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Event-Triggered Global Robust Adaptive
Stabilization for a Class of Nonlinear Systems

Wei Liu and Jie Huang

Abstract—In this paper, we study the event-triggered global
robust adaptive stabilization problem for a class of nonlinear
systems with unity relative degree, which contain not only dis-
turbances, but also static parameter uncertainties and dynamic
uncertainties. By combining the robust control technique and
the adaptive control technique, we design a digital control law,
a digital adaptive law, and an event-triggered mechanism to
stabilize the system in the sense that the state of the closed-loop
system is globally ultimately bounded. What’s more, we show
that the Zeno behavior does not happen. Finally, we illustrate
our approach by applying it to the controlled Lorenz system.

Index Terms—Event-triggered control, adaptive control, robust
control, nonlinear systems.

I. INTRODUCTION

Nowadays, in order to take advantage of microchips and
computers in fast computation and signal processing, many
controllers are implemented in digital platforms. In such an
implementation, we first need to sample the states or the out-
puts of the plant, and then we need to compute and implement
the actuator signals. Conventionally, the data sampling and the
control actuator are performed periodically, since this allows
us to design the controller and analyze the stability of the
closed-loop system based on the well-developed theory on
sampled-data systems, see, e.g., [3], [7]. Although periodic
sampling is convenient for us to design the controller and
analyze the stability, it has some drawbacks in utilizing the
limited system resources. Namely, data samplings and control
actuation take place when the system has achieved the control
goal with sufficient accuracy, which is clearly a waste of
the system resources. To overcome these drawbacks, a new
digital control approach called event-triggered control (ETC)
has been proposed, see, e.g., [2], [4], [8], [15]. In ETC, the
data samplings and the control actuation are aperiodic and are
triggered by some specific conditions depending on the states
or the outputs of the plant. As a result, it is more efficient in
balancing the resource utilization and the control performance.
It is worth noting that one main challenge of the ETC is to
guarantee the existence of the minimum inter-execution time.
This is very important, because when the minimum inter-
execution time does not exist, the number of the execution
times may become infinite in finite time, i.e., the so-called
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Zeno behavior happens, which leads to that the ETC scheme
is infeasible for implementation in digital platforms.

Up to now, significant contributions have been made on
the ETC problems for both linear systems and nonlinear
systems. For example, in [8], [15], the event-triggered stabi-
lization problem was studied for linear systems and nonlinear
systems, respectively. In [1], [11], the robust event-triggered
stabilization problem was further studied for nonlinear systems
based on the hybrid control technique and the small gain
theorem technique, respectively. It is noted that one com-
mon assumption in [1], [8], [11], [15] is that there exists
a controller such that the closed-loop system is input-to-
state stable (ISS) with respect to the measurement error.
In [12], the event-triggered global robust output regulation
problem was studied based on the internal model approach. In
particular, reference [17] studied the event-triggered adaptive
control problem for a class of nonlinear systems subject to
linearly parameterized uncertainties by proposing a switching
threshold event-triggered mechanism. Reference [10] studied
the event-triggered adaptive control problem for a class of
parametric strict-feedback nonlinear systems satisfying the
global Lipchitz condition by developing an impulsive adaptive
control law. Some other relevant results can be found in [6],
[13], [16], [19], etc.

In this paper, we will further study event-triggered global
robust adaptive stabilization problem for a class of nonlinear
systems. Compared with the existing results on the ETC
problems for nonlinear systems, the main challenges of our
problem consist of the following three aspects. First, the
systems considered in this paper contain not only distur-
bances, but also static parameter uncertainties and dynamic
uncertainties. Second, we remove the assumption that there
exists a controller such that the closed-loop system is input-
to-state stable (ISS) with respect to the measurement error,
and do not impose the global Lipchitz condition on the
nonlinear functions. Third, our control law and adaptive law
are both digital and thus can be directly implemented in digital
platforms. To overcome these challenges, by combining the
robust control technique and the adaptive control technique,
we design an event-triggered adaptive digital control law and
an event-triggered mechanism to guarantee that the state of
the closed-loop system is globally ultimately bounded and the
Zeno behavior does not happen.

