
 

 

  
Abstract— The aim of this paper is the introduction of a new 

approach to the 3D modelling of elastic piecewise homogeneous 
media, for instance Earth crust and upper mantle. The method is 
based on the principle of tomography with a point-force (singlet) as a 
source of the signal and a set of observations (records) at the surface. 
For the sake of simplicity of the exposition in this article we consider 
solid media only.  

The wave propagation in solid media is described by a system of 
three strongly coupled hyperbolic equations with piecewise constant 
coefficients. The characteristic set and bi-characteristic curves of this 
system are computed in a piecewise homogeneous half-space with 
free boundary and the formulae of reflection and diffraction of the bi-
characteristics on the internal boundaries of the media. Applications 
of the characteristic set and bi-characteristic curves for the inverse 
problem in geophysics and Earth modelling are given. 

 
Keywords—3D modelling of Lithosphere, bi-characteristics, 

strongly coupled linear systems of PDE.  

I. INTRODUCTION 
In this paper is presented a new, geometrical method to 

generate 3D mathematical models of elastic piecewise 
homogeneous media. For the sake of simplicity the media is 
supposed entirely solid one. In the case it has some cavities the 
method is applicable as well with reasonable improvement. If 
the cavity contains liquid, which is the case of oil and gas 
deposits, then the equations for wave propagation in liquids is 
applied for this area. If the cavity is empty, it defines a part of 
the boundary of the domain.  

The method is based on the tomography concept. Classical 
tomography method is applicable to finite objects and consists 
of two major steps – collection of information and its 
processing. In the first step – collection of information - a 
source emits energy in a particular form, which we call 
“signal”, the energy distributes in time within the media, and 
sensors on the surface of the media record the signal. In the 
second step we imply various techniques in order to “restore” 
the structure of the media using the recorded signal from the 
sensors as input data. One way is to “construct” a virtual 
model of the media and then to “verify” the model against the 
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real data. This step can be implemented (a) by solving the 
inverse problem with input (boundary) data – the recorded 
signal – and comparing the solution with the emitted energy; 
(b) another way is to solve the forward problem with initial 
data – emitted energy - and to compare the solution on the 
boundary with recorded signal. 

Therefore in setting our tomography model we have to 
choose a proper source of energy, the way we model the 
media, etc. 

As for the source of energy, in modelling the Earth structure 
are employed some sources of indirect information like gravity 
or magnetic filed deformation and seismic waves. The last 
ones are perhaps the most unpredictable source of information 
due to irregularity of earthquakes, both in space and time. 
Nevertheless the nature of seismic waves and the density of the 
seismic stations turn these waves into one of the most popular 
geophysical tools to study the Earth interior. The seismic 
features of the uppermost ground are a matter of deep interest 
to civil engineers as well.  

The distribution of the seismic waves is described in many 
books and papers, for instance in [1] and [5]. For geophysical 
purposes it is sufficient if the Earth is considered as an elastic 
body that is a continuum. In other words, the matter is 
continuously distributed in space. Furthermore, for local to 
regional studies, the planet can be approximated with no loss 
of generality by the half-space Ω. If the elastic parameters 
depend only on the vertical coordinate z then the wave 
propagating in solid media satisfy system (1), where (ux, uy, 
uz) is the displacement function. The mathematical model of 
wave propagation in piecewise continuous body follows: 

Let Ω = {(x,y,z)∈ R3 : z≥0} be a half-space with free 
surface boundary ∂Ω = {z=0} and the z axis be positive 
downward. Wave propagation in solid media, in particular in 
solid half-space (see [1] and [5]) is described by the following 
system (1) of strongly coupled linear hyperbolic equations 
with piecewise continuous coefficients 
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with boundary conditions at the free surface z=0 are as 

follows: 
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, coefficients λ, µ and 
ρ are piecewise continuous functions and ux, uy, uz, σzz, σzx, 
σzy ∈C(Ω). Furthermore, at the point S∈Ω initial data are 
defined as an impulse alongside a given vector ξ0 = (ξ10, ξ20, 
ξ30). As for the source of the signal S, there are different 
models corresponding to very different sources of seismic 
waves. In this paper we consider point source that produce an 
impulse in a certain direction, namely alongside vector ξ0 = 
(ξ10, ξ20, ξ30). If the source is more complicated it can be 
represented as a vector field on given curve, that is the fault. In 
this case the method that is described below for a point source 
can be easily adapted. 

