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Abstract—In this paper, it is considered the design of a
telescope in an altazimuth configuration. Its primary objective is
a rotating liquid mirror made of mercury (any rotating liquid
naturally adopts a perfect paraboloidal shape). This liquid mirror
cannot be oriented. Hence, a mechanical and optical system is
needed to conduct the light of a celestial body to it. The latter
system is composed of two plane mirrors which, rotate around
a horizontal and a vertical axis, two motors are employed to
fulfill this purpose. The non-linear-block-control method is used
to control these motors. A third motor keeps-up rotating a
container filled with mercury to form the liquid mirror, the focal
length of the rotating mirror depends on the angular velocity
of this last motor. Hence, its rotation rate also needs to be
controlled. The Methodology’s part A describes the design of
a 2-links mechanical and optical system. The Methodology’s
part B introduces the gravitational potential and the kinetic
energy for each link in the mechanical and optical system. Then,
using the Euler-Lagrange formalism, the equations governing
this mechanical and optical system are obtained. Next, in the
Methodology’s part C, a nonlinear block control strategy is used
to synthesize the control algorithm for the mechanical and optical
guide system. Finally, a stability analysis is performed, using the
Lyapunov criterion.

The obtained results are presented via simulation using the
software Simulinkr.

Index Terms—Liquid mirror telescope, star tracking system,
non-linear block control, telescope movement.

I. INTRODUCTION

THERE have been various articles about liquid mirrors in
the last 35 years since [1], which mentions the usefulness

of these liquid mirrors in a telescope for a specific type of ob-
servations. This kind of applications is possible due to electro-
optical tracking that, can be achieved thanks to the advent
of charge-coupled devices (CCD) detectors. The firsts liquid
mirror telescopes (LMT’s) like the NASA’s orbital debris
observatory (NODO) [2] used CCD detectors, as well as the
modern like the 4m International Liquid Mirror Telescope, will
use [3]. LMT’s were not taken seriously before using CCD’s,
because the liquid mirror cannot tilt in order to track a star. As
a result, while stars move apparently in the sky, a film in the
telescope register them as streaks. The use of a CCD detector
solves this problem by moving its light sensors electronically
from the east to the west, at a rate matching the drift of images
in view of the telescope. This is equivalent to taking a picture
with a photographic film that moves in a camera at the same
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speed as the image of a moving object. Tipically in only a
couple of minutes, an object crosses the narrow width of the
detector, limiting the amount of light that can be gathered.
Observing the same region of the sky night after night, it
is possible to create increasingly intense images by digitally
adding subsequent exposures on a computer [4]. Even with its
restriction to the zenith, Liquid Mirror Telescopes (LMT’s) are
still very appropriate for many survey applications, including
large-scale structure, galaxy evolution, depth of a Quasi-
stellar object (QSO), galaxy surveys, etc. Therefore, the LMT
design is directed towards those applications which need large
samplings of data, not necessarily from any specific direction
in space [5]. The Large Zenith Telescope [6] is proof of
this, it was built with a budget of more than an order of
magnitude lower than that of conventional telescope projects
of a comparable aperture. Even it has been presented the
feasibility and scientifical potential of a 20-100 m aperture
astronomical LMT constructed in one of the lunar poles [7].
And there are projects under development among them the
Advanced Liquid-Mirror Probe for Astrophysics, Cosmology,
and Asteroids (ALPACA) and the International Liquid-Mirror
Telescope (ILMT) [6]. This last one is under construction.

On the other hand, when a container filled with a liquid
is rotated, the pull of gravitational and centrifugal forces
shapes the surface of the liquid into a perfect parabola [4].
The shape of the objectives in conventional telescopes is a
parabola, so rotating a container with a reflecting liquid, such
as mercury, results in a liquid mirror with a perfect shape for a
telescope’s objective. In fact in [8] the quality of astronomical
images provided by the NODO and the LZT was assessed and
compared to that of conventional instruments, concluding the
images provided by the LMT’s are of scientific quality.
The focal length l of the liquid mirror is given by:

l =
g

2ω2
, (1)

for a given value of the acceleration of gravity g, the focal
length is determined by the angular velocity ω [1]. As proved
by Borra [4], the surface made by a liquid mirror can be
perfectly parabolic and limited diffracted. There are other
uses besides astronomical ones for a liquid mirror such as
atmospheric science or in a telecentric F-Θ scanner with a
low-cost liquid mirror objective [9].

