
 

 

  
Abstract— In this paper, a mathematical model of thermoelastic an 
infinite body with cylindrical cavity has been improved. A unified 
system of governing equations has been formulated in the context of 
three different models of thermoelasticity; Biot model, Lord-Shulman 
model, and Green-Lindsay model. Adomian decomposition method 
has been applied to get the solution of the model. The boundary 
surface of the cavity is subjected to harmonic thermal loading with 
zero heat flux and strain. The first components of the iteration have 
been calculated and used to get the rest components of the iteration 
formulas by using MAPLE 17 and by applying a certain Algorithm. 
The numerical results for the temperature, radial stress, strain, and 
displacement have been represented graphically. The angular thermal 
load and the relaxation times have significant effects on all the 
studied fields in the context of the three applied thermoelastic 
models. The results show that, Lord-Shulman model is much closed 
to Green-Lindsay model. 
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I. NTRODUCTION 

 Biot derived the coupled thermoelasticity (CTE) in which 
the heat conduction is parabolic type partial differential 
equation which generates thermal wave  with infinite speed 
[1]. To fix this paradox, generalized thermoelasticity theory 
has been derived by Lord and Shulman (L-S) by using the 
definition of the second sound effects [2]. This definition leads 
to heat conduction of parabolic type partial differential 
equation which generates the finite velocity of the thermal 
wave. Green and Lindsay (G-L) theory suggest two relaxation 
times and both the energy equation and the equation of motion 
are modified [3]. Many mathematical models of the infinite 
body with a cylindrical cavity in context of different types of 
thermoelasticity models have been solved [4-7]. 
 Recently, much attention has been devoted to the numerical 
methods in which do not require discretization of time-space 
variables or to the linearization of the nonlinear equations [8]. 
Adomian method is a decomposition method which solves 
linear and nonlinear partial and ordinary differential equations 
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[9-11]. This method offers computable, accurate, convergent 
solutions to linear and nonlinear partial and ordinary 
differential equations. The solution can be applied to any 
degree of approximation. Recently, the Adomian 
decomposition technique has been used to get the formal 
solutions to many classes of partial and ordinary differential 
equations [12-23]. Adomian method solved different 
mathematical models of the mechanics interaction of immune 
with viruses, antigens, bacteria or tumor cells which had been 
modeled as a system of nonlinear partial differential equations 
by using the ADM [11, 24-26]. 
 Adomian decomposition method (ADM) separates the 
differential equation into linear and nonlinear parts, invert the 
highest-order derivative in both sides, and obtain the 
successive terms of the solution by iteration relation [8, 20]. 
Many modifications to the method made to enhance the 
accuracy or to expand the applications of the original method 
by many authors [17, 19, 23]. Recently, the decomposition 
method has been used in fractional partial differential 
equations [27-29]. 

II. BASIC EQUATIONS 
 The unified system of governing equations in the context of 
CTE, L-S and (G-L) has been constructed for a linear, and 
homogeneous, isotropic medium without any external heat 
source to be in the following form [7]: 

( )i , jj j , ji i ,i iu u F 1 T u
t

µ λ µ γ υ ρ
 ∂

+ + + − + = ∂ 
   (1) 

2 2

,ii E 0 0 0 j , j2 2
K T C T T n u

t t t t
ρ τ γ τ

   ∂ ∂ ∂ ∂
= + + +   ∂ ∂ ∂ ∂   

  (2) 

( ) ( )ij i , j j ,i i ,i ij 0 iju u u 1 T T
t

σ µ λ δ γ υ δ
 ∂

= + + − + − ∂ 
  (3) 

Putting 0 0τ υ= =  for coupled thermoelasticity (Biot model).  

Putting n 1= , 0υ = and 0 0τ ≠ , for generalized thermoelasticity 
with one relaxation time (Lord-Shulman model “L-S”). 
Putting n 0= , 0 0, 0τ υ≠ ≠  for generalized thermoelasticity 
with two relaxation times (Green-Lindsay model “G-L”), 
where i, j 1,2,3=  are the indicators of the coordinates system. 