II. MEDIA MODELLING 
 
Coefficients λ, µ and ρ depend on the geological properties 

of the rock. Though little information we have about exact 
ground structure, geological surveys near the surface show that 
the Earth crust is heterogeneous and consists of piece-wise 
homogeneous material. Therefore in a realistic model the 
coefficients λ, µ and ρ can be considered piecewise continuous 
functions. Unfortunately, in this case the results for the wave 
front set (Theorem 8.3.1, Hormander, v. I, p.271) are not 
applicable. On the other hand a reasonable approximation of 
the real Earth is a 3-dimensional structure of homogeneous 
blocks in welded contact {Bi,j,k: i, j, k ∈N}. It is not 
necessary that the blocks Bi,j,k have rectangular faces parallel 
to the coordinate system. Without loss of generality we assume 
the boundary of blocks Bi,j,k to be piecewise smooth: 

{ }mlkjikji NlzyxFB ,.....1,0),,(,,,,, ==∪=∂
 where 

Fi,j,k,l(x,y,z)=0 is a smooth surface in R3 and Nm is a finite 

number. It is convenient as well to assume that the point 
source S of the seismic signal belongs to the block B0,0,0. In 
this way, in Ω ={Bi,j,k: i, j, k ∈N}  the system (1) with 
constant coefficients in every block Bi,j,k is a realistic 
approximation to the wave propagation in the real medium 
(e.g. the Lithosphere).  

III. BI-CHARACTERISTICS OF SYSTEM (1), (2) AND 3D 
MODELLING OF THE LITHOSPHERE 

There are various ways to solve system (1), (2), for instance 
numerical methods, computing the fundamental solution of the 
system, etc. Solving system (1), (2) numerically is limited by 
some natural constrains such as the size the domain Ω. If Ω is 
not sufficiently small (as is the general case) the grid is too 
large and the computational time is too large or the 
approximation error - too high. The same is the problem when 
we use another approach - the fundamental solution of (1). The 
fundamental solution of (1) can be explicitly written in integral 
form  The numerical computation of the integral faces the 
same problems as pure numerical methods solving (1), (2) 
directly – high computation time or big error.  

In another standard analytical approach widely used in 
geophysics, if the body forces are neglected, the solutions of 
(1) are considered as plane harmonic waves propagating along 
the positive x axis u(x,t) =F(z).ei(ωt-kx), where ω and k are 
constants -  the angular frequency and the wavenumber (see 
for instance [5]). The main disadvantage of this approach is 
that the plane wave is a two - dimensional one, living in the 
plane y=0 only, and all information on the y coordinate is lost 
Therefore it is impossible to build a reasonable 3D model 
using plane waves of the type mentioned above.  

This is the motivation to propound in this paper a new 
approach for 3-D modelling of solid body. Since earthquake 
generates a singularity at point S, the method suggested is built 
on the propagation of singularities of system (1) itself. 

In view of the fact that the system (1) has constant 
coefficients in every block Bi,j,k we use the so called “train 
solutions” construction in our model. If we have initial data at 
the point source S the solution of system (1) in block B0,0,0 
determines the boundary conditions in the neighbouring block 
and so on. In this way, instead of system (1) with piecewise 
constant coefficients we consider a series of related problems 
(1) with constant coefficients, which is a much easier task. 