II. PROPOSED METHODOLOGY

A. Liquid mirror telescope design

As mentioned in the previous section, LMT’s cannot tilt,
and as a consequence, they cannot follow a celestial object in
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the sky. In order to overcome this inconvenient, this subsection
describes the design of an orientable LMT. Fig. 1 shows the
main elements of the LMT and Table I lists every component
shown in this figure.
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Fig. 1. Design and main elements of the tiltable LMT.

TABLE I
LIQUID MIRROR TELESCOPE’S MAIN COMPONENTS OF FIGURE 1.

No.
of element Piece Quantity

1 Plane mirror 2
2 Motor 2
3 Counterweight 2
4 Container with liquid mercury 1
5 Air bearing 1

The two plane mirrors direct the light to the liquid mirror.
One of these plane mirrors is rotating around the horizontal
axis, while the other one around the vertical axis; both of
them along with the pipe containing them. The sketch in Fig.
2 shows this path of the light inside the telescope from the
source to the ocular. In this figure, the light is represented by
rays in order to describe its path inside the telescope; first, the
incoming light is reflected along the horizontal pipe, then the
other flat mirror redirects the light to the liquid mirror. The
plane mirrors are tilted 45◦ with respect to the pipes’ axis,
then vertical rays are reflected horizontally, and vice versa.
Fig. 3 contains a 3d-model of the proposed design and the
range of movement of the links of the telescope.

The coordinates of a star in the celestial sphere are called
declination (δ) and right ascension (R.A.), these are known
as equatorial coordinates [10]. The telescope proposed is in
an altazimuth configuration, so, it is necessary to convert
equatorial coordinates of the star (R.A. and δ) to horizon
coordinates (q1 and q2 (Fig. 4)) of the telescope in order to
track the reference (the movement of a star).

B. Kinematics and dynamics

Before we design a control strategy, it is necessary to have
a dynamic model to which apply it for simulation purposes; in

Fig. 2. Reflection of the light inside the telescope.

Fig. 3. Telescope’s range of movement.

this case, the dynamic model of the telescope proposed. The
present subsection describes the obtention of the dynamics,
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by the use of the Euler-Lagrange equations. The function
required to obtain the dynamics is the Lagrangian. This
function is the difference between the kinetic and potential
energy of the mechanical model of the proposed telescope.
For the calculation of kinetic energy, the linear velocity of
each link of the telescope is needed. The linear velocity is
represented as a function of joint velocity, this function is
known as differential kinematics, which is the derivative with
respect to time of a function called direct kinematics. Direct
kinematics is a function of the joint variable (q). So, before
obtaining the dynamic model of the proposed telescope and to
apply a control strategy, the direct kinematics and differential
kinematics will be required.

1) Direct kinematics: The mechanical structure of the tele-
scope proposed has n = 2 degrees of freedom, each one is
associated with one joint articulation. Then, this subsection
describes the direct kinematics of the proposed telescope. The
aim of direct kinematics is to compute the position of the last
link as a function of the joint variable [11]; that is, fR(q)
where q is the joint variable. There are various methods to
determine the direct kinematics model, but a first way to
determine it is by applied geometry [11]. Another method
is the Denavit-Hartenberg convention [12], which is more
convenient for a greater number of degrees of freedom because
is a systematic method. Using the last one mentioned, it is
obtained the direct kinematics of the telescope’s mechanic
model shown in Fig. 4, using the symbolic values presented
in Table II, where l1 and l2 are the lengths of links 1 and
2 starting from their rotation axes; B1 is the offset from
the origin of the inertial frame to the rotation axis of the
link 2; B2 is the distance from the end of link 1 to the
center of link 2; q1 and q2 are the rotation angles of links
1 and 2, respectively; and α is the angle between the rotation
axis for link 1 (Z1) and the rotation axis for link 2 (Z2).
So, the Denavit-Hartenberg representation for link 1, through
homogeneous transformations is as follows:

H1
0 = Rz,q1Tz,d1Tx,l1Rx,α1

=


cos q1 0 sin q1 l1 cos q1
sin q1 0 − cos q1 l1 sin q1

0 1 0 B1

0 0 0 1

 (2)

where Rz,q1 and Rx,α1 are rotation homogeneous transforma-
tion around axes Z and X of the link in question, respectively;
Tz,d1 and Tx,l1 are translation homogeneous transformation;
and H1