III. FORMULATION THE PROBLEM 
 Assume a thermoelastic perfectly conducting infinite body 
with cylindrical cavity fills the region R r≤ < ∞ . The 
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cylindrical coordinates system ( )r, ,zψ  with the z-axis lying 
along the axis of the cylinder will be used. Due to symmetry of 
the medium, the problem is one-dimensional with all the 
considered functions and depending on the radial distance r 
only and the time t. It is considered there are no external body 
forces and heat sources in all parts of the medium even the 
surface of the cavity.  
Thus the governing equations (1)-(3) in cylindrical one 
dimensional take the following forms 

( )
2

2

e u2 1 T
r r t t

λ µ γ υ ρ
 ∂ ∂ ∂ ∂

+ − + = ∂ ∂ ∂ ∂ 
  (4) 

0

2 2
2 E

0 02 2

TCT T n e
K t t K t t

γρ
τ τ

   ∂ ∂ ∂ ∂
∇ = + + +   ∂ ∂ ∂ ∂   

  (5) 

( )rr 0

u2 e 1 T T
r t

σ µ λ γ υ
 ∂ ∂

= + − + − ∂ ∂ 
  (6) 

( )0

u2 e 1 T T
r tψ ψσ µ λ γ υ

 ∂
= + − + − ∂ 

  (7) 

( )zz 0e 1 T T
t

σ λ γ υ
 ∂

= − + − ∂ 
  (8) 

z r r z z 0ψσ σ σ= = =   (9) 

( )r u1e
r r

∂
∂

=   (10) 

where 
2

2
2

1
r r r

∂ ∂
∂ ∂

∇ = +   

For convenience, we shall use the following non-dimensional 
variables [7]: 

( ) ( )or ,u c r,uη′ ′ = , ( ) ( )2
0 0 o 0 0t ,t , , c t ,t ,τ υ η τ υ′ ′ ′ ′ = , ( )

0

0T T
T

θ
−

= , 

σσ
µ

′ =  

where 2
o

2c λ µ
ρ

+
=  and EC

K
ρ

η = . 

Equations (4)-(8) take the form (where the primes are 
suppressed for simplicity) 

2
2 2

2

ee 1
t t

α υ θ
 ∂ ∂

∇ − + ∇ = ∂ ∂ 
  (11) 

2 2
2

o 02 2n e
t t t t

θ τ θ ε τ
   ∂ ∂ ∂ ∂

∇ = + + +   ∂ ∂ ∂ ∂   
  (12) 

2 2
rr

ue 2 1
r t

σ β α β υ θ
 ∂

= − − + ∂ 
  (13) 

2 2ue 2 1
r tψψσ β α β υ θ

 ∂ ∂
= − − + ∂ ∂ 

  (14) 

( )2 2
zz 2 e 1

t
σ β α β υ θ

 ∂
= − − + ∂ 

  (15) 

where oT
2

γ
α

λ µ
=

+
, 

EC
γε

ρ
= , 2 2λ µβ

µ
+

= , and 

( ) T3 2γ λ µ α= + . 
III. ADOMIAN DECOMPOSITION METHOD (ADM) 

Before we apply Adomian method we re-write the equation 
(11) and (12) to be in the forms: 

( ) ( ) ( )

( ) ( )

2 2 2

2 2 2

e r ,t e r ,t r ,t
1

r t t r

r ,t e r ,t1 11
t r r r r

θ
α υ

θ
α υ

∂ ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ 

∂ ∂ ∂
+ + − ∂ ∂ ∂ 

  (16) 

and 
( ) ( )

( ) ( )

2 2

02 2

2

0 2

r ,t
r ,t

r t t

r ,t1n e r,t
t t r r

θ
τ θ

θ
ε τ

∂  ∂ ∂
= + + ∂ ∂ ∂ 

∂ ∂ ∂
+ − ∂ ∂ ∂ 

  (17) 

