
 

 

  
Abstract—Enhanced linear matrix  inequality form of design 

conditions for the observer-based state control of the continuous-time 
linear systems is presented in the paper. The design conditions are 
formulated in an enhanced bounded real lemma structure, 
documenting that the controller and observer parameter separation 
does not limit the design for systems with unknown disturbance. It is 
shown that the proposed design conditions provide better results 
considering the closed-loop system performances. 
 

Keywords—continuous-time linear systems, feedback control 
systems, linear matrix inequalities, observer-based control, state 
observers.  

I. INTRODUCTION 
In the control theory, the linear state feedback technique can 

be exploited under the assumption that all state variables are 
accessible. If this assumption is not valid, the feedback control 
law can be generated via an estimate of the system state vector,  
and control for systems with incomplete state measurements is 
equivalent to constructing observer-based state controllers.  

Exploiting the separation principle, the two independent 
procedures are used to compute the observer and controller 
gain matrices for observer-based control of systems with 
inaccessible states. Nevertheless, for systems with unknown 
disturbances, there is no generic design approach [1], [8]. The 
more details, respecting the application conditioned distinc-
tions in design conditions, can be found, e.g., in [10], [12]. 

The unknown disturbance is another important factor which 
could be considered in design, and the observers estimating 
both the system states and the disturbances can be used [7]. In 
such a case, also the overall stability of the system with the 
controller, and the enhanced observer producing the state and 
disturbance estimation, has to be ensured [5]. 

Motivated by the above  facts, a new design methodology is 
proposed in the paper. By using the slack-matrix  approach,  
an enhanced LMI formulation gives the possibility to design 
both the control law and the observer gain matrices, being out 
of substantially expansion of LMI dimensionality.   
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II. PROBLEM FORMULATION 
Through this paper the task is concerned with design of the 

observer-based state feedback which controls the linear system 
given by the set of state equations 
    ( ) ( ) ( ) ( )t t t t= + +q Aq Bu Ed                                             (1) 

( ) ( )t t=y Cq                                                                       (2) 
where ( ) ,nt ∈q  ( ) ,rt ∈u  ( ) mt ∈y  are vectors of the state, 
input and output variables, respectively, and ,n xn∈A   

,n xr∈B  ,m xn∈C  .n x p∈E   
The problem of the interest is to design a stable closed-loop 

system using the observer-based state feedback control 
 ( ) ( )et t= −u Kq                                                                      (3) 
while r xn∈K  and the Luenberger observer is defined as 

( ) ( ) ( ) ( ( ) ( ))e e et t t t t= + + −Aq Bu y yq J                             (4) 
( ) ( )e et t=y Cq                                                                    (5) 

where ( ) n
e t ∈q  is the observer state vector, ( ) m

e t ∈y   is the 
output vector estimate and n xm∈J  is the observer gain 
matrix. It is considered in the following that (A,B) is 
controllable and (A,C) is observable. 
Lemma1: The common state-space description of the observer 
based state control takes the form  

( ) ( ) ( )eo o eo ot t t= +q A q E d                                                  (6) 
( ) ( )o eot t=y C q                                                                   (7) 

where 
[ ]( ) ( ) ( ) ,T T T

eo e ot t t = = q q e C C C                                 (8) 

,c
o o

e

   = =     
A JC 0A E0 A E                                                (9) 

,c e= − = −A A BK A A JC                                            (10) 
while , ,n

c e
xn∈A A 

2 2 ,n
o

x n∈A 

2 ,m
o

x n∈C 

2 ,o
n x p∈E   

respectively.  