Notation. Denote col(c1, ..., cs) = [cT1 , ..., c
T
s ]

T , where ci,
i = 1, ..., s, are any column vectors. ∥·∥ denotes the Euclidean
norm of a vector or the induced norm of a matrix. The set of
all nonnegative integers is denoted by Z+. The base of the
natural logarithm is denoted by e. The maximum eigenvalue
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and the minimum eigenvalue of a symmetric real matrix A are
denoted by λmax(A) and λmin(A), respectively. In this paper,
we use the notation x to denote x(t) for simplicity when no
ambiguity occurs.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we consider the following class of nonlinear
systems:

ż = f(z, y, d)

ẏ = g(z, y, d) + bφT (y)θ + bu
(1)

where z ∈ Rnz and y ∈ R are the states, u ∈ R is the
input, d : [0,∞) → D ⊂ Rl1 with D a compact set represents
the disturbance, θ ∈ Rl2 is the unknown constant parameter,
the parameter b is an unknown positive real number, the
functions f(·), g(·) and φ(·) are sufficiently smooth and satisfy
f(0, 0, d) = 0 and g(0, 0, d) = 0 for all d ∈ D. As noted in
[5], the inverse dynamics governing z in (1) can be viewed as
the dynamic uncertainty.

Then we consider an adaptive control law of the following
form

u(t) = f̂(θ̂(tk), y(tk), tk)

˙̂
θ(t) = ĝ(θ̂(t), y(tk), tk), ∀t ∈ [tk, tk+1), k ∈ Z+

(2)

where f̂(·) and ĝ(·) are some nonlinear functions, θ̂ ∈ Rl2 is
the estimation of the unknown parameter θ, and the triggering
time instants tk with t0 = 0 are determined by an event-
triggered mechanism of the following form

tk+1 = inf{t > tk | h(θ̃(t), ỹ(t), θ̂(t), y(t)) ≥ δ} (3)

where h(·) is some nonlinear function, δ > 0 is some constant,
and

ỹ(t) = y(tk)− y(t)

θ̃(t) = θ̂(tk)− θ̂(t), ∀t ∈ [tk, tk+1), k ∈ Z+.
(4)

The structure of the event-triggered closed-loop system is
shown in Figure 1.

Remark 2.1: The control law (2) is called as an adaptive
event-triggered control law. As will be seen from Remark 3.1
that we can further discretize the adaptive law in (2) and get
an equivalent digital adaptive control law as follows:

u(t) = f̂(θ̂(tk), y(tk), tk)

θ̂(tk+1) = ḡ(θ̂(tk), y(tk), tk)
(5)

for any t ∈ [tk, tk+1) with k ∈ Z+. It is noted that the control
law in [17] is piecewise constant but the adaptive law in [17] is
still continuous and depends on the continuous-time states of
the plant, whereas here both the control law and the adaptive
law in (5) have the discrete-time form and only depend on the
sampled output y(tk) and state θ̂(tk), and thus can be directly
implemented in a digital platform.

Fig. 1: Structure of the event-triggered closed-loop system.

Let

θ̄(t) = θ̂(t)− θ

xc(t) = col(z(t), y(t), θ̂(t))
x̄c(t) = col(z(t), y(t), θ̄(t)).

(6)

Then we formulate our problem as follows.
Problem 2.1: Given the plant (1), and some compact subset

D ⊂ Rl1 , design a control law of the form (2) and an event-
triggered mechanism of the form (3) such that, for any d ∈ D,
and any initial states z(0), y(0), θ̂(0),

1) the solution xc(t) of the closed-loop system composed
of (1) and (2) exists and is bounded for all t ≥ 0;

2) limt→∞ sup ∥x̄c(t)∥ ≤ ϵ for some real number ϵ > 0.
Remark 2.2: Problem 2.1 is called as the event-triggered

global robust adaptive stabilization problem. It is worth men-
tioning that the global robust adaptive stabilization problem
for the system (1) has been studied in Section 5.3.1 of [5]
by a continuous-time adaptive control law. Compared with the
result in Section 5.3.1 of [5], our problem is more challenging
in the following three ways. First, we need to design a digital
adaptive control law instead of the analog adaptive control law
in [5], and we also need to design an extra event-triggered
mechanism to determine the triggering time sequence {tk}.
Second, we need to make an extra effort to prevent the Zeno
behavior from happening. Third, under the event-triggered
control, the closed-loop system is hybrid, which results in
that the stability analysis of the closed-loop system is more
complex.