The Adomian decomposition method usually defines the 
equation in an operator form by considering the highest-ordered 
derivative in the problem. We define the differential operator 
“L” in terms of the two derivatives contained in the problem [9-
11, 27]. 
Consider equations (16) and (17) in the operator form as 
following: 

( ) ( ) ( ) ( )

( ) ( ) ( )

rr tt t rr

t r r

L e r,t L e r,t 1 L L r,t
1 11 L L r,t L e r,t
r r

α υ θ

α υ θ

= + + +

+ −
  (18) 

( ) ( ) ( )

( ) ( ) ( )

rr t 0 tt

1 t 0 tt r

L r ,t   L  + L r,t  + 
1 L  + n L e r,t L r,t
r

θ τ θ

τ θε

=

−
  (19) 

Where the operators which appeared in the above equations 
are defined as: 

2 2

t tt r rr2 2
L , L , L , L

t t r r
∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂

  (20) 

Assuming that the inverse of the operator “ 1
rrL− ” exists and is 

taken as a definite integral with respect to “r” from “0” to “r” as 
following [9-11, 27]: 

( ) ( )
r r

1
rr

0 0

L f r f r dr dr− = ∫ ∫  (21) 

Thus applying the inverse operator on both the sides of (18)-
(19), we obtain 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

r R

tt t rr
1

rr

t r r

e r ,t
e R,t e R,t

r

L e r,t 1 L L r,t
L 1 11 L L r,t L e r,t

r r

α υ θ

α υ θ

=

−

∂
= + +

∂

+ + + 
 
 + −
  

  (22) 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( )

r R

1t 0 tt t 0 tt
1

rr

r

r ,t
r ,t R,t

r

 L  + L r,t  +  L  + n L e r,t
L 1 L r,t

r

θ
θ θ

τ θ τε

θ

=

−

∂
= + +

∂

 
 
 −
  

  (23) 

Now, we will decompose the unknown 
functions ( )r,tθ and ( )e r,t by a sum of components defined by 
the following series:  

( ) ( ) ( )k 0 k
k 0 k 1

e r ,t e r ,t e e r,t
∞ ∞

= =
= = +∑ ∑   (24) 

( ) ( ) ( )k 0 k
k 0 k 1

r ,t r ,t r ,tθ θ θ θ
∞ ∞

= =
= = +∑ ∑   (25) 

The zero-components are defined by the terms that arise from 
the boundary conditions on the surface of the cavity r R= , 
which give 

( ) ( )
0

r R

e r ,t
e e R,t

r
=

∂
= +

∂
  (26) 

( ) ( )
0

r R

r ,t
R,t

r
θ

θ θ
=

∂
= +

∂
  (27) 

Substituting from equations (24)-(27) in equations (22) and 
(23), we get 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

k
k 0

r R

tt k t rr k
k 0 k 01

rr

t r k r k
k 0 k 0

e r ,t
e r ,t e r ,t e R,t

r

L e r,t 1 L L r,t
L

1 11 L L r,t L e r,t
r r

α υ θ

α υ θ

∞

=
=

∞ ∞

= =−

∞ ∞

= =

∂
= = + +

∂

 + + + 
 
 + −
  

∑

∑ ∑

∑ ∑

  (28) 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

k
k 0

r R

t 0 tt k
k 0

1
1rr t 0 tt k

k 0

r k
k 0

r ,t
r ,t r ,t R,t

r

 L  + L r,t  +

L   L  + n L e r,t

1 L r,t
r

θ
θ θ θ

τ θ

τε

θ

∞

=
=

∞

=

∞
−

=

∞

=

∂
= = + +

∂

 
 
 
 
 
 
 −
 

∑

∑

∑

∑

  (29) 

We obtain these components by ( )ke r ,t and ( )k r ,tθ  the 
recursive formulas [9-11, 27]: 

( )
( ) ( ) ( )