Proof: Defining the error of the state estimate as 
  ( ) ( ) ( )et t t= −e q q                                                              (11) 

then, substituting (3) into (4) and exploiting (11), (2), (5) it can 
obtain from (4) that 

 ( ) ( ) ( ) ( )e et t t= − +A B q JCeq K                                        (12) 
and, moreover, from (1), (4) that 

 ( ) ( ) ( ) ( )t t t= − +e A JC e Ed                                             (13) 
Then, using the notation (10), it can write  
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( ) ( ) ( )( ) ( )
ce e

e

t t tt t
      = +           

A JCq q 0 d0 A Ee e




                             (14) 

[ ] ( )( ) ( )
e tt t

 =   
qy C C e                                                         (15) 

 Thus, with the notations (8), (9) then (14), (15} imply (6), (7). 
This concludes the proof.                                                        ∎ 

It is evident from (9) that if ( ) ,t =d 0 then the separation 
principle yields and the controller and the observer gains K, J 
can be designed independently [9]. 

III. BASIC PRELIMINARIES 
To motivate the technique used in the paper, some related 
results are recalled at first. 

Proposition 1: [1] (Lyapunov inequality) The autonomous 
part of (1) is asymptotically stable if there exists a symmetric 
positive definite matrix ,n xn∈P   or a symmetric positive 
definite matrix n xn∈V  such that 

0, 0T T= > + <P P A P PA                                            (16) 
0, 0T T= > + <V V VA AV                                            (17) 

Proposition 2: [2] (Schur complement) Let ,T=Q Q  
,T=R R det 0,≠R and S are real matrices of appropriate 

dimensions,  then the following inequalities are equivalent 

 

1

1

0 0

0, 0

T

T

T

−

−

   < ⇔ <   − −
+

+

   

< >

Q SR S

Q S

Q S 0
S R 0 R

R RS
                         (18) 

             Proposition 3:  [4] Given a stable system (1),(2) then 
2

0

( ( ) ( ) ( ) ( ))d 0T Tt t t t tγ
∞

− >∫ y y u u                                     (19)                         

where the positive scalar γ ∈  is the H∞ norm of the transfer 
function matrix 1( ) ( ) .ns s −= −G C I A B  

IV. CONTROL SYNTHESIS VIA ENHANCED SET OF LMIS 
The enhanced technique for interaction accounting is devised 
in the computation in the frame of the feasible LMIs. 

Theorem 1: The closed-loop system and the state observer are 
stable if for given positive scalar δ ∈  there exist symmetric 
positive definite matrices 1 1 2 2, , , ,n xn∈R S P Q  matrices 

r xn∈Y  , n xm∈Z  and a positive scalar γ ∈ such that 

1 1 2 2 2 20, 0, 0T T T= > = > = >R R Q Q P P                       (20)  

1 1 0, 0T γ= > >S S                                                          (21)  

1

2

2 2

1

(1,1)
(2,2)

(3,1) 2
0(4,2) 2

T

n n
T T T T

p

m

δ δ
δ δ

δ δ γ
γ

∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗
 − ∗ ∗ ∗  <− − − ∗ ∗ 
 − ∗
 

−  

V
A U

V R
I U I Q

E E Q E E Q I
CR C 0 0 0 I

A
      (22) 

where 

 1 1(1,1) T T T= + − −V AR R A BY Y B                                  (23) 

1 1 1(3,1) δ δ= − + −V S R AR BY                                       (24) 

2 2(2, 2) T T T= + − −U Q A A Q ZC C Z                                (25) 

2 22(3,1) δ δ= − + −U P Q Q A ZC                                      (26) 

When the above conditions hold, then 
1 1

1 2,− −= =K YR J Q Z                                                      (27) 

 Hereafter, ∗ denotes the symmetric item in a symmetric 
matrix. 

Proof: Defining the Lyapunov function as follows 

1 2

0

( ( )) ( ) ( )

( ( ) ( ) ( ) ( ))d 0

T
eo eo

t
o eo

T T

v t t t

v v v v vγ γ−

= +

+ − >∫

q q P q

y ddy
                          (28) 

where 2 2
o

n x n∈P   is a symmetric positive definite matrix, 
then (19) implies there exists such  a positive γ ∈   that (28) 
is positive. Thus, evidently, the forward difference of (28) has 
to satisfy the condition 

