
 

 

  
Abstract—A sub-domain method is often used in computational 

mechanics. The conforming sub-domains are often used, while the 
nonconforming sub-domains could be employed if needed. In the latter 
cases, the integrations of the sub-domains may be performed easily by 
choosing a simple configuration. Then, the meshless method with 
nonconforming sub-domains is considered one of the reasonable 
choices. We have proposed the sub-domain meshless method 
(SDMM). In this work, a nonlinear problem is analyzed by using the 
proposed SDMM. The numerical solutions show that the relative 
errors by using the SDMM are small and that the proposed method 
possesses a good convergence. 
 

Keywords—Sub-domain method, meshless method, weak and 
strong forms, nonlinear problem. 

I. INTRODUCTION 
lot of meshless methods have been published. In the 

meshless techniques, complicated non-polynomial 
interpolation functions are often used, which renders the 
integration of the weak form rather difficult. Failure to perform 
the integration accurately results in loss of accuracy. Chen et al. 
have proposed some integration methods called the stabilized 
conforming nodal integration (SCNI) [1] and the variation 
consistency (VC) integration [2] to recover the Galerkin 
orthogonality in the meshless methods, showing the 
applicability of the Galerkin meshless method using the SCNI 
or the VC to some problems of the computational mechanics. In 
the former, the conforming (not separated nor overlapped) 
integration is used, which is troublesome for irregular nodal 
distribution and is known to require much computer time. Then, 
an accurate and easy integration technique is desired for the 
meshless methods of the weak form. 

On the other hand, a lot of the methods with the collocation 
in the strong form have been proposed in the literature. 
Meanwhile, the methods with the collocation in the strong form 
have no issues of the integration scheme, since the integrations 
are not needed. It has been known, however, that the 
collocation methods (CM) have issues of violation of the 
positivity conditions that the violation of the positivity 
conditions may result in a large error in the numerical solution 
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[3]-[5]. The positivity conditions are some inequalities on the 
shape function and its second-order derivatives. To improve the 
robustness of the CM, Jin et al. [5] have proposed techniques, 
based on modification of weighting functions, to ensure 
satisfaction of positivity conditions when using a scattered set 
of points. For boundary points, however, the positivity 
conditions cannot be satisfied, obviously. To overcome the 
demerit of CM, the over-range collocation method (ORCM) 
has been proposed [6]. In ORCM, some over-range collocation 
points are introduced which are located outside of the body to 
be analyzed. Some boundary value problems including the 
Poisson’s equation, the linear elastic cantilever beam [6], and 
the nonlinear partial differential equations [7] have been 
analyzed by using the ORCM, showing that the method works 
well for these boundary value problems. Also, it has been 
shown that the positivity conditions of the boundary points in 
the method are satisfied by the employment of the over-range 
points [8]. 

In order to get an accurate and easy integration technique for 
the meshless methods of the weak form, the present authors 
have proposed the sub-domain meshless method (SDMM) [9]. 
As is well known, the sub-domain method, in which the 
problems are solved by dividing a domain to be solved into 
multiple sub-domains, is popular in computational mechanics. 
The conforming sub-domains, where the sub-domains are not 
separated nor overlapped each other, are usually used. 
However, since the SDMM can employ both the conforming 
and the nonconforming sub-domains, it is possible to use 
nonconforming sub-domains of simple configuration (for 
example, square or hexahedron ones), making the integration at 
the sub-domain very simple. The nonconforming (separated or 
overlapped) sub-domains for integration with square 
configuration are shown in Fig. 1. However, on the boundary of 
the analysis domain with a complicated shape, it is difficult to 
select a sub-domain of simple configuration. To overcome this 
problem, we apply the collocation approach to the nodes on the 
boundary, then no integration is needed for the nodes on the 
boundary. In addition, in order to satisfy the positivity 
conditions for the boundary nodes, the over-range points [6] are 
added. The mixed boundary value problems about the Poisson 
equation and the Helmholtz equation have been analyzed by 
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Fig. 1 Nonconforming (separated or overlapped) and simple-shaped 
sub-domains employed at each node for integration. 

 
using the SDMM [9]. 

As is well known, nonlinear problems are difficult problems 
of the computational mechanics. In this paper, the boundary 
value problems of the above-mentioned challenge issues are 
analyzed by using the SDMM, which are compared with the 
exact solutions and the solutions of the CM. The CM used in 
this study is the classical collocation method, in which no 
over-range point is used.  