This method is based on the features of the bi-characteristic 
curves of system (1). As the principal part is real with constant 
coefficients, the wave front set is invariant under the bi-
characteristic flow. Having in mind the source model 
described above - a point source with seismic impulse in some 
direction - actually the singularities of the solution carry all the 
information about the wave. On the other hand, the 
singularities propagate over bi-characteristic curves within 
every homogeneous block. At the boundary between two 
blocks bi-characteristics could reflect or refract. According to 
geometrical optics and micro-local analysis, if bi-characteristic 
curve reflects off the sides of every block the angle of 
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incidence to the surface is equal to the angle of reflection. The 
refraction at the surface is computed in the usual way, more 
details and exact computations are given in the next Chapter. 
Therefore, if we know the position of the source S, the 
direction ξ0 of the seismic impulse and the media structure Ω 
={Bi,j,k: i, j, k ∈N} we can compute the point s0 where bi-
characteristic curve has contact with the surface z=0. The point 
s0 is in fact the centre of the surface waves in the plane z=0 
generated by the section of the wave front and the plane z=0. 
When actual measurement of the seismic waves is done, the 
coordinates of the point s0 can be triangulated using the data 
from several stations. Exact coordinates of the epicentre S of 
an earthquake can be computed by P and S waves arrival time 
based on the data from seismic stations.  Exact coordinates of 
the centre of the surface waves r0 is a matter of triangulation 
of the arrival time of surface waves taking into account the 
geography of the region. Then the verification of the media 
model Ω ={Bi,j,k: i, j, k ∈N} could be done. Given a certain 
3-D media model Ω ={Bi,j,k: i, j, k ∈N}, we can compute the 
point s0. If the points s0 and r0 coincide within the error of the 
computations, then the media model is plausible.  

For practical purposes 3-D models Ω ={Bi,j,k: i, j, k ∈N} 
can be generated using Monte Carlo type methods. Of course, 
like any other inverse problem, this algorithm has multiple 
solutions in the sense that many models can cover the 
requirement s0≡r0. Unfortunately, this is the best result we can 
hope for, given the complexity of the object to study and the 
information we have from the seismograms. 

 

IV. CHARACTERISTIC SET AND BI-CHARACTERISTIC STRIP IN 
HOMOGENEOUS BLOCK BI,J,K  

As it is well known, the characteristic set of a linear scalar 
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. In the case 
of linear strongly coupled system the characteristic set contains 
the zeroes of the determinant of the characteristic matrix of the 
system (see [6], p.40). Each element of the characteristic 
matrix is the principal symbol of the corresponding equation 
with respect to the corresponding argument. For instance, if 
the system is Li(u1, u2, ...un)=0, i=1,....n, then the element 
(k,m) of the characteristic matrix is the principal part of Lk 
with respect to um. Then the characteristic set of system (1) in 
every block Bi,j,k is given by the equation 
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Therefore the characteristic set of system (1) decomposes 

into two subsets given by 
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since (λ+µ)>0. This result corresponds to the theory of P 

(primary) and S (secondary) body waves in physics. P wave 
corresponds to the set defined by p2(x,ξ) = 0, and S wave - to 
the one defined by p1(x,ξ) = 0. 

Note: If we consider z axis be positive upward, we derive 
the same equations (3). 

 
Pic.1 Propagation of wave in solid media. Te wave 

decomposes to P and S wave. 
 
Then the following theorem holds: 
Theorem: Body wave propagating in homogeneous media is 

the composition of two waves - P wave and S wave. There are 
no other components of the body wave. 

The bi-characteristic strip of the linear strongly coupled 
system (1) is another important object for our study, since the 
characteristic set of a operator with real principal part p(x,ξ) 
and constant coefficients is invariant under the bi-
characteristic flow (see [2], vol.I Chapter 8). More important 
to our study is the fact that the singularities of (1) travel on the 
bi-characteristic curves. By definition if p(x0, ξ0)=0 then the 
bi-characteristic strip at point (x0, ξ0) is defined by the 
Hamilton equations  

x
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The bi-characteristic strip bi generated by pj(x, ξ ), j =1,2, 

through point (x0, ξ0) is  
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for i=1,2,3. Constant ρµ /=c  for bi-characteristics 

generated by p1(x, ξ ) and ρµλ /)2( +=c for ones 
generated by p2(x, ξ ). 