To solve our problem, we introduce two standard assump-
tions as follows.

Assumption 2.1: There exist some known positive real
numbers bm and bM such that bm ≤ b ≤ bM .

Assumption 2.2: For any compact subset D ⊂ Rl1 , there
exists a C1 function V (z) such that, for any d ∈ D, and any
z and y,

α(∥z∥) ≤ V (z) ≤ ᾱ(∥z∥) (7)

∂V (z)

∂z
f(z, y, d) ≤ −α(∥z∥) + γ(y) (8)

where α(·), ᾱ(·) and α(·) are some known class K∞ functions
with α(·) satisfying lims→0+ sup(s2/α(s)) < ∞, and γ(·) is
a known smooth positive definite function.
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Remark 2.3: Assumptions 2.1 and 2.2 are the same as
Assumptions 5.1 and 5.2 of [5]. Under Assumption 2.2, the
subsystem ż = f(z, y, d) is input-to-state stable (ISS) with y
as the input [14].

III. MAIN RESULT

In this section, we will present our main result.
First, we introduce some notation. Let

v(t) = −φT (y(t))θ̂(t)− ρ(y(t))y(t)

ψ(t) = y(t)φ(y(t))
(9)

where ρ(·) is a positive function which will be specified later.
Then we consider the following adaptive control law

u(t) = v(tk)

˙̂
θ(t) = Λψ(tk)− aΛθ̂(t), ∀t ∈ [tk, tk+1), k ∈ Z+

(10)

where a is a positive real number and Λ is a positive definite
matrix.

Remark 3.1: Note that the control law (10) can be further
discretized into the following form

u(t) = v(tk)

θ̂(tk+1) = e−aΛ(tk+1−tk)θ̂(tk)

+

∫ tk+1

tk

e−aΛ(tk+1−τ)dτΛψ(tk).

(11)

Clearly, the control law (11) has the same form as (5) and can
be directly implemented in a digital platform. Since the control
law (11) is equivalent to the control law (10), for convenience,
we will still use the control law (10) to analyze the closed-loop
stability.

Next, we further define

ṽ(t) = v(tk)− v(t)

ψ̃(t) = ψ(tk)− ψ(t), ∀t ∈ [tk, tk+1), k ∈ Z+.
(12)

Then we consider the following event-triggered mechanism

tk+1=inf{t>tk | |ṽ|2+ bM
a

∥ψ̃∥2−σρ(y)y2≥δ} (13)

where σ > 0 and δ > 0 are some real numbers. Note that,
under the event-triggered mechanism (13), we have

|ṽ|2 + bM
a

∥ψ̃∥2 ≤ σρ(y)y2 + δ (14)

for any t ∈ [tk, tk+1) with k ∈ Z+.
The closed-loop system composed of (1) and (10) can be

put into the following form:

ż = f(z, y, d)

ẏ = g(z, y, d) + bφT (y)θ + b(ṽ + v)

˙̂
θ =Λ(ψ̃ + ψ)− aΛθ̂, ∀t ∈ [tk, tk+1), k ∈ Z+.

(15)

According to (6), we have

x̄c(t) = xc(t)−

 0nz×1

0
θ

 . (16)

Clearly, the existence of the solution x̄c(t) immediately im-
plies the existence of the solution xc(t), so next we will focus
on the x̄c(t) system. For this purpose, we further let

fc(x̄c, ṽ, ψ̃, d)=

 f(z, y, d)
g(z, y, d)+bφT (y)θ+b(ṽ + v)

Λ(ψ̃ + ψ)− aΛ(θ̄ + θ)


for any t ∈ [tk, tk+1) with k ∈ Z+. Then we obtain the
following compact form:

˙̄xc =fc(x̄c, ṽ, ψ̃, d). (17)

Suppose that the solution x̄c(t) of (17) is right maximally
defined for all t ∈ [0, TM ) under the event-triggered mecha-
nism (13), where 0 < TM ≤ ∞. Then we give the following
lemma.

