ̇i(τi)

N

i=0

 (66) 

The Differential approximation matrix D ∈ RN×N+1 gets the 
derivative of each Lagrange polynomial at Legendre-Gauss 
(LG) points as follows 

 
Dki = ℒ̇i(τk) = �

∏ �τk − τj�N
j=0,j≠i

∏ �τi − τj�N
j=0,j≠i

N

l=0

 (67) 

Where k =  1, … , N and i = 0, … . N the dynamic constraint 
is transcribed into algebraic constraints using the differential 
approximation matrix by; 

 
�Dki

N

i=0

Xi −
tf − t0

2
f(x(τ), u(τ), τ; t0, tf) = 0(k = 1, … , N) (68) 

Where Xk ≡ X(tk)  ∈ Rn  and Uk ≡ U(tk)  ∈ Rm (k =
1, … … , N). The dynamic constraint is collocated only at the 
LG points and not at the boundary points. 

Additional variables in the discretization are defined as 
follows, X0 ≡ X(−1), and Xf ≡ X(1) where  Xf  is defined via 
the Gauss quadrature: 

 
Xf =  X0 +

tf − t0

2
�ωk

N

k=1

f(xk, uk , τk; t0, tf) (69) 

Where ωk  are the Gauss weights. The continuous cost 
function of Eq.(24) is approximated using a Gauss quadrature 
as 

 
J = ϕ(X0, t0, Xf, tf) +

tf − t0

2
�ωk

N

k=1

g(xk, uk, τk; t0, tf) (70) 

Finally, the continuous Bolza optimal control problem 
discretized as follows:   

min  J = ϕ(X0, t0, Xf , tf) + tf−t0
2
∑ ωk

N
k=1 g(xk, uk , τk; t0, tf)         

  s.t.   ∑ Dki
N
i=0 Xi −

tf−t0
2

f(x(τ), u(τ), τ; t0, tf) = 0           

Φ(X0, t0, Xf , tf) = 0                                           

      C(xk, uk, τk; t0, tf) ≤ 0  

VI. SIMULATION AND RESULTS  
Trajectory optimization problem was solved using GPM. In 

GPM the problem was solved as a multiphase single trajectory 
problem using GPOPS® [24] where SNOPT® used as NLP 
solver. 

The method presented above is applied in simulations to the 
full path trajectory optimization (ascent and reentry phases) 
with multi-constraints. For the ascent phase how to reach the 
terminal point that it will be the initial point for the reentry 
phase and also in the reentry phase how to achieve the terminal 
constraints and the linkage between the phases. The 
performance index for the ascent phase is the derivative of the 
angle of attack to control the profile of the angle of attack 
during the ascent phase while for the gilding phase the 
derivatives of the angle of attack and the bank angle used as 
control parameters.  

The following figures show the variation for the different 
states for ascent and reentry phases. For ascent phase only 
include the downrange, mass. For full path trajectory include 
the remaining states, height, velocity, flight path angle, the 
angle of attack. There are other states begin the reentry phase 
like latitude, longitude, azimuth angle and bank angle.  

Figures (1~2) describe the ascent phase only, Figure 1 
represents the down-range which explains the downrange of 
the vehicle during ascent phase and figure 2 represents the 
mass profile explained the mass burning rate for the two stages. 
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Figure 1 down range for ascent trajectory 
 

 

Figure 2 Mass profile for ascent trajectory 
Figures (3~6) describes the full path trajectory 

optimization. Figure 3 represents the height which begins 
from the initial height till it reaches the terminal point 
(70,000 m) of the ascent phase which it will be the initial 
point for the reentry phase till it reaches the terminal 
point of the reentry phase(30,000 m). Figure 4 represents 
the velocity profile of full trajectory which begins from 
the initial velocity and reaches the terminal point of the 
ascent phase (7000 m/s) which it will be the initial point 
for the reentry phase till it reaches the terminal point for 
the reentry phase (2400 m/s). Figure 5 represents the 
flight path angle of full path trajectory which begins from 
90°  vertically and then decreases until it reaches zero at 
the end of the ascent phase, also continue around zero 
between (−1°~1°) at the reentry phase. Finally, figure 6 
for the control variable angle of attack of full path 
trajectory at ascent phase. This phase divided into 4 
phases, the first phase it begins zero and then the second 
phase decreases for maximum −5° then third phase 
increases again to zero for the last phase in ascent it 
increases to be the initial point for reentry phase which it 
is constant in the reentry phase. 