The values of ξ10, ξ20 and ξ30 are determined by the 
features of the seismic source. Without loss of generality we 
can assume the source of the seismic wave to be a point one 
with direction of the impulse (ξ10, ξ20,ξ30). 
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The restriction of the bi-characteristic strip into R4 is named 
bi-characteristic curve. For computational purpose it is more 
convenient to write the bi-characteristic strip of (4) in the form  
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sctt 00 2 ξ=−

 and without loss of generality we 

may assume 
10 =ξ

.  
 

V. REFLECTION AND REFRACTION 
Equation (5) describes the bi-characteristic curves of (1) in 

each block Bi,j,k and their behaviour on the boundary ∂ Bi,j,k 
=∪{ Fi,j,k,l(x, y, z)=0} is studied by micro-local analysis and 
geometrical optics.  

Let bin be a bi-characteristic curve in Bi,j,k and bin 
∩{Fi,j,k,l(x, y, z)=0} = p0. At point p0 bin can be reflected or 
refracted. Let brr be the refracted curve and brl be the reflected 
one. Both brr  and brl  are bi-characteristics through point p0 – 
brr is in the next  to Bi,j,k block (in the sense of propagation of 
the singularity generated in S) and brl is in Bi,j,k. The 
singularity at p0 propagates over the bi-characteristics as well 
and in this way the well known formula for reflection and 
refraction from geometrical optics are obtained.  

If bi-characteristic curve bin is reflected the angle θin of 
incidence to the surface Fi,j,k,l(x, y, z)=0 is equal to the angle 
of reflection θrl, since in the same block the equation (5) has 
the same coefficients.  

 
As for refraction at a surface, the match of the boundary 

conditions of the neighbouring blocks at the two sides of the 
boundary lead to the well known formula from geometric 
optics v1.sinθrr = v2.sinθin, where θrr is the angle of 
refraction, v1 is the speed of the wave in the "incidence" block 
and v2 is the one in "refraction" block. 

 
Pic. 2 Incoming vector 1, the reflected 2 and the refracted 

one 3. β denotes the surface of reflection/refraction, n is the 
normal to β surface. 

 
Computation of reflected and refracted bi-characteristic 

curve is simple. Let ξin = (ξ1in, ξ2in, ξ3in) be the unit vector 
along the incidental bi-characteristic curve bin in Bi,j,k; ξrr = 
(ξ1rr, ξ2rr, ξ3rr) be the unit vector along refracted bi-
characteristic curve brr (in the neighbouring block), and ξrl = 
(ξ1rl, ξ2rl, ξ3rl) be the unit vector along reflected bi-

characteristic curve brl (in Bi,j,k). Let ),,( 321 nnnn =


 be 
the normal unit vector to the surface Fi,j,k,l=0 at the point of 
incidence p0. The speed of the wave is a physical feature of 
every material. For instance, the velocity of the P-wave in 

homogeneous isotropic media is ρµλ /)2( +=Pv , for 

S-wave it is ρµ /=Pv . 
Quantities θrl = θin and sinθrr are easy to compute using 

scalar, or dot product nξθ =)cos( , for instance 

( )2
332211

2 1)(sin nnn ininin
in ξξξθ ++−= . Then 

equations of refraction and reflection from geometrical optics 
yield  

 

 (6) 

 

 
The right hand sides in (6) are known quantities. 
In addition, the incident bi-characteristic curve, the refracted 

one and the normal to the surface vector lie on the same plane 
and give us the relation 
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The same relation is valid for vector ξrl.  
Finally, since we consider vectors ξin, ξrr  and ξrl  be unit 

ones, we obtain 
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Equations (6), (7) and (8) define uniquely vectors of 

refraction ξrr and reflection ξrl . The sign in the right-hand 
side of (6) is “+” or “-“ and depends on the orientation of 
vector   