( ) ( ) ( )

tt k t rr k
1

k 1 rr

t r k r k

L e r,t 1 L L r,t
e r,t L 1 11 L L r,t L e r,t

r r

α υ θ

α υ θ
−

+

+ + + 
 =  + −
  

  (30) 

( )
( ) ( )

( ) ( ) ( )

t 0 tt k
1

k 1 rr
1 t 0 tt k r k

 L  + L r,t  +
r,t L 1 L  + n L e r,t L r,t

r

τ θ
θ

τ θε
−

+

 
 =  −
  

 (31) 

 We assume that the surface of the cavity r R=  is thermally 
loaded by harmonic heat with zero strain and heat flux. 
Hence, we have:  

( ) ( ) ( )0

r R

r ,t
0,t sin t , 0

r
θ

θ θ ω
=

∂
= =

∂
  (32) 

( ) ( )
r R

e r ,t
e 0,t 0, 0

r
=

∂
= =

∂
 (33) 

where 0θ  is constant and ω  is the angular thermal load and 
assumed to be constant. Thus, we have 

( )0
0 0sin t , e 0θ θ ω= =   (34) 

Substituting from equations (36) into equations (30) and (31), 
we get the complete of the iteration formulas. 
The first components of the iteration take the forms: 

( )1e r ,t 0=   (35) 

( ) ( ) ( )( )( )2

1 0r ,t cos t sin t r R
2
ωθ ω ωτ ω= − −  (36) 

The rest components of the iteration formulas (30) and (31) 
have been calculated by using the MAPLE 17. Moreover, the 
decomposition iteration solutions (30) and (31) are convergent 
rapidly in any real physical problem and its convergence has 
been approved by several authors [17-20].  
 In an algorithmic form, the ADM can be expressed and 
implemented in linear generalized magneto-thermoelasticity 
models with the suitable value for the tolerance 6Tol 10−= and 
k is the iteration index, as follows [17-20]: 
ALGORITHM 
1- Compute the initial approximations ( )0 0,tθ θ=  and 

( )=0e e 0,t  given by (36). 

2- Use the calculated values of ( )k r ,tθ  and ( )ke r ,t  to compute 

( )k 1 r ,tθ + and ( )k 1e r ,t+  from (30) and (31). 

3- If ( ) ( )k 1 kmax r,t r ,t Tolθ θ+ − < and

( ) ( )k 1 kmax e r,t e r ,t Tol+ − < , stop and set k 1 m+ = , 

otherwise continue and go back to step 2. 

4- Calculating ( ) ( )
m

k
k 0

e r ,t e r ,t
=

= ∑ and ( ) ( )
m

k
k 0

r ,t r ,tθ θ
=

= ∑ . 

5- Calculating the displacement from equations (10) and (28) 
as follows: 

( ) ( ) ( )
mr r

kR R
k 0

1 1u r,t e ,t d e ,t d
r r

ξ ξ ξ ξ
=

= = ∑∫ ∫   (37) 

6- Calculating the stress from the equations (13), (28), (29), 
and (41) as follows: 

( ) ( ) ( )

( )

m mr2
k kR

k 0 k 0

m
2

k
k 0

1r ,t e r ,t 2 e ,t d
r r

1 r,t
t

σ β ξ ξ

αβ υ θ

= =

=

∂  = −  ∂  
∂ − + ∂ 

∑ ∑∫

∑
  (38) 

IV. THE NUMERICAL RESULTS AND DISCUSSION 
For the numerical evaluations, the copper material has been 
chosen and the constants of the problem were taken as follows 
[4-7] : 
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( )K 386 W / mK= , 5 1
T 1.78 10 Kα − −= × , ( )EC 383.1 J / kg K= ,

28886.73 s / mη = , 0T 293 K= , 10 23.86 10 N / mµ = × , 
10 27.76 10 N / mλ = × , 38954 kg/mρ = , 14

0 0.35 10τ −= × , 
140.33 10υ −= × .  