II. FORMULATION OF THE SDMM 
Let us consider a scalar boundary value problem defined as 

follows:  
 

. (1) 
 
with boundary conditions 
 

. (2) 
 

. (3) 
 
to be satisfied in a domain  with boundary , where 
D and T are appropriate differential operators, u is the problem 
unknown function, b and t are external forces or sources acting 
over  and along , respectively, is the assigned value of u 
over . 

Here, let us assume that the ith sub-domain for integration is 
. On the other hand, we assume a sub-domain for 

interpolation , which is the neighborhood of a point  in the 
domain. The distinction of the two kinds of sub-domain (  
and ) is shown in Fig. 2. Then, we assume an approximation 

 of u over defined by: 
 

. (4) 
 
where may be defined as 
 

. (5) 
 
and n is the number of nodes randomly located in the 
sub-domain .  is the shape function. Substituting (4) 
into (1)-(3) at each sub-domain , the following residuals , 

 and  are obtained: 
 

. (6) 
 

. (7) 
 

. (8) 
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Fig. 2 Sub-domain for integration  and that for interpolation . 

 
Then, we may use the method of weighted residuals for , 
 and  with the nonconforming sub-domains, assuming , 
, and  to be the number of the nonconforming 

sub-domains for integration , that of the collocation points on 
, and that of the collocation points on , respectively. Then, 

nonconforming sub-domains for integration  of number  
may be selected in , which are of simple configuration, for 
example a square for the 2D problems or a hexahedron for the 
3D problems. 

The weight functions for  can be chosen as 1 in each 
sub-domain  and 0 otherwise. The collocation points  of 
number  and  of number  are selected on  and , 
respectively. The weight functions for  and  may be 
chosen as the Dirac delta function. Then, the following 
equations are obtained: 

 
. (9) 

 
. (10) 

 
. (11) 

 
If we assume  to be simple-shaped and nonconforming, 

the integration on  may be very easy. On the other hand, as 
shown in (10) and (11), the collocation approach is applied to 

 and  to overcome a difficulty of selecting a simple-shaped 
sub-domain at boundary points of the domain  with complex 
shape. Also, some over-range collocation points are introduced 
so that the positivity conditions are satisfied for  and . 

Let us assume that the number of over-range points is , 
then the number of unknown variables is  
for a scalar problem. To have the same number of the equations 
with that of the unknown variables, we use the following 
equations at  and : 

 
. (12) 

 
. (13) 
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Equations (9)-(13) are the governing equations of the present 
SDMM. Because the number of equations of the SDMM is 

 for the scalar problem, we obtain that the 
number of the over-range points  must be equal to the 
number of boundary points . It is noted that the 
over-range points are used only for the interpolation at 
boundary points and neither satisfaction of any governing 
equation nor that of boundary condition is needed there. 

The interpolation calculations are performed using the 
modified weighted least-square (MWLS) [10], in which the 
essential node condition can be imposed, at each sub-domain 
for interpolation . The integration calculations of (9) are 
performed at each sub-domain for integration . The 
calculations of (10) to (13) are performed using the ORCM.  

In the ORCM, some over-range points are introduced which 
are located at outside of . At the over-range points, no 
satisfaction of any governing partial differential equation or 
boundary condition is needed, so that the over-range points are 
not used in physics sense. While the over-range points can be 
used in interpolating calculation for points  and , which is 
performed using the MWLS at  of points  or . 

III. NUMERICAL IMPLEMENTATION 

A. Error Estimation  
For the purpose of error estimation and convergence studies, 

the Sobolev norm  of function u is calculated. The norm 
for 2D problems is defined as: 

 

. (14) 

In addition, the Sobolev norm  of the first-order derivative 
vector of u for 2D problems is defined as: 
 

. (15) 

With 
 

. (16) 

 
and  is also calculated for the purpose of error estimation 
and convergence studies. 

The relative errors for  and  are, respectively, 
defined as: 

 
. (17) 

 
. (18) 

 
where  and  are numerical solutions, respectively, 
and  and  are the exact solutions, respectively.  

B. Models of Calculation 
    Numerical solutions of a 2D nonlinear equation 

 
.          (19) 

 
are obtained over a 0.3×0.1 domain of (0, 0)×(0.3, 0.1) (see Fig. 
3) by using the SDMM and the CM. Substituting (19) into (9), 
we have the following equation: 

 
Fig. 3 The object of calculation. 

 

 

 
.                                                                   (20) 

 
Because the quadratic basis is used in this paper,  is a 
quadric function of , and  is a constant vector.  is 
chosen as a square configuration in this paper, then, we have: 
 
 .                                       (21) 

 
where  is the area of a square sub-domain . The terms of 
the right-hand side of (20) can be calculated by analytically 
over  easily. 