0 is the homogeneous transformation relationing the
coordinates in the reference system of link 1 and the reference
system at the base of the telescope, as it is shown in Fig. 4
[13]. In equation (2), the rows 1-3 in the column 4, represent
the position [X0, Y0, Z0]> of the end of link 1 as follows:X0

Y0

Z0

 =

l1 cos q1
l1 sin q1
B1

 . (3)

Continuing with the Denavit-Hartenberg convention on link
2, we obtain H2

0 = H2
1H

1
0 . It is important to mention that

the direct application of the Denavit-Hartenberg convention

Fig. 4. Telescope’s mechanic model

TABLE II
SYMBOLIC VALUES FOR THE PROPOSED TELESCOPE.

Link Lenght
(m)

Angle between
rotation axes (rad)

Offset
(m)

Rotation angles
(rad)

1 l1
π
2

B1 q1
2 l2 0 B2 q2

for link 2 leads to the reference system [X′2, Y2, Z′2]> shown
in Fig. 4. This would be true if the two links were parallels
because the X1 and X2 axes are along the length of their
corresponding link. But links 1 and 2 form a right angle; so,
in order to represent this configuration of links, it is necessary
to rotate link 2 around the Y2 axis an angle of π

2 rads. This
conduces to the reference system of link 2 [X2, Y2, Z2]>. For
the rotation, it is used a rotation homogeneous transformation
around the axis Y2; and the position vector for the end of link
2 is:X0

Y0

Z0

 =

B2 cos(q1) + l1 cos(q1)− l2 cos(q2) sin(q1)
B2 sin(q1) + l1 sin(q1) + l2 cos(q1) cos(q2)

B1 + l2 sin(q2)

 .
(4)

Then, the direct kinematics of each link in the mechanic
model of the proposed telescope is represented by equations
(3) and (4), which are in function of the joint variables q1 and
q2.

2) Differential kinematics: The differential kinematics
gives the relationship between joint velocity q̇ and the lineal
velocity v [11], [14]; then:

d

dt

X
Y
Z

 =
d

dt
fR(q) =

∂fR(q)

∂q
q̇ = J(q)q̇ = v , (5)

where [X Y Z]> is the position vector as a function of the joint
variable obtained by the direct kinematics (equations (3) and
(4)), J(q) is the Jacobian of the robot or analytical Jacobian
[14], and fR(q) is a function of the joint variable q.

The lineal velocity v1 of the center of mass (cm) corre-
sponding to the link 1 is obtained as follows:

v1 =
d

dt

l1cm cos q1
l1cm sin q1

B1

 =

−l1cm sin q1
l1cm cos q1

0

 q̇1 . (6)
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The linear velocity of the center of mass corresponding to the
link 2 is obtained as:

v2 =
d

dt

B2 cos q1 + l1 cos q1 − l2cm cos q2 sin q1
B2 sin q1 + l1 sin q1 + l2cm cos q1 cos q2

B1 + l2cm sin q2


=

v2 11 l2cm sin q2 sin q1
v2 21 −l2cm cos q1 sin q2

0 l2cm cos q2

[q̇1
q̇2

] , (7)

where v2 11 = −B2 sin q1 − l1 sin q1 − l2cm cos q2 cos q1 and
v2 21 = B2 cos q1 + l1 cos q1 − l2cm sin q1 cos q2.
Equations (6) and (7) represent the linear velocity for links 1
and 2, respectively; now, it is possible to compute the kinetic
energy needed for the dynamics, which it is shown in section
II-B3.

3) Dynamics: Now, it is necessary to determine the equa-
tions of motion of the proposed telescope design; this is
in order to propose control strategies that can be tested for
simulation purposes. The method chosen in this paper to
determine the dynamic equations of the telescope is the use of
the Euler-Lagrange equations. In order to determine the Euler-
Lagrange equations, it is necessary to obtain the Lagrangian of
the system, which is the difference between the kinetic energy
and the potential energy [15] as follows:

L(q, q̇) = K(q, q̇)− U(q) (8)

where L(q, q̇) is the Lagrangian, K(q, q̇) is the kinetic energy,
and U(q) the potential energy.

