
 

 

  

Abstract—A nonlinear model of the mathematical fluid dynamics 

of the Atmosphere is considered. The model is a generalization of the 

nonlinear Navier-Stokes system with the addition of the equations for 

changeable density, humidity, moisture content in the clouds and heat 

transfer. An explicit algorithm for a weak solution is constructed by 

Galerkin method, the “a priori” estimates for the weak solution are 

obtained and the proof of the existence of the weak solution is given. 
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I. INTRODUCTION 

ET us consider a bounded domain 3RΩ ∈  with a smooth 

boundary, and the following nonlinear system of fluid 

dynamics  
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Here ( )1 2 3
, ,x x x x=  is the space variable, 

( ) ( )4 5 6
, ,́ , ,v x t v v v v= , ( ) ( )1 2 3

´ , , ,v x t v v v=  is the 

velocity field, 4v  is the temperature, 5v  is the humidity, 6v  is 
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moisture content in the clouds, ( , )p x t  is the scalar field of the 

pressure, 1, 2 3 4 5 6( , ) ( , , , , )f x t f f f f f f=  is a known function 

from ( ) [ )2 ,  0,T TL Q Q T= Ω × , 1 0ν >  is the kinematic 

viscosity parameter, 2 0ν >  is the heat conductivity 

coefficient, and , , ,g sω µ  are positive continuous functions of 

x. The system (1) describes the nonlinear motions of three-

dimensional incompressible viscous fluid which is rotating 

over the vertical axis with the angular velocity [ ]0,0,ω ω=
�

, 

also with consideration of moisture, humidity and heat 

transfer. The deduction of the equations (1) for linear non-

viscous case is given, for example, in [1]. For non-linear case 

without the stratification, the equations (1) appear, for 

example, in [2], where the considered model was used for 

numerical calculations. For the simplified case of linearized 

compressible fluid without rotation, the system (1) was studied 

in [3], where the structure and localization of the essential 

spectrum of normal vibrations was established.  Due to the 

presence of the fourth, fifth and sixth equations for the 

unknown functions of temperature, humidity and moisture,and 

also due to the presence of the rotation parameter, the 

equations (1) represent a novelty with respect to classical 

Navier-Stokes equations. In [4], the system (1) was considered 

for four equations without rotation, heat transfer, humidity and 

moisture, and there were established some properties of the 

corresponding weak solution. 

Our aim is to obtain the “a priori” estimates for a weak 

solution of the system (1), to establish the existence and 

uniqueness of the weak solution, as well as to construct an 

explicit algorithm for that solution.  

II. PROBLEM FORMULATION 

If we introduce the following notations; 

( )4 5 6
, , ,v v v v v′=ɶ , 
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then we can write the system (1) as follows. 
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    We associate the system (2) with the conditions 
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0
t
v

v
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in the bounded domain [ ]0,TQ T= Ω × . 

    Let us multiply the system (2) by 2v  in ( )2L Ω : 
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We integrate the last relation by parts and also with respect 

to [ ]0,  :Tτ ∈  
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We denote ( ) ( )1 2sup , , , ,  =min ,
tQ

g s bω µ ν ν ν= < ∞  and 

use the inequalities of Cauchy, Poincare-Friedrichs and the 

obvious estimate ( )2 21

2
ac a c≤ + . Thus, we obtain 
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     After applying Cauchy inequality, we get 
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In this way, we have 
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which, of course, implies the estimate 
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Then, the obtained inequality will take the following form: 

( ) ( ) ( )1 .g t a t C g t′ ≤ +  

Evidently, ( )( ) ( )1 1C t C t
g t e a t e

− −′ ≤ . After integrating the last 

estimate with respect to t , we have  

( ) ( )1 1
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which implies the relations 
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In this way, we get the estimate 
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We observe that it follows from the last relation that the “a 

priori” estimate is valid: 
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where the positive constant C  depends only on , , .b T Ω  

Let us choose an orthonormal complete set of 

functions{ }ku  in the Hilbert functional space  
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Now, let ( ) ( )1 6, ,...,x tΦ = Φ Φ  be test functions from 