Lemma 3.1: Under Assumptions 2.1 and 2.2, there exists
a C1 function U(x̄c), such that, for any d ∈ D, and any x̄c,

γ(∥x̄c∥) ≤ U(x̄c) ≤ γ̄(∥x̄c∥) (18)

∂U(x̄c)

∂x̄c
fc(x̄c, ṽ, ψ̃, d)

≤− am∥x̄c∥2, ∀∥x̄c∥ ≥

√
δ + abM∥θ∥2

am

(19)

where am is a positive real number to be specified later, γ(·)
and γ̄(·) are two class K∞ functions.
Proof: First, under Assumption 2.2, by applying the changing
supply pair technique in [14], for any smooth function ∆(z) ≥
0, there exists a C1 function V̄ (z), such that, for any d ∈ D,
and any z, y,

β(∥z∥) ≤ V̄ (z) ≤ β̄(∥z∥) (20)

∂V̄ (z)

∂z
f(z, y, d) ≤ −∆(z)∥z∥2 + β(y)y2 (21)

where β(·) and β̄(·) are some known class K∞ functions, and
β(·) is some known smooth positive function.

Let

U(x̄c) = V̄ (z) +
1

2
y2 +

1

2
bθ̄TΛ−1θ̄. (22)

Clearly, U(x̄c) is positive definite and radially unbounded.
Thus there exist two class K∞ functions γ(·) and γ̄(·) such
that (18) is satisfied.

Since g(0, 0, d) = 0 for all d ∈ Rl1 , by Part (ii) of Corollary
11.1 of [5], there exist two sufficiently smooth functions
π(z) ≥ 0 and ϖ(y) ≥ 0 such that, for any d ∈ D, and any
z, y,

|g(z, y, d)| ≤ π(z)∥z∥+ϖ(y)|y|. (23)
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Then, according to (9), (12), (15) and (23), we have

yẏ =y(g(z, y, d) + bφT (y)θ + b(ṽ + v))

≤|y|π(z)∥z∥+ϖ(y)y2 + by(φT (y)θ

+ v + ṽ)

≤1

4
y2 + π2(z)∥z∥2 +ϖ(y)y2 + by(φT (y)θ

− φT (y)θ̂ − ρ(y)y + ṽ)

≤1

4
y2 + π2(z)∥z∥2 +ϖ(y)y2 − byφT (y)θ̄

− bmρ(y)y
2 +

b2M
4
y2 + |ṽ|2

=π2(z)∥z∥2 − (bmρ(y)−
1 + b2M

4
−ϖ(y))y2

− byφT (y)θ̄ + |ṽ|2.

(24)

Also, according to (6), (9) and (15), we have

bθ̄TΛ−1 ˙̄θ =bθ̄TΛ−1 ˙̂θ

=bθ̄TΛ−1(Λ(ψ̃ + ψ)− aΛθ̂)

=bθ̄T (ψ̃ + ψ − aθ̂)

=bθ̄T (yφ(y) + ψ̃ − aθ̄ − aθ)

≤byφT (y)θ̄ + b(
a

4
∥θ̄∥2 + 1

a
∥ψ̃∥2)

− ab∥θ̄∥2 + ab(
1

4
∥θ̄∥2 + ∥θ∥2)

≤byφT (y)θ̄ − 1

2
abm∥θ̄∥2

+
bM
a

∥ψ̃∥2 + abM∥θ∥2.

(25)

Combining (14), (21), (24) and (25), we have

∂U(x̄c)

∂x̄c
fc(x̄c, ṽ, ψ̃, d)

≤−∆(z)∥z∥2 + β(y)y2 + π2(z)∥z∥2

− (bmρ(y)−
1 + b2M

4
−ϖ(y))y2

− byφT (y, t)θ̄ + |ṽ(t)|2 + byφT (y, t)θ̄

− 1

2
abm∥θ̄∥2 + bM

a
∥ψ̃(t)∥2 + abM∥θ∥2

=− (∆(z)− π2(z))∥z∥2 −
(
bmρ(y)−

1 + b2M
4

−ϖ(y)− β(y)

)
y2 − 1

2
abm∥θ̄∥2

+ |ṽ(t)|2 + bM
a

∥ψ̃(t)∥2 + abM∥θ∥2

≤− (∆(z)− π2(z))∥z∥2 −
(
(bm − σ)ρ(y)

− 1 + b2M
4

−ϖ(y)− β(y)

)
y2 − 1

2
abm∥θ̄∥2

+ δ + abM∥θ∥2.

(26)

Choose

0 < σ < bm

∆(z) ≥ π2(z) + a1

ρ(y) ≥ 1

bm − σ
(
1 + b2M

4
+ϖ(y) + β(y) + a2)

(27)

where a1, a2 are some positive real numbers, and further let

a3 =
1

2
abm,

am =
1

2
min{a1, a2, a3}.