It is important to mention that the proposed telescope has
the configuration of the two degrees of freedom (DOF) robot
manipulator. Then, the Euler-Lagrange equation of motion for
the n DOF is:

d

dt

[
∂L(q, q̇)

∂q̇

]
− ∂L(q, q̇)

∂q
= τ − ff (q̇,fe) (9)

The equation (9) can be written in the following form:

τ = M(q)q̈+Ṁ(q)q̇− ∂

∂q

[
1

2
q̇>M(q)q̇

]
+
∂U(q)

∂q
+ff (q̇,fe),

(10)
which, in its compact form and with the most widely used
notation in the area of robotics [14], [11] is described as
follows:

τ = M(q)q̈ + C(q, q̇)q̇ +G(q) + ff (q̇,fe), (11)

where τ ∈ Rn is the vector of applied torques, q ∈ Rn is the
vector of generalized coordinates or joint positions, q̇ ∈ Rn
is the vector of joint velocities and q̈ ∈ Rn is the vector of
joint accelerations. M(q) ∈ Rn×n is the inertia matrix, which
is symmetric and positive definite, C(q, q̇) ∈ Rn×n is the
matrix of centripetal and Coriolis forces, which is defined as
follows:

C(q, q̇)q̇ = Ṁ(q)q̇ − ∂

∂q

[
1

2
q̇>M(q)q̇

]
,

G(q) ∈ Rn is the vector of gravitational forces obtained as
the gradient of the potential energy, this is:

G(q) =
∂U(q)

∂q
,

and ff (q̇,fe) ∈ Rn is the vector of friction forces that
includes the viscous, Coulomb and static friction (fe) of each
articulation.

The function K(q, q̇) includes rotational and translational
kinetic energy [14]:

Ki(q, q̇) =
1

2
miv

>
i vi +

1

2
Ii

[
n∑
i

q̇i

]2
, i = 1, ..., n, (12)

with n = 2 as the number of DOF, and where mi and Ii are
the mass and moment of inertia of the i-th, respectively. The
moment of inertia of the i-th link is around an axis that passes
through its center of mass and is parallel to the rotation axis
around which the link rotates [15].
Then, using the equation (12), the kinetic energies for link 1
and link 2 are:

K1 =
1

2
m1v

>
1 v1 +

1

2
I1q̇

2
1 , (13)

K2 =
1

2
m2v

>
2 v2 +

1

2
I2(q̇1 + q̇2)2. (14)

From equations (6) and (7), it can be obtained v>1 v1 and v>2 v2,
respectively as:

v>1 v1 = (l1cmq̇1)2, (15)

v>2 v2 = [(B2 cos(q1) + l1 cos(q1)− l2cm cos(q2) sin(q1))q̇1

(−l2cm cos(q1) sin(q2)q̇2)]2

+ [B2 sin(q1) + l1 sin(q1) + l2cm cos(q1) cos(q2)q̇1

− l2cm sin(q1) sin(q2)q̇2]2

+ [l2cm cos(q2)q̇2].
(16)

The total kinetic energy is:

K(q, q̇) = K1 +K2. (17)

Unlike the kinetic energy, the potential energy does not have a
specific form. It depends on the geometry of the robot (for our
particular case, the proposed telescope). The potential energy
for links 1 and 2 is:

U1 = m1gB1, (18)

U2 = m2g(B1 + l2cm sin q2). (19)

The total potential energy is:

U(q) = U1 + U2. (20)

In order to obtain the Lagrangian, the kinetic (17) and potential
(20) energy are substitued in equation (8), and the Euler-
Lagrange’s equation of motion (9) can be obtained. The result
can be represented as in equation (11), where the entries of
the inertia matrix M(·) are:

M11 = I1 + I2 + l21m2 + l21cmm1

+B2
2m2 + l22cmm2 cos2(q2) + 2B2l1m2

M12 = I2 −B2l2cmm2 sin(q2)− l1l2cmm2 sin(q2)

M21 = I2 −B2l2cmm2 sin(q2)− l1l2cmm2 sin(q2)

M22 = I2 + l22cmm2.

(21)
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The entries in the matrix of centripetal and Coriolis forces
C(·) are:

C11 = −(l22cmm2 sin(2q2)q̇2)

C12 = [−B2l2cmm2 cos(q2)− l1l2cmm2 cos(q2)] q̇2

C21 = l22cmm2 cos(q2) sin(q2)q̇1

C22 = 0.