VI. 3-D MODELLING OF EARTH CRUST AND UPPER MANTLE  
Earthquake at point S actually is a singularity of the solution 

u=(ux,uy,uz) of system (1). In our model the wave source is a 

1 
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point one, i.e. the impulse has direction (ξ10, ξ20,ξ30). Then 
the singularity that is generated by an earthquake in block 
B0,0,0 propagates over the bi-characteristic curve (5) in 
B0,0,0 until it intersects at point (x1, y1, z1) the boundary to 
the neighbouring block, B1,0,0 for instance. Continuous 
boundary conditions mean that at point (x1, y1, z1) system (1) 
in the block B1,0,0 has singularity, that propagates over the bi-
characteristic curves in B1,0,0, and (6), (7) and (8) give us the 
reflected (in B0,0,0) and refracted (in B1,0,0) 
bicharacteristics. Therefore the following criterion for the 3D 
model of the Earth crust and upper mantle is defined: 

Definition: Let {Bi,j,k} be a set of blocks and the source of 
seismic wave be a point one at S with pulse direction alongside 
vector ξ0. Let P be the point of the Earth surface belonging to 
the bi-characteristic curves generated by system (1), set of 
blocks {Bi,j,k} and source S. Given set of blocks {Bi,j,k} is 
plausible if the point P coincides with the epicentre E of the 
body waves at surface z=0, generated by the earthquake. 

Since seismic stations record body waves at the surcease as 
well, point E is a subject of triangulation if there are enough 
sensors in the region. More details are given in the next 
chapter. 

The computation of the bi-characteristic curves in the set 
Bi,j,k rises an important question. At the boundaries between 
two blocks - surfaces Fi,j,k,l(x,y,z)=0 - is the bi-characteristic 
curve reflected, refracted, or both? The answer comes from the 
so called reflection and refraction index. It is a physical feature 
of the constitutive material of the block.  

The procedure for the computation of refraction and 
reflection index is well described in [1], [3] or in [4] 

Furthermore, the body waves records are useful to 
determine the block structure of the closest to the seismic 
stations blocks. Wave front in a homogeneous block is a subset 
of the characteristic set of system (1), therefore it has constant 
speed by (4).  

Using bi-characteristic curves and the characteristic set we 
can compute arrival time for P - and S - waves. In combination 
with the criteria from the Definition, we can generate and test 
plausible 3-D models of the Earth crust and upper mantle.  

VII. LOCATION OF THE POINT P. BODY WAVES AT THE 
SURFACE Z=0 

For the determination of the location of point P on surface 
z=0 we use the boundary conditions. The boundary conditions 
(2) of system (1) actually provide the information of what is 
the behaviour of the body wave on the boundary surface z=0. 
Therefore computing the characteristic set pb(x,ξ) for system 
(2) we obtain 

 

 

 
 

 

 

 
Since the singularities propagate over bi-characteristic 

curves, the initial point or the epicentre of the body waves on 
the surface z=0 is the point E where bi-characteristic curve 
contact the surface z=0. Therefore we can determine position 
of point E on the surface using data records from seismic 
stations and applying triangulation method.  

Once having positions of points S and P we run a model 
generator (MG) that generates sets of blocks {Bi,j,k}. For each 
set we test the calculated position P and the observed one E. 
Using Definition 1 we adopt or reject the set {Bi,j,k}.  

MG could be build on a various methods. For the algorithm 
and computer code, developed by the author are used Monte 
Carlo ones.  

A key point for the speed and effectiveness of the MG is the 
choice of the starting sets of blocks {Bi,j,k}. Often it is 
suitable to use existing 2D models as a base of the set {Bi,j,k}. 

 

VIII. CONCLUSION 
The geometrical method proposed in this paper gives a 

quick and affective way to obtain a set of plausible blocks 
models {Bi,j,k}. Since we solve the inverse problem, it is 
natural to obtain multi-valued solution, i.e. more than one 
plausible set. For further refinement of this set could be 
applied crosscheck tools, or hybrid approach methods. For 
instance magnetic in-situ measurements could provide useful 
information for the media structure at a certain points. The 
flaw of the in-situ approach is the cost of surveys and the fact 
that we obtain information for the media structure only in one 
point. 

The main disadvantage of the proposed in this paper 3D 
method is that we obtain reliable media structure in a relatively 
narrow strip between points S and P. In other words the 
method is effective in areas with enough sources of 
earthquakes, or regions with high seismic activity. 
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