( )2 TL Q , which for every 0 t T≤ ≤  belong to the Sobolev 

space ( )
0

1

2W Ω , and which also satisfy the conditions:      

div 0,   0,   0.
t T= ∂Ω

′Φ = Φ = Φ =  

For the weak solution v  we require the same conditions as for 

the functions Φ . We will call ( ),v x t  a weak solution of the 

problem (2), (3), if v  satisfies the integral identity 

   

( ) ( ) ( )

( )( ) ( ) ( )

3 6

1 2

1 4

, , ,

, , , ,

T

T

t i i i i

i iQ

Q

v v v

v v Bv dxdt f dxdt

ν ν
= =

− Φ + ∇ ∇Φ + ∇ ∇Φ +

′+ ⋅∇ Φ + Φ = Φ

∑ ∑∫

∫
              (4) 

for all the functions Φ .  Our aim is to prove the result of the 

existence of the weak solution. 

III. PROBLEM SOLUTION 

To construct the weak solution, we will use the Galerkin 

method. We find the approximate solutions of the problem (2), 

(3) in the following form 

                       ( ) ( ) ( )
1

,
N

N N

k k

k

v x t C t u x
=

= ∑ .                          (5) 

In the system (2) we put Nv v= ,  multiply by 
k
u  in sense of 

( )2L Ω and integrate by parts in Ω . In this way, we obtain a 

Cauchy problem for the system of ordinary differential 

equations of the type 
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( ) ( ),   ,  1.k kF t f u dx k
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To prove that (6) is solvable uniquely, we have to verify the “a 

priori” boundedness of the functions ( ) [ ] ,  0,
N

kC t t T∈ , in the 

norm ( )2L Ω . Evidently, the required property follows from 

the inequalities: 
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The relations (7) are obtained by the same reasoning as in the 

previous section.  It follows from (7) that the Galerkin 

approximations (5) are “a priori” bounded. From the sequence 

{ }
1

N

N
v

∞

=
, keeping in mind the estimates (7), we can choose the 

subsequence { }kNv  which is weakly convergent to some 

function ( ),v x t  in ( )2 TL Q , together with its first derivatives 

with respect to ,  1, 2,3.
k
x k =  The last fact follows from the 

weak compactness of bounded sets in the Hilbert space 

( )2 TL Q . It is easy to see that the subsequence{ }kNv  also tends 

strongly to v  in sense of ( )2 TL Q , which follows from the 

generalized Friedrichs lemma ([5]): 
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Therefore, the sequence{ }kNv   tends strongly to v . 

Now, we have to prove that ( ),v t x is a weak solution. 

From the definition of the Galerkin approximations it follows 

that the following relation is valid 
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for each function ( ) ( )0 0,k t C Tψ ∞∈  and for every 1,..., .k N=  
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Therefore, we have that ( ),v x t  is a weak solution of the 

problem (2)-(3), in other words, the function ( ),v x t  satisfies 

the integral identity (4) with the test functions 

( ) ( ) ( )
1

, .
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N

k k

k

x t t u xψ
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Evidently, the relations  

div 0,  0N Nv v
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are also fulfilled for the limit function ( ),v x t . 

   It remains to verify that ( )2L
v

Ω
 tends strongly to zero as 

0.t →  

   Indeed, since the “a priori” estimates from the previous 

section are valid as well for { }N
v ,  we have, in particular, that 
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As ( ),
N
v x t  tends weakly to v in ( )2L Ω , from the last 

estimate we obtain 
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which implies the property 

( )20
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Lt
v
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 In this way, we have proved the following theorem. 

 

Theorem.  There exists at least one weak solution for the 

problem (2)-(3), which can be found as the limit of the 

approximations (5). 

 

IV. CONCLUSION 

The results of this paper, particularly the explicit algorithm 

for construction of the solution, may be applied in the 

theoretical and computational study of the Atmosphere and the 

Ocean, for the models which consider the rotation of the earth, 

the heat transfer, the humidity and the moisture content.  
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