1

( ( )) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 0

T T
eo eo o eo eo o eo

T T

v t t t t t
t t t tγ γ−

= + +
+ − <

q q P q q P
d

q
y y d

 

                      (29) 

Writing (6) as follows 

( ) ( ) ( )o eo o eot t t+ − =A q E d q 0                                           (30) 

it is evident that with arbitrary matrices 2
2

1
2,o o
n x n∈Q Q  it 

yields 

       1 2( ( ) ( ) )( ( ) ( ) ( )) 0T T
eo o eo o o eo o eot t t t t+ + − =q Q q Q A q E d q        (31) 

Therefore, for the sake of completeness, adding (31) and its 
transposition to (29), it is readily seen that the difference of the 
Lyapunov function takes the form 

1 2

1 2
1

( ( )) ( ) ( ) ( ) ( )
( ( ) ( ) )( ( ) ( ) ( ))
( ( ) ( ) ( )) ( ( ) ( ) )

( ) ( ) ( ) ( ) 0

T T
eo eo o eo eo o eo
T T
eo o eo o o eo o eo

T T T T
o eo o eo eo o eo o

T T

v t t t t t
t t t t t

t t t t t
t t t tγ γ−

= + +
+ + + − +
+ + − + +
+ − <

q q P q q P q
q Q q Q A q E d q
A

d
q E d q q Q q Q
y y d

 

 

 

  (32) 

  Grouping the variable vectors in the way that  

( ) ( ) ( ) ( )T T T T
eoc eo eot t t t =  q q q d                                    (33) 

then the inequality (32) can be written equivalently as  

( ) ( ) 0T
eoc oc eoct t <q P q                                                        (34) 

where 
1

1 1

1 2 2 2

1 2

= 0

T T T
o o o o o o

T T
o o o o o o

T T T T
o o o o

oc

p

Q Q
γ

γ

− ∗ ∗
 

+ +
− + − ∗ < 

 − 

−
C C Q A A Q
P Q Q A

Q
P

E E IQ
  (35) 
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and, using the Schur complement property, then (35) implies 

1 1

1 2 2 2

1 2

 0

T T
o o o o

T T
o o o o o o

T
p

m

T T T
o o o o

o

γ
γ

 ∗ ∗ ∗
 

∗ ∗  < − ∗
 

− 

+
− + − −



E E I

Q A A Q
P Q Q A

C

Q

0 I
Q Q

0

Q
            (36) 

As a matter of fact, it can be regarded that 

 1 1 12
1

2 2

,o o
   

= =   
   

P Q Q
P Q

P 0 Q
                                 (37) 

where 1 2 1 2, , , n xn∈P P Q Q  are symmetric positive definite ma-
trices and it is evident that it yields 

1 12
1

2

1 1 12

2

( (
(

) )
)

o o
   = =     

+ =

−
−

  
− −

−

A BK
A JC

A BK A JC
A J

Q Q JCQ A 0 Q 0
Q Q JC

C
Q

0 Q

                         (38) 

1 12 12
1

2 2
o o

    = =        
Q Q Q E0Q E 0 Q E Q E                                    (39) 

Thus, setting, 

12 1 2 1, o oδ= =Q Q Q Q                                                    (40) 

where a positive δ ∈  is the tuning parameter, then  it is 
obtained 

1 1 1
1 1

2 2
,o o o

c
o

e

   = =     
Q Q A Q EQ A Q E0 Q Q E

A
A                      (41) 

1 1
1 1

1 2

2
2

T
o

o

 + =   
Q QQ Q Q Q                                                  (42) 

 and, in consequence, the inequality (36) can be reconfigured as 

1

1 1

1 1 2

1 2 1 2

(1,1)
(2,2)

(3,1) 2
0(4,2) 2

T

T T T T
p

m

δ δ
δ δ

δ γ γ
γ

∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗
 − ∗ ∗ ∗  <− − − ∗ ∗ 
 − ∗
 