(28)

Then we have

∂U(x̄c)

∂x̄c
fc(x̄c, ṽ, ψ̃, d)

≤− (a1∥z∥2 + a2y
2 + a3∥θ̄∥2)) + δ + abM∥θ∥2

≤− 2am(∥z∥2 + y2 + ∥θ̄∥2) + δ + abM∥θ∥2

=− 2am∥x̄c∥2 + δ + abM∥θ∥2

≤− am∥x̄c∥2, ∀∥x̄c∥ ≥

√
δ + abM∥θ∥2

am

(29)

which ends the proof. �
Remark 3.2: Clearly, Lemma 3.1 implies that, for any

x̄c(0), the state x̄c(t) of the closed-loop system (17) satisfies

∥x̄c(t)∥ ≤ max{

√
δ + abM∥θ∥2

am
, γ−1(γ̄(∥x̄c(0)∥))}

for any t ∈ [0, TM ).
Based on Lemma 3.1 and Remark 3.2, we obtain the main

result as follows.
Theorem 3.1: Under Assumptions 2.1 and 2.2, Problem 2.1

for the system (1) is solvable by the event-triggered adaptive
control law (10) under the event-triggered mechanism (13).
Proof: First, we will show that the solution xc(t) of the closed-
loop system (17) will exist for all t ≥ 0, i.e., TM = ∞ and thus
excluding the Zeno behavior. For this purpose, we consider the
following two possible cases for the triggering time sequence
{tk}:

1) the number of the triggering time instants is finite over
t ∈ [0, TM );

2) the number of the triggering time instants is infinite over
t ∈ [0, TM ).

For Case 1), the Zeno behavior obviously does not happen,
and there is a finite time tk∗ such that the closed-loop system
(17) becomes a time-invariant continuous-time system for all
t ∈ [tk∗ , TM ). Together with Remark 3.2, we conclude that
TM = ∞.

For Case 2), if we show limk→∞ tk = ∞, then TM = ∞.
According to (13), we have

lim
t→t−k+1

(|ṽ(t)|2 + bM
a

∥ψ̃(t)∥2)

≥ lim
t→t−k+1

(σρ(y(t))y2(t) + δ) ≥ δ, k ∈ Z+.
(30)
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Besides, for any t ∈ [tk, tk+1) with k ∈ Z+, we have

d

(
|ṽ(t)|2 + bM

a ∥ψ̃(t)∥2
)

dt

=2ṽ(t) ˙̃v(t) + 2
bM
a
ψ̃T (t)

˙̃
ψ(t)

=− 2ṽ(t)v̇(t)− 2
bM
a
ψ̃T (t)ψ̇(t)

(31)

where

v̇(t) =−
(
∂φ(y)

∂y
ẏ

)T

θ̂ − φT (y)
˙̂
θ

−
(
∂ρ(y)

∂y
y + ρ(y)

)
ẏ

ψ̇(t) =ẏφ(y) + y
∂φ(y)

∂y
ẏ.

(32)

From Remark 3.2, we know x̄c(t) is bounded for all t ∈
[0, TM ), which means that z(t), y(t), θ̂(t) are bounded for all
t ∈ [0, TM ). Based on (9) and (12), we conclude that ṽ(t) and
ψ̃(t) are bounded for all t ∈ [0, TM ). In addition, d(t) ∈ D is
also bounded for all t ∈ [0,∞). Based on (15), we conclude
that ż(t), ẏ(t) and ˙̂

θ(t) are also bounded for all t ∈ [0, TM ),
and thus v̇(t) and ψ̇(t) are bounded for all t ∈ [0, TM ). As a
result, there exists a positive real number c0 such that, for all
t ∈ [0, TM ),

d

(
|ṽ(t)|2 + bM

a ∥ψ̃(t)∥2
)

dt
≤ c0.

(33)

Inequalities (30) and (33) implies

c0(tk+1 − tk) ≥|ṽ(t−k+1)|
2 +

bM
a

∥ψ̃(t−k+1)∥
2

−
(
ṽ(tk)|2 +

bM
a

∥ψ̃(tk)∥2
)

≥δ − 0 = δ

(34)

for any k ∈ Z+. Therefore, we have

tk+1 − tk ≥ δ

c0
(35)

for any k ∈ Z+. Clearly, the Zeno behavior also does not
happen. Also, note that, under Case 2), the number of the
triggering time instants is infinite. Thus we can conclude that
limt→∞ tk = ∞, which further implies TM = ∞.

