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Abstract—In this paper, a novel framework is presented for sup-
pression of noise in a color image contaminated by a mixture of
additive and impulsive noise. This method consists of three principal
stages: in the first stage, the suppression of impulsive noise is
performed where the corrupted by impulsive noise pixels should be
detected and filtered by a variant of median filter. In the second
stage, novel additive noise suppression filter is used on Wavelet
domain applying the sparse representation and 3D-filtering. Finally,
the image obtained on the previous filtering stages is processed to
correct non-desirable effects such as fine details blurring and texture
distortions. Evaluation of novel approach in suppressing complex
noise has been performed using objective criteria (PSNR and SSIM)
and subjective perception via human visual system confirming their
better performance in comparison with state-of-the-art techniques.

Keywords—Image Denoising, Additive Noise, Impulsive Noise,
Mixed Noise,Sparse Representation, PSNR,SSIM.

I. INTRODUCTION

The fundamental problem in image processing consists in
reducing a noise while preserving the most of image features.
The presence of random digital noise in an image reduces the
performance of digital systems, so the noise can be considered
such an undesirable signal that adheres to objects of interest in
digital image. Research is ongoing to develop filters capable
to suppress different types of noise in order to obtain an image
sufficiently similar to original one. Principal difficulties in
any filtering technique are that a processing procedure should
perform suppression of a noise meanwhile the fine details,
edges, and texture properties can be saved unchanged. If fine
characteristics of an image are distorted during filtering, these
drawbacks could cause economic impact, misinterpretation
during medical diagnosis, incorrect classification of objects
in the satellite images, erroneous detection of obstacles by
autonomous robots, errors in telemedicine applications, etc.
[1].

During image acquisition, additive noise may be present,
and during its transmission or acquisition, further contami-
nation may be caused by impulsive noise. These two types
of noise are the most common but are not the only types.
Images may be corrupted by interference and imperfections in
the channel or the reception equipment. Additionally, digital
cameras can introduce noise because of failure in their sensor
CCD, electronic interference or errors in data acquisition [2].
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Impulsive noise in an image appears as spots that can range
in size from very large to very small. There are several models
of contamination by impulsive noise: impulsive noise with
fixed value and impulsive noise with random distribution. In
practice, the most common type of noise in a digital image is
additive noise, which is generally assumed to be a stochastic
Gaussian process with a zero mean and a known variance of
σ2. In most cases, it is spatially independent. In corruption by
additive noise, all pixels in an image are corrupted; however,
the pixels can be recovered by subtracting the additive random
error.

These two types of noise are the most common but are not
the only types [3]. The most common model of mixed noise
used is a combination of additive noise (usually, Gaussian one)
and impulsive noise. This type of noise can be represented as
follows:

E(i, j) =

{
e(i, j) + nadd , with probability 1− pk
nimp , with probability pk

, (1)

where e(i, j) is the original image, nadd is a random process
with Gaussian probability density N(0, σ2), nimp is modelled
via uniform probability distribution, and E(i, j) is the noisy
image.

II. RELATED WORKS

The restoration of corrupted images by a mixture of additive
and impulsive noise requires new techniques, since existing
techniques that are developed in additive noise suppression
are not capable of eliminating artefacts produced by impulsive
noise.

There are several filtering techniques for Gaussian additive
noise elimination, among them, there exist different techniques
based on search of a group of pixels called as reference block.
Jain [4] proposed a technique, in which WT is applied to
some neighbourhoods or patches with a specified degree of
similarity. Filtering is performed for each sub-band wavelet
by obtaining a threshold that adapts to the conditions of each
a neighbourhood. Lukin [5] proposed an adaptive filter based
on an assessment of the image locality for filtering by DCT
to obtain a neighbourhood and to estimate the local variance;
then, the variance is used to distinguish homogeneous and
heterogeneous areas. Finally, the threshold depending on the
area in question is set. Bahoura [6] proposed a signal denois-
ing technique based on wavelet that consists of applying a
thresholding function to the wavelet coefficients.
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Jin [7] introduced new non-local operators to interpret the
filter as a regularization of the Dirichlet’s functional. These
operators are used to propose a new non-local model H1.
Smoothing and fidelity are derived from the same geometric
principle. Experiments show that non-local operators produce
a good interpretation of the NLM filter. Buades [8] proposed a
new method for measuring noise and comparing performance
of the methods in removing image noise. Then, the authors
proposed a new algorithm based on NLM for a nonlocal
average of all pixels in an image.

Dabov [9] presented the video filtering method VBM3D
based on a highly dispersed signal in the local domain of a
3D transform. This method uses a 3D array called group that is
applied to store all blocks similar to the block being processed.
The grouping is performed by searching for similar blocks
in the space-time domain. For each a 3D group, filtering and
shrinkage is performed in the 3D transform domain. In our pre-
vious study [10], we performed similar to BM3D framework
(SM3D-DCTNS) using DCT and block matching procedures
that demonstrated superior performance in comparison with
NML and BM3D techniques. One drawback appears in this
kind of filtering is that the found similarity measure may cause
the impulses that can be considered as fine details, so the
corrupted pixel is not filtered.