−  

U
A Q U

U Q Q
Q U Q Q

E Q E Q E Q E Q I
C C 0 0 0 I

A
   (43) 

where 

1 1

2 2 2 2 2

1 1 1(1,1) (3,1)
(2,2) , ( 2

,
4, )e

c

e

T
c c

T
e

δ
δ

= + = − +
= + = − +

U Q A A Q U P Q Q A
U Q A A Q U P Q Q A

     (44) 

To eliminate bilinear matrix elements in (43), the positive 
definite transform matrix 4 4( ) ( )n p m x n p m+ + + +∈T  can be defi-
ned as 

1
1 1 1 1diag ,n n n p m

− = = T R I R I I I I R Q             (45) 

Then, pre-multiplying the left side and post-multiplying the 
right-side, the inequality (43) gives 

1

2

2 2

1

(1,1)
(2,2)

(3,1) 2
0(4,2) 2

T

n n
T T T T

p

m

δ δ
δ δ

δ δ γ
γ

∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗
 − ∗ ∗ ∗  <− − − ∗ ∗ 
 − ∗
 

−  

V
A U

V R
I U I Q

E E Q E E Q I
CR C 0 0 0 I

A
    (46) 

where (2, 2)U and (4,2)U  are given above, 

1 1 1 1 1(1,1) (3,1),T
c c cδ= + = − +V A R A V S R AR R           (47) 

 and 

 1 1 1 1=S R P R                                                                      (48) 

Writing as follows 

1 1 1 = ( - )  =  - cA R A GK R AR GY                                       (49) 

2 2 2 = ( - ) =  - eQ A Q A JC Q A ZC                                      (50) 

 where 

1 2,= =Y KR Z Q J                                                        (51) 

 then (46) implies (22) and (44), (47) imply (23)-(26). This 
concludes the proof.                                                                ∎ 

Remark 1: It should be emphasized that only the use of the 
slack matrix principle, as it is applied above, makes it possible 
to create a set of linear matrix inequalities for the defined 
synthesis task. A disadvantage in the design of observer-based 
control of continuous-time linear systems is the occurrence of 
the positive tuning parameter δ ∈ , whereas for given 1δ =  
solutions may be ill conditioned. 

Corollary 1: If the separation principle is used, considering 
that ( ) ,t =d 0 after applying (10) into (17) and (16), it yields 

( ) ( ) 0T− + − <A BK V V A BK                                         (52) 

( ) ( ) 0T− + − <P A JC A JC P                                          (53) 

Therefore, using the notations 

,= =Y KV Z PJ                                                           (54) 

the closed-loop system, as well as the state observer, are 
independently stabilizable if there exist symmetric positive 
definite matrices ,, n xn∈P V   and matrices r xn∈Y  , 

n xm∈Z   such that 

0, 0T T= > = >P P V V                                                (55)  

0T T T+ − − <AV VA BY Y B                                            (56) 

0T T T+ − − <PA A P ZC C Z                                            (57) 
When the conditions (55)-(57) hold, then the gain matrices 

K, J can be computed as 
1 1,− −= =K YV J P Z                                                     (58) 

It is also possible to include also the disturbance in such 
synthesis conditions, but the solutions is conditioned by H∞  
norm upper-bounds of two different transfer function matrices. 
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V. FORCE MODE CONTROL 
In practice, the case with r = m (square plants) is often 

encountered. In this case with each output component can be 
associated the reference signal, which is expected as a desired 
representation of this output variable. 

Definition 1: The forced regime for the system (1), (2) is 
given by the control policy 

(t) =  (t) + (t)e−u Kq Ww                                                 (59) 
where ( ) mt ∈w   is the signal vector of the desired system 
output values, and the matrix m xm∈W   is the signal gain 
matrix. 