A mixed problem, the essential boundary condition is 
imposed at nodes on top and bottom boundaries and the natural 
boundary condition is prescribed at nodes on left and right 
boundaries, is solved. Regular (taking the same nodal interval 
h) nodal models of h=1/60 (197 nodes), h=1/80 (305 nodes) and 
h=1/100 (437 nodes) are, respectively, used to study the 
convergence with the nodal model refinement. Because  in 
(19) is the coefficient of nonlinear term  of (19), the value of 

 affects the nonlinearity of the nonlinear problem, and the 
nonlinearity of the problem becomes strong as the value of  
becomes large. In order to solve the challenge issue of strong 
nonlinear problems, five kinds of  which are , , 

, , and  are used. 

C. Results 
The sub-domain of integration is chosen as a square 

configuration in this paper, and the area of the sub-domain of 
integration is . To find optimal values of , the problems with 

 and  are first calculated by using the SDMM. The 
results of relative errors  and  are shown in Fig. 4 and 
Fig.5, respectively, where . In the boxes 
of these figures, “u” means that the essential boundary 
condition is imposed at nodes on top and bottom boundaries, 
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and “ ” means that the natural boundary condition is 
prescribed at nodes on left and right boundaries. For the regular 
nodal models,  means that the sub-domains of integration 
are conforming,  separated and  overlapped 
sub-domains, respectively. These figures show that the most 
accurate results are given at   for  and  
for .  

 

 
Fig. 4 Changes of relative error  with  for  and . 

 

 
Fig. 5 Changes of relative error  with  for  and . 

 
The relative errors  and  for  by using the 

SDMM and the CM are shown in Figs. 6 and 7, respectively. 
The relative errors  and  for  by using the SDMM 
and the CM are shown in Figs. 8 and 9, respectively. These 
figures show that the relative errors by using the SDMM are 
smaller than those by using the CM, and the relative errors of 
become smaller with the decrease of the nodal interval h. 

The relative errors   and  for all the values of  by using 
the SDMM with  are shown in Figs. 10 and 11, 
respectively. It can be seen from these figures that although the 
error levels become higher with the increase of  in general, the 
error levels using ,  and  are rather low, 
those using  and  are also lower, and the 
relative errors using all the values of  become smaller with the 
decrease of the nodal interval h. 

Finally, an irregular nodal model of 437 nodes is tested for 
 and . In these calculations, value of c=1/100, 

which is the same as the value of c used in the regular nodal 
model of 437 nodes, is used in the irregular nodal model. While 
for the irregular nodal model,  it  means that  are 

 
 

Fig. 6 The relative error  with  for . 

 
 

Fig. 7 The relative error  with  for . 
 

 
Fig. 8 The relative error  with  for . 

 
Fig. 9 The relative error  with  for . 
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Fig. 10 The relative error  using all the values of . 

 

 
Fig. 11 The relative error  using all the values of . 

 
nonconforming. The irregular nodal distribution of the nodes 
model is shown in Fig. 12. 

 

 
Fig. 12 The irregular nodal distributions (not including the over-range 

points) of 437 nodes model. 
 

The distribution figure of u using regular node model (437 
nodes) for  is shown in Fig. 13, and the distribution figure 
of u using irregular node model (437 nodes) for  is shown 
in Fig. 14. The distribution figure of the exact u is shown in Fig. 
15. From these figures, it is seen that the present results by 
using the regular nodal model as well as the irregular nodal 
model are excellent. 

IV. CONCLUSIONS 
In the sub-domain meshless method (SDMM), which has 

been proposed by us, simple-shaped conforming or 
nonconforming sub-domains are used as for integration to 
make integration easy. 

 

 
 

Fig. 13 The distribution figure of u using regular node model (437 
nodes) for . 

 

 
 

Fig. 14 The distribution figure of u using irregular node model (437 
nodes) for . 

 

 
 

Fig. 15 The distribution figure of the exact u. 
 

As is well known, nonlinear problems, especially strong 
nonlinear problems are difficult problems of the computational 
mechanics. Therefore, a nonlinear problem should be used for 
checking the accuracy and performance of the SDMM. In this 
paper, the nonlinear mixed boundary value problem is analyzed 
with some regular nodal models by using the SDMM and the 
CM, respectively, and it is seen that former gives more accurate 
results than the latter. It is also shown that the SDMM possesses 
not only good accuracy but excellent convergence 
characteristics for both the unknown variables and their 
derivatives for the above boundary value problem. 

According to the tests on the nonlinear problem with the 
irregular nodal model, it is shown that the solutions by the 
SDMM are in good agreement with the exact solutions. 
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