Thus, the following non-dimensional parameters have been 
obtained; 

1=1.618ε , 0.02ν = , 0 0.05τ = .  
We calculate the numerical solutions when the non-
dimensional value of the time is t 2.0= , the non-dimensional 
value of the distance is 1.0 R 2.0≤ ≤ , ω π= , and 0 1.0θ = .   
According to the above algorithm, we stopped the calculation 
on the 5th component ( )5 r ,tθ and ( )5e r ,t . 
 Figures 1-4 show the temperature increment, the strain, the 
radial stress, and the displacement distribution with different 
values of angular thermal load parameter ( ), 1.1ω π π= for the 
three models of thermoelasticity; Biot, L-S, and G-L. The 
numerical results of the L-S model and G-L model almost are 
identical particularly the temperature increment distribution 
and the stress distribution for the different values of ω , while 
the strain and the displacement distributions are not. The 
different result between the Biot’s model and the other models 
tell us that the relaxation times have significant effects on all 
the studied functions. Moreover, the angular thermal load 
parameter has significant effects on the temperature increment, 
the strain, the radial stress, and the displacement distribution. 
The figures show also that the changing of the value of the 
angular thermal load parameter  ω  leads to large changing in 
all the studied functions.  When the value of the parameter ω 
increases, then the value of all functions under consideration 
increase. 
Figures 5 and 6 show the temperature increment, the strain, the 
radial stress, and the displacement distribution for L-S model 
with respect to the time t and the radial distance r when 
ω π= and 2ω π= , respectively. Again, the angular thermal 
load parameter has significant effects on all the distributions. 
The number of the peak points of the increment temperature 
and the strain distribution increase when the value of the 
angular thermal load parameter increases.  Finally, the 
temperature increment, the strain, the radial stress, and the 
displacement have higher values in the context of Biot model 
more than L-S and G-L models and the reason is coming back 
to the relaxation times. 

V. CONCLUSION 
A mathematical model of thermoelastic an infinite body with 
cylindrical cavity has been constructed. A unified system of 
governing equations has been formulated in the context of 
three different models of thermoelasticity; Biot model, Lord-
Shulman model, and Green-Lindsay model. Adomian 
decomposition method has been used when the surface of the 
cavity is subjected to harmonic thermal loading with zero heat 
flux and strain.  
The numerical results conclude that: 
• The relaxation times and the angular thermal load have 
significant effects on all the studied fields. 

• The results almost from the Lord and Shulman model to 
match the results obtained when applying the Green and 
Lindsay model.  
• The temperature increment, the strain, the radial stress, and 
the displacement have higher values in the context of Biot 
model more than L-S and G-L models. 
• Adomian decomposition method  is a successful method to 
solve mathematical models of thermoelasticity based on 
cylindrical co-ordinates. 

 
Figure 1: The temperature increment distribution with various 

values of angular thermal load 

 
 

Figure 2: The strain distribution with various values of angular 
thermal load 

 

 
Figure 3: The stress distribution with various values of angular 

thermal load 
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Figure 4: The displacement distribution with various values of 

angular thermal load 
 

 
Figure 5-a: The temperature increment 

 
 

Figure 5-b: The strain 

 
Figure 5-c: The stress 

 
Figure 5-d: The displacement 

 
 

 
Figure 6-a: The temperature increment 

 
Figure 6-b: The strain 

 
Figure 6-c: The radial stress 
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Figure 6-d: The displacement 
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 NOMENCLATURE 
,λ µ   Lame’s constants 

ρ   Density 

EC   Specific heat at constant strain 

Tα  Coefficient of linear thermal expansion 
γ  = (3λ+2μ) αT 
t   Time 
T   Temperature 

0T   Reference temperature 

θ  ( )0T T= −  Temperature increment such that 0/ T 1θ <<  

ijσ   Components of stress tensor 

ije   Components of strain tensor 

iu   Components of displacement vector 

iF   Body force vector 

r 
t 

u 
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K   Thermal conductivity 
0 ,τ υ   Relaxation times 
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