 

Figure 3 Height profile for full trajectory 
 

 

Figure 4 Velocity profile for full trajectory 

 

Figure 5 Flight path angle for full trajectory 
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Figure 6 Angle of attack for full trajectory 
Figures (7~10) describes the reentry phase only for 

latitude, longitude, azimuth angle and bank angle. Figure 
7 represents the azimuth angle for reentry phase where its 
static parameter for the program and its initial point 
chose to meet the constraints, and its terminal point is 
free. Figure 8 represents the bank angle where it is the 
second control variable for reentry phase, initial and 
terminal points are free, and its deviations are little small. 
Figures (9~10) represents the latitude and longitude 
respectively, for their initial points calculated from the 
position vector of the terminal point of the ascent phase 
while the terminal point for latitude fixed as terminal 
constrained for reentry phase equal to 4° while the 
terminal point for longitude is free. 

 

 

Figure 7 Azimuth angle profile for reentry phase 

 

Figure 8 bank angle for reentry phase 

 

Figure 9 Latitude profile for reentry phase 

 

Figure 10 Longitude profile for reentry phase 

VII. SECOND CASE STUDY FOR MAX LATITUDE  
 The objective function in second case study is max 

latitude at the reentry phase for full trajectory without 
suppressing the oscillations in the range profile; the next 
Table 1 represents the different constraints at the initial 
and final points   
Table 1 Initial and Final constraints for max latitude  

Parameter Symbol Initial  
value Symbol Final 

value 
Height  r0 70000 𝑚𝑚 rf  30000 𝑚𝑚 
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Parameter Symbol Initial  
value Symbol Final 

value 
Longitude θ0 0° θf Free 
Latitude φ0 0° 𝛗𝛗𝐟𝐟 Max 

Velocity V0 6900 m/s Vf  
2400 m

/s 
Flight path 
angle γ0 0° γf  0° 

Azimuth 
angle ψ0 65° ψf  Free 

Angle of 
attack α0 Free α0 Free 

Bank angle σ0 Free σf  Free 
 

 
Figure 11 downrange profile for max latitude 

 

 
Figure 12 Height profile for max latitude 

 

 
Figure 13 Velocity profile for max latitude 

 
Figure 14 Flight path angle profile for max latitude 

 

 
Figure 15 Mass profile for max latitude 
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Figure 16 Azimuth angle profile for max latitude 

 
Figure 17 Angle of attack profile for max latitude 

 

 
Figure 18 bank angle profile for max latitude 

 

 
Figure 19 Longitude-Latitude profile for max latitude 

 
Figure 20 Longitude profile for max latitude 

 
Figure 21 Latitude profile for max latitude 

VIII. THIRD CASE STUDY FOR MAX LONGITUDE  
The objective function in third case study is max 

longitude at the reentry phase for full trajectory with 
suppressing the oscillations in the range profile; the next 
Table 2 represents the different constraints at the initial 
and final points   
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Table 2 Initial and Final constraints for max longitude  

Parameter Symbol Initial 
value Symbol Final value 

Height  r0 70000 m rf  30000 m 
Longitude θ0 0° θf Max 
Latitude φ0 0° φf  Free  
Velocity V0 6900 m/s Vf  2400 m/s 
Flight path 
angle γ0 0° γf  0° 

Azimuth 
angle ψ0 65° ψf  Free 

Angle of 
attack α0 Free α0 Free 

Bank 
angle σ0 Free σf  Free 

 
Figure 22 Range profile for full path trajectory 

 

 
Figure 23 Height profile for full path trajectory 

 

 
Figure 24 Velocity profile for full path trajectory 

 
Figure 25 Flight path angle profile for full path trajectory 

 