(22)

The entries in the vector of gravitational forces G(·) are:

G11 = 0

G21 = gl2cmm2 cos(q2).
(23)

The entries in the vector of friction forces ff (·) are:[
ff1(q̇1, fe1)
ff2(q̇2, fe2)

]
= Bq̇ + Fc sign(q̇)

+

[
1− |sign(q̇1)| 0

0 1− |sign(q̇2)|

]
fe

.

(24)
where B and Fc ∈ Rn×n are diagonal matrices with viscous
and Coulomb friction coefficient, respectively. fe is the vector
of static friction and sign(q̇) = [sign(q̇1), sign(q̇2)]

>.
Then, the dynamic equations of the model of the telescope
can be represented in the state space as follows:[

ẋ1
ẋ2

]
=

[
x3
x4

]
[
ẋ3
ẋ4

]
= N

[
U − C

[
x3
x4

]
−G− ff

]
,

(25)

where

N = M−1,


x1
x2
x3
x4

 =


q1
q2
q̇1
q̇2

, U =

[
u1
u2

]
=

[
τ1
τ2

]
.

Now, with the dynamic equation of the proposed telescope
represented in state space (25), a strategy of control can be
applied.

C. Control design

In this section, it is proposed a non-linear block control
algorithm in order to the telescope tracks a star movement.

1) Telescope control design: For this paper, model (25) can
be represented as a non-linear block controllable form (NBC-
form) [16], which is represented by two blocks:

Ẋ 1 = X 2

Ẋ 2 = f2(X 1,X 2) +D(X 1)U
(26)

where
X 1 =

[
x1
x2

]
, X 2 =

[
x3
x4

]
, (27)

f2(·) = N
[
−C

[
x3
x4

]
−G− ff

]
=

[
N11 [−C11x3 − C12x4 −G11 − ff1]
N21 [−C11x3 − C12x4 −G11 − ff1]

+N12 [−C21x3 −G21 − ff2]
+N22 [−C21x3 −G21 − ff2]

]
,

(28)

and

D(·) = N (29)

The error E1 (E2) is the difference between the block X 1 (X 2)
(27) and the reference signal to be tracked X 1

d (X 2
d ). Note that

signals X 1
d and X 2

d are the joint angle and joint velocity of
each link of the telescope, respectivaly, needed to keep a star
in sight. Then E1 and E2 are represented as follows:

E1 = X 1 −X 1
d , (30)

E2 = X 2 −X 2
d , (31)

where

X 1
d =

[
x1d
x2d

]
=

[
270−A

a

]
, (32)

and [
a
A

]
=

sin−1(sin δ sinφ+ cos δ cosφ cosH)

cos−1
(

sin δ − sinφ sin a

cosφ cos a

)  . (33)

The equation (33) shows the relation between the hour-angle
H , the declination δ, the observer’s geographical latitude φ,
the azimuth A, and the altitude a [17], and X 2

d = [x3d x4d]
>.

The azimuth angle A increases in the opposite way of q1,
starting from the north. If “X” in Fig. 4 points to the north,
then, when the angle q1 = 0, the link 2 of the telescope points
to the west (axis Y). Taking this into account, it is easy to
obtain the relation between these angles (q1 = 270◦-A).

The dynamics of E1 and E2 is:

Ė1 = Ẋ 1 − Ẋ 1
d , (34)

Ė2 = Ẋ 2 − Ẋ 2
d . (35)

Substituting the first equation of (26) in (34), yields:

Ė1 = X 2 − Ẋ 1
d . (36)

Imposing the desired dynamics K1E1 in (36), by choosing the
desired value for the virtual control X 2

d [18], it is obtained:

K1E1 = X 2
d − Ẋ 1

d . (37)

Then

X 2
d = K1E1 + Ẋ 1

d . (38)

The time derivative of X 2
d is described by the following

equation:

Ẋ 2
d = K1Ė1 + Ẍ 1

d . (39)

Taking the value of X 2 in (31), and the value of X 2
d in (38),

and substituting them in (36), it is obtained:

Ė1 = E2 + X 2
d − Ẋ 1

d

= K1E1 + E2.
(40)
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Now, for the dynamics of Ė2, substituting Ẋ 2, X 2
d , Ẋ 2

d , X 1,
X 2 and Ė1 from equations (26), (38), (39), (30), (31) and (40),
respectively in equation (35), it is obtained:

Ė2 = Ẋ 2 − Ẋ 2
d

= f2(X 1,X 2) +D(X 1)U − Ẋ 2
d

= f2(E1 + X 1
d , E2 + X 2

d ) +D(E1 + X 1
d )U −K1Ė1 − Ẍ 1

d

= f2(E1 + X 1
d , E2 +K1E1 + Ẋ 1

d ) +D(E1 + X 1
d )U

−K1(K1E1 + E2)− Ẍ 1
d .