Lemma 2: If the system (1), (2) is controllable and if [13] 

rank n m  = +  
A B
C 0                                                         (60) 

then the signal gain matrix W  in (59), marking by using the 
static decoupling principle, can be computed as 

1 1( ( ) ( ) )n
− −= − + −W C A BKHJC I BKH B                      (61) 

where 
1( )−= − + +H A BK JC                                                    (62) 

Proof: In a steady state, which corresponds to the relations 
( ) ( )et t= =q q 0  , the equality s s=y w  must hold. Denoting 

,n
s ∈q  ,n

es ∈q  ,m
s ∈y 

m
s ∈w  as the vectors of steady 

state values of (t),q (t),eq (t),y (t),w  respectively, then (1), 
(2), (4) and (59) give  

 =    + s es s−0 Aq BKq BWw                                             (63) 

es es s s es =    +  +   − −0 Aq BKq BWw JCq JCq                 (64) 

s s = y Cq                                                                           (65) 

Using (64), it follows that 
1( ) ( )es s s

−= − + + +q A BK JC JCq BWw                          (66) 

and, substituting (66) into (63), it is easy to check that the 
following inequality yields 

1

1

( ( ) )
( ( ))

s

n s

−

−

=− + − + +
− − + +

A BK A BK JC JC q
I BK A BK JC BWw

                              (67) 

Denoting that 
1( )−= − + +H A BK JC                                                     (68) 

then, evidently, 
1( ) ( )s n s

−= − + −q A BKHJC I BKH BWw                        (69) 

 Thus, with (65), then the steady-state value of the output 
vector is 

1( ) ( )s n s
−= − + −C A BKHJC I BKH BWwy                    (70) 

and from the assumption that s s=y w , then (70) implies (61). 
This concludes the proof.                                                        ∎ 

 
 

VI. ILLUSTRATIVE EXAMPLE 
According to the proposed algorithm, the simulations are 

realized on the Matlab platform for the model, where the 
input-output dynamics is given by the state-space model 
parameters [6] 

1.380 0.208 6.715 5.676 0.693
0.581 4.290 0.000 0.675 0.397,1.067 4.273 6.654 5.893 0.872
0.048 4.273 1.343 2.104 0.458

− −   
− −   = =   −

   −   

A E  

0.000 0.000
5.679 0.000 4 0 1 0,1.136 3.146 0 0 0 1
1.136 0.000

 
   = = −   
  

B C   

The state control law (3) and the state observer (4),  (5)  are 
constructed by solving (20)-(22) using SeDuMi package [11] 
for MATLAB. To obtain the minimal value of γ, the tuning 
parameter is set to δ = 0.09 and conversely, since the task is 
feasible, then γ = 50.0899, 

1

11.9492 1.6723 7.7165 0.4038
1.6723 17.5979 0.4882 1.3114
7.7165 0.4882 23.7477 13.9638
0.4038 1.3114 13.9638 21.0697

− − 
 =  −
 − 

R  

2

22.2511 1.3243 10.1851 8.9908
1.3243 23.6678 2.8701 11.0029

10.1851 2.8701 14.1972 3.7801
8.9908 11.0029 3.7801 25.8786

− − 
− =  −

 − − 

Q  

2

23.0785 1.5555 7.2635 7.9950
1.5555 18.7337 1.9500 9.2708
7.2635 1.9500 10.8813 1.4597
7.9950 9.2708 1.4597 25.4612

− − 
− =  −

 − − 

P  

1

15.6153 0.7208 6.9500 1.0218
0.7208 22.1665 3.2004 1.3601
6.9500 3.2004 23.4509 11.5744
1.0218 1.3601 11.5744 23.4005

− − 
 =  −
 − 

S  

3.2186 8.2266 5.9115 14.4412
40.1318 18.5737 16.4921 1.8830
− − = − − −  

Y  

16.7835 23.1722
0.4908 51.0450

17.5671 30.6450
9.1727 4.7659

− 
 =  
 − 

Z  

Therefore, the feedback gain matrix is built up from (27) as 

3.2186 8.2266 5.9115 14.4412
40.1318 18.5737 16.4921 1.8830
− − = − − −  

K  

and the estimator gain matrix is computed as 
0.2265 3.0699
0.0480 2.1385
1.0577 3.5912
0.1009 1.2671