 
Figure 26 Mass profile for full path trajectory 
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Figure 27 Azimuth profile for full path trajectory 

 
Figure 28 Angle of Attack profile for full path trajectory 

 

 
Figure 29 Angle of Attack profile for full path trajectory 

 

 
Figure 30 Longitude-Latitude profile for full path trajectory 

 

 
Figure 31 Longitude profile for full path trajectory 

 

 
Figure 32 Latitude profile for full path trajectory 
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IX. FOURTH CASE STUDY FOR MAX VELOCITY  
The objective function in Fourth case study is max 

velocity at the reentry phase for full trajectory with 
suppressing the oscillations in the range profile; the next 
Table 3 represents the different constraints at the initial 
and final points   
Table 3 Initial and Final constraints for max velocity  

Parameter Symbol Initial 
value Symbol Final 

value 
Height  r0 70000 𝑚𝑚 rf  Free 
Longitude θ0 0° θf Free 
Latitude φ0 0° φf  4°  
Velocity V0 6900 m/s 𝐕𝐕𝐟𝐟 Max 
Flight path 
angle γ0 0° γf  0° 

Azimuth 
angle ψ0 65° ψf  Free 

Angle of 
attack α0 Free α0 Free 

Bank angle σ0 Free σf  Free 
 

 
Figure 33 Range profile for full path trajectory 

 

 
Figure 34 Height profile for full path trajectory 

 

 
Figure 35 Velocity profile for full path trajectory 

 

 
Figure 36 Flight path angle profile for full path trajectory 
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Figure 37 Mass profile for full path trajectory 

 

 
Figure 38 Azimuth Angle profile for full path trajectory 

 

 
Figure 39 Angle of Attack profile for full path trajectory 

 

 
Figure 40 Bank angle profile for full path trajectory 

 

 
Figure 41 Longitude-Latitude profile for full path trajectory 

 

 
Figure 42 Longitude profile for full path trajectory 
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Figure 43 Latitude profile for full path trajectory 

X. FIFTH CASE STUDY FOR MIN VELOCITY  
The objective function in Fifth case study is min 

velocity at the reentry phase for full trajectory with 
suppressing the oscillations in the range profile; the next 
Table 4 represents the different constraints at the initial 
and final points   
Table 4 Initial and Final constraints for min velocity  

Parameter Symbol Initial 
value Symbol Final 

value 
Height  r0 70000 𝑚𝑚 rf  Free 
Longitude θ0 0° θf Free 
Latitude φ0 0° φf  4°  

Velocity V0 6900 m
/s 𝐕𝐕𝐟𝐟 Min 

Flight path 
angle γ0 0° γf  0° 

Azimuth 
angle ψ0 65° ψf  Free 

Angle of 
attack α0 Free α0 Free 

Bank angle σ0 Free σf  Free 
 

 
Figure 44 Range profile for full path trajectory 

 

 

Figure 45 Height profile for full path trajectory  

 

Figure 46 Velocity profile for full path trajectory 
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Figure 47 Flight path angle profile for full path trajectory 

 
Figure 48 Mass profile for full path trajectory 

 

 
Figure 49 Azimuth angle profile for full path trajectory 

 

 

Figure 50 Angle of attack profile for full path trajectory 

 

 
Figure 51 bank angle profile for full path trajectory 

 

Figure 52 Longitude-Latitude profile for full path trajectory 
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Figure 53 Longitude profile for full path trajectory 

 

 
Figure 54 Latitude profile for full path trajectory 

 

XI. CONCLUSION 
One of the most interesting and challenging problem 

areas for high-speed air-vehicle is that trajectory 
optimization. Most of previous work concentrated only 
for separate phase. In this paper introduced the trajectory 
optimization for double phase -ascent and glide phases- 
for different vehicles. Tittan II dynamics used in ascent 
phase while CAV-H dynamics used in gliding phase also, 
how to initiate the final constraints for the ascent to meet 
the initial requirements for the gliding phase to link the 
two phase with each other. Finally complete analysis for 
full trajectory for different final gliding constraints to 
insure the performance and suitable for different 
problems.    
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