(41)

The equation of system (26) is transformed to the block
controllable form using the error dynamics as follows:

Ė1 = K1E1 + E2

Ė2 = f2(E1 + X 1
d , E2 +K1E1 + Ẋ 1

d ) +D(E1 + X 1
d )U

−K1(K1E1 + E2)− Ẍ 1
d .

(42)
Then, imposing the desired dynamics for Ė2 = K2E2 in (41),
the control signal U is defined by:

U =M(E1 + X 1
d )
[
−f2(E1 + X 1

d , E2 +K1E1 + Ẋ 1
d )

+K1(K1E1 + E2) + Ẍ 1
d +K2E2

]
.

(43)

As it can be seen in equation (43), the control lawU is in func-
tion of the errors E1 (30), E2 (31), and the desired reference
X 1
d (32) including its first and second time derivatives (Ẋ 1

d

and Ẍ 1
d ). For the particular case of the present proposal, this

reference signal varies in time due to the apparent movement
of the stars in the sky, so, these derivatives exist. In fact,
the first derivative is the rotation rate for each motor that
controls the rotation of each link, and the second derivative is
its angular acceleration.

2) Angular velocity control of the liquid mirror motor:
As mentioned earlier, for varying the focal length of a liquid
mirror, it is necessary to control the angular velocity of the
recipient that contains the liquid mirror. The equation (1)
represents the relation between angular velocity and the focal
length. So, it is needed to apply a control algorithm to the
model of a motor, which has to keep rotating the container
mentioned at a constant velocity. In this work, the tracking
of the angular velocity of the motor is accomplished by the
use of the state-feedback linearization technique applied to a
DC motor model, just as it is shown in reference [19]. This
is in order to keep the focal length of the mirror in a desired
value depending on the observations that will be done with
the telescope.

D. Stability analysis

For the stability analysis, it is used the state space equation
in terms of the errors (E1, E2). This state space equation is
represented by equation (40), and the result of substitute the
control law (43) in (41) yields the following linear represen-
tation in state space:

Ė1 = K1E1 + E2

Ė2 = K2E2
=

[
K1 1
0 K2

] [
E1
E2
]

(44)

Each row in equation (44) is a block, so expanding each of
these, results in:

Ė1
Ė2
Ė3
Ė4

 =


k1 0 1 0
0 k2 0 1
0 0 k3 0
0 0 0 k4



E1
E2
E3
E4

 (45)

then, as it is explained in [20], the origin is asymptotically
stable if Reλi < 0 for all eigenvalues of the state matrix in
(45); this is, the state matrix in (45) is a Hurwitz matrix or
stability matrix. The eigenvalues of the state matrix in (45)
are:

λ1 = k1

λ2 = k2

λ3 = k3

λ4 = k4.

(46)

The coefficients k1, k2, k3, k4 comes from:

K1 =

[
k1 0
0 k2

]
, K2 =

[
k3 0
0 k4

]
For a linear equation system like (45), it is considered the
following quadratic Lyapunov function candidate [20]:

V (x) = x>Px (47)

The derivative of (47) is given by:

V̇ (x) = x>Pẋ+ ẋ>Px = −x>Qx (48)

where Q is defined by:

PA′ +A′>P = −Q (49)

Then, a matrix A′ is Hurwitz if and only if for any given
positive definite symmetric matrix Q there exists a positive
definite symmetric matrix P that satisfies the Lyapunov equa-
tion (49). Moreover, if A′ is Hurwitz, then, the matrix P is
unique [20]. Choosing Q as a real symmetric positive definite
matrix (in this case the identity matrix), and solving for P , it
is obtained:

P =


− 1

2k1
0 1

2k1(k1+k3)
0

0 − 1
2k2

0 1
2k2(k2+k4)

1
2k1(k1+k3)

0 P3,3 0

0 1
2k2(k2+k4)

0 P4,4


(50)

with:

P3,3 = − k21 + k1k3 + 1

2k1k3(k1 + k3)
and P4,4 = − k22 + k2k4 + 1

2k2k4(k2 + k4)
.