− 
− =  

 − − 

J  

The above gain matrices subsequently implies the signal 
gain matrix for the forced mode 

0.0762 0.6107
0.7178 0.5891

− = −  
W  

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018

ISSN: 1998-0140 91



 

 

0 1 2 3 4 5 6 7 8 9 10

t [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

q(
t)

q
1

(t)

q
2

(t)

q
3

(t)

q
4

(t)

 
Fig. 1 Responses of the closed-loop system state variables 

The matrix gain parameters also guarantee a stable discrete-
time observer-based control with state feedback, where the 
stable eigenvalue spectra are 

{ }( ) 1.6377 3.4951i, 4.2157 6.6655icρ = − ± − ±F  

{ }( ) 1.7185, 5.4517, 2.5973 2.8341ieρ = − − − ±F  
Note, an aperiodic system response can be obtained if the 

tuning parameter is set to the value δ = 1, but the resulting 
value of γ is more than five times higher then the minimal 
value γ = 50.0899.  

Simultaneous design of the state feedback and observer 
parameters, is rationally decidable using (55)-(57). One can 
verify that from the solution of (55)-(57) result the parameters 

0.1714 0.8157 0.1959 1.0849
2.0552 0.0433 1.0208 0.9606

− − = − − −  
K  

0.6028 2.0836
0.1369 1.7165 0.0291 1.1449,2.4184 3.2583 0.3743 0.5951
0.9364 0.8639

− − 
−   = =  −  

 − − 

J W  

and the accompanying sets of eigenvalues of the system 
matrices are 

{ }( ) 0.8983 5.9975i, 1.7414 4.8274icρ = − ± − ±F  

{ }( ) 2.3868, 3.6306, 2.3969 5.6812ieρ = − − − ±F  
It is clear from these values that the closed-loop system has 

significantly slower dynamics and significantly less the relative 
damping od the closed-loop system responses. Moreover, 
H$_{\infty}$ norm of the closed-loop disturbance transfer 
function is higher then H∞ norm of the closed-loop disturbance 
transfer function for system under control law designed using 
the optimized parameter δ. 

The simulation results, obtained within the initial conditions 
(0) (0)e= =q q 0  and the required system output steady-state 

vector (t) [1.2 0.5]T T=w  are depicted in Fig. 1 and Fig. 2. 
The responses present the evolution of the controlled system 
states and the system outputs. These results clearly illustrate 
the control performances prescribed by the new synthesis 
strategy. 

For illustration and comparison, Fig. 3 shows the response 
of closed-loop system output variables for the same observer-
based control structure, but bulit on simultaneous synthesis of 
the control and estimator parameters. 
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Fig. 2 Responses of the closed-loop system output variables 

VII. CONCLUSION 
In the paper there is presented a new design method, 

improving the closed-loop control performances for 
continuous-time linear systems under observer-based state 
controllers. Using an enhanced slack-matrix based approach, 
the widen theorem formulation is proven, adjusting with 
existing variable interaction also the H∞ norm upper-bound of 
the closed-loop disturbance transfer function matrix. Further, it 
can be noted that the H∞ norm of the closed-loop disturbance 
transfer function matrix is reached, although such norms are 
conservatively handled when transforming them into LMIs 
then H∞norm upper-bounds. Moreover, applying enhanced 
slack-matrix based approach, the stability conditions which are 
inherently bilinear are simply transformed into LMIs.  

From what has been presented and suggested here, it 
becomes evident a full characterization for the existence of 
observer-based state controllers. The conditions improve the 
state estimation consistency and guarantee the asymptotic 
properties of both the observer and the closed-loop structure. 
The methodology is completely model based, requires no 
iterative procedures and is smoothly convenient in use. 
Simulations provide evidence of effectiveness of the described 
algorithm and demonstrate the closed-loop system 
performance and disturbance robustness, pointing out the 
closed-loop forced mode strategy for systems with the 
reference output positions. 
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Fig. 3 Closed-loop system output response for simultaneous 
designed control parameters 
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