Since the solution xc(t) of the closed-loop system (17)
exists for all t ∈ [0,∞), according to Theorem 4.18 of [9]
and Lemma 3.1 here, we have

lim
t→∞

sup ∥x̄c(t)∥ ≤ ϵ (36)

with ϵ = γ−1(γ̄(
√

δ+abM∥θ∥2

am
)), that is to say, x̄c(t) is

globally ultimately bounded with the ultimate bound ϵ. �
Remark 3.3: Note that the ultimate bound ϵ depends

on both the design parameters δ, a, a1, a2 and the system
parameters bm, bM , θ. It is easy to see that the ultimate bound
ϵ can be reduced by decreasing δ or adjusting a, a1, a2. In
addition, from (35), we can see that lager design parameter δ
leads to larger inter-execution time interval and thus leads to
less triggering number.

IV. AN EXAMPLE

Consider the controlled Lorenz system taken from [18] as
follows:

ż1 = c1z1 + c2y

ż2 = c3z2 + z1y

ẏ = c4z1 − z1z2 + θy + u

(37)

where b = 1, θ is some unknown constant parameter, ci(t) =
c̄i+di(t), for i = 1, 2, 3, 4, are some time-varying parameters
with c̄ = col(c̄1, · · · , c̄4) = col(−10, 10,−8

3 , 28) denoting the
nominal value and d(t) = col(d1(t), · · · , d4(t)) denoting the
disturbance or uncertainty. Clearly, the system (37) is in the
form of (1) with

z = col(z1, z2), φ(y) = y

f(z, y, d) =

[
c1z1 + c2y
c3z2 + z1y

]
g(z, y, d) = c4z1 − z1z2.

Here we assume that d(t) ∈ D = {d = col(d1, · · · , d4) ∈
R4 | |di| ≤ 0.5, i = 1, 2, 3, 4}.

Clearly, Assumption 2.1 is satisfied. To verify Assumption
2.2, we let

V (z) =
1

2
z21 +

1

4
z41 +

1

2
z22 . (38)

Since V (z) is positive definite and radially unbounded, there
exist two class K∞ functions α(·), ᾱ(·) such that (7) is
satisfied. Also, it is possible to show that, along the trajectory
of the z-subsystem of (37),

V̇ (z) ≤− 4.25z21 − 1.375z41 − 1.66z22

+ 5.5y2 + 2.625y4
(39)

which implies (8) is also satisfied. Thus Assumption 2.2 is
satisfied.

Then, by Theorem 3.1, we can design an event-triggered
adaptive control law of the form (10) and an event-triggered
mechanism of the form (13) with a = 1, σ = 0.2, δ = 0.1,
Λ = 1 and ρ(y) = 50 + 15y2.

Simulation is performed with the parameter θ = −1, the
disturbance d(t) = col(0.2 sin(0.3t), 0.4, 0.5 cos(0.3t),−0.3)
and the initial condition

[z1(0), z2(0), y(0), θ̂(0)] = [0.82,−1.65, 0.47,−1.42].

Figures 2 shows the trajectories of the states z1, z2, y, and θ̂.
Figure 3 shows the control input signal u(t). Figure 4 shows
the event-triggered condition. It can be easily seen that all the
states are globally ultimately bounded and the control input
signal u(t) is piecewise constant. Thus the event-triggered
global robust adaptive stabilization problem for the Lorenz
(37) is solved satisfactorily.
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V. CONCLUSION

In this paper, we have studied the event-triggered global
robust adaptive stabilization problem for a class of nonlinear

systems subject to disturbances, static parameter uncertainties
and dynamic uncertainties. By integrating the robust control
technique and the adaptive control technique, we have de-
signed an implementable digital adaptive control law and an
event-triggered mechanism to solve the problem, and shown
that the Zeno behavior can be avoided. In the future, we will
consider extending our result to the nonlinear systems with
higher relative degree.
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[3] K. J. Åström, B. Wittenmark, Computer controlled systems. Prentice Hall,
Upper Saddle River, 1977.
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