The matrix P (50) is positive definite if and only if all
its leading principal minors are positive (which it is true
if the values of k1, k2, k3, k4 are negative), and since Q
is also definite positive we can conclude that the origin is
asymptotically stable [20].
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III. RESULTS

A. Direct kinematics

Focusing only on link 1, it is easy to verify that the
position vector (3) is correct, without the need of using
the Denavit-Hartenberg convention. Link 1 rotates around
a vertical axis Z, then its height does not vary, its position
X is equal to the product of the length from the origin to
the end of the link and the cosine of the angle q1; thus, the
position Y is equal to the product of the length l1 and the
sine of q1. The position vector (4) is a little more complex to
analyse, but it is more clear with the Figs. 5 and 6 and using
the following values: l1 = l2 = 0.10 m, B1 = 1.00 m and
B2 = 0.05 m for different angles q1 and q2.
Figs. 5 and 6 show that when the angle q1 turns a complete
turn and the angle q2 is fixed (Fig. 5), the end of link 2
starts on an X position l1 + B2 = 0.15 m, a Y position
l2 = 0.1 m, and the Z position does not change (stays
in B1 = 1.00 m). Now, when q1 is fixed and q2 turns a
complete turn (Fig. 6), the position X does not change (stays
in l1 +B2 = 0.15 m), the Y position reaches a maximum and
minimum of l2 = 0.10 m and −l2 = −0.10 m, respectively,
and the Z position reaches a maximum and minimum value
of B1 ± l2 = 1.00 m ± 0.1 m, respectively. These values
correspond to the positions X, Y, and Z of the end of link 2,
as it is shown in Fig. 4.

Fig. 5. Position X, Y and Z: q1 turns a complete turn and q2 is fixed.

Fig. 6. Position X, Y and Z: q1 is fixed and q2 turns a complete turn.

B. Star tracking performance

By applying the Non-linear block control for the telescope’s
dynamic model, thus, using the control input vector obtained

in equation (43), a signal reference (in this case the movement
of a star (32)) can be tracked. It is required this reference (X 1

d ),
its derivative (Ẋ 1

d ), and second derivative (Ẍ 1
d ). The entries of

equation (32) are the desired angles q1 and q2 for the links 1
and 2, respectively, needed for tracking a star.

In this work it is used the data for the star Altair (R.A.= 19h
50min 47sec, δ = 8◦52′6′′) [21] in order to be tracked by the
telescope proposed. The observation is considered from a place
with latitude 21.36◦, starting the tracking when the star is at
the observer’s zenith and for 4 hours (sidereal time). Figs. 7
and 8 show the tracking performance for angles q1 and q2,
respectively. In both figures there is a detail that includes 10
seconds (sidereal time) of simulation, demonstrating the fast
convergence given in two seconds approximately.

The signal references (x1d and x2d (32)) from Figs. 7 and 8,
are obtained by converting equatorial to horizon coordinates,
as it is explained in [17].

It is important to mention that the time in the graphics is
sidereal time, and each hour-angle corresponds to 15 degrees
from the observer’s zenith to the star being observed. Then, 24
hours-angle corresponds to 360 degrees. The simulation time
of Figs. 7 and 8 correspond to 3h 59min 20sec of solar time.
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Fig. 7. Angular position tracking performance for q1.
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Fig. 8. Angular position tracking performance for q2.

C. Liquid mirror’s focal length tracking performance

As mentioned above, the liquid mirror in the telescope
varies its focal length along with its angular velocity in a
relationship described by equation (1). So, in order to keep
a steady focal length, it is necessary to maintain a steady
velocity.
Fig. 9 shows the control of the rotation of a DC motor tracking
the angular velocity (reference) needed to maintain a focal
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length of 1 m using the state-feedback linearization technique,
applied to the DC motor model that is shown in [19].

Fig. 9. Angular velocity tracking performance.

IV. CONCLUSION

Liquid mirror telescopes are a good alternative to conven-
tional telescopes for a certain kind of observations, where it
is not necessary to follow an astronomical object. Its mirror
is relatively easy to form and does not require the careful
precision the solid mirrors need in its ground and polished.
But, they cannot be used to track an object in the sky. So, the
configuration of the telescope presented in this paper along
the control of the rotation of its links permits to overcome
this disadvantage, allowing it to follow the position of a star.
Directing the light of any astronomical object in sight, by
means of two plane mirrors to a liquid mirror, which is the
objective of the telescope.
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