There are several papers that use ideas of fuzzy logic theory
in denoising and can suppress additive or impulsive noise in
separated form [11] [12] [13]. For example, in our previous
study [12], two frameworks (FMANS 2 and FMANS H) have
been designed to suppress additive Gaussian noise but any of
these techniques has no ability in filtering complex (impulsive-
additive) noise.

Techniques for additive noise do not perform a correct
restoration of pixels contaminated by impulsive noise, so it
is necessary to restore such pixels before restoring the pixels
that are contaminated by additive noise. There are different
techniques for the elimination of impulsive noise, where the
detection of noisy pixels or random impulses is performed
during the first stage, following these impulses should be
suppressed during filtering process.

Different techniques for the elimination of impulsive noise
are mostly based on use of kind of median filter or their
multichannel modification such as Vector Median Filter [14],
Switching Median Filter [15], etc. Other techniques are based
on the detection of contaminated pixels in the first step, and
then a filtering process should be only applied to corrupted
pixels.

Xu [16] proposed an efficient filter for universal impulse
noise removal. This method consists of two stages: impulse
detection and filtering. For detection, a robust local image
statistic, called the extremum compression rank-order absolute
difference (ECROAD), is designed to detect impulse noise in
an image. For filtering, the universal impulse noise filter is
proposed by combining the ECROAD statistic with the non-
local means.

Nasri [17] presented an effective filtering method to remove
impulse noise from images. In this two-stage method, the
detected noise-free pixels remain unchanged. Then, a Gaussian
filter with adaptive variances according to the image noise

level is applied to the noisy pixels. Veerakumar [18] introduced
an adaptive radial basis function interpolation-based impulse
noise removal algorithm. This approach consists of two stages:
noisy pixel detection and correction. The radial basis function
interpolation scheme is used to estimate the unknown noisy
pixel value from the noise-free known neighboring pixel
values. For both noisy pixel detection and correction, a center
sliding window is considered at each a pixel location.

The methods described above are designed for a specific,
additive or impulsive type of noise. There are several novel
techniques that can remove a mixture of noises, usually
additive noise and impulsive noise. Most of these techniques
perform the filtering of impulsive noise in a first stage, and
the filtering of additive noise is applied during second stage.

In [19, 20], suppression techniques for mixed noise (additive
Gaussian and impulsive saturated) are proposed, in which the
detection and filtering of impulsive noise are employed first,
and the suppression of additive Gaussian noise occurs in a
second stage.

In [19], the impulsive noise detector is based on the dif-
ferences between a central pixel and its neighbours. When a
contaminated pixel is detected, it is replaced by a mean of all
neighbours. Filtering of additive Gaussian noise is performed
using a bilateral filter (BF),in which the parameters of BF are
adjusted based on an estimation of local variance. Jiang [21]
proposed a method to suppress mixed noise called weighted
encoding with sparse nonlocal regularization (WESNR). The
WESNR technique does not use a detector of impulses as
an individual stage, so each corrupted block is encoded over
a pre-learned dictionary to remove the impulse noise and
additive white Gaussian noise simultaneously in a soft impulse
pixel detection manner. The suppression of mixed noise is
performed by weighting the encoding residual in such a way
that the final encoding residual will tend to follow a Gaussian
distribution. The weighted encoding and sparse nonlocal reg-
ularization are unified into a variational framework, which is
easy to minimize.

In this work, novel technique of suppressing a mixture of
additive and impulsive noise is developed. The suppression
of mixed noise is divided in several stages: the suppression
of impulsive noise is performed using a detector of impulses
and a variant of median filter; the additive noise suppression
is performed on wavelet domain that in difference with our
previous study (Palacios-Enriquez, 2016) demonstrates better
quality, employing the advantage of sparse representation; and,
finally, in order to improve the quality of the image, obtained
during the previous suppression stages, a post-processing stage
should be applied.

III. PROPOSED METHOD

The proposed method to filter image corrupted by
impulsive-additive noise using Sparse Representation and 3D
Wavelet Filtering (FMN-3DWT-C) can be described in three
stages: a) impulse noise detection and filtering, b) additive
noise filtering, and c) post-processing procedure (See Fig. 1).
In the following sections, each a step will be described.
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Fig. 1. Block-diagram of proposed method FIAN-3DW.

A. Impulsive Noise Suppression

In developed impulsive noise suppression stage, the detec-
tion and restoring of pixels contaminated by impulsive noise
are performed.

1) Fuzzy Impulsive Noise Detector: Detection of noisy
pixels is a very important stage because a poor detection could
generate undesirable effects, such as: blurring in areas of fine
details or texture distortion.

The detection process in current framework is based on
gradient value and fuzzy sets theory. In this stage, all pixels
are analyzed using a vicinity of 3 × 3 pixels, where several
neighbors are assigned to a choosen direction (Northwest
(NW), North (N), Northeast (NE), East (E), Southeast (SE),
South (S), Southwest (SW), West (W)).

The basic gradient value in direction (k, l) of a central pixel
in the position (i, j) is defined as follows:

∇(k,l)E(i, j) = E(i+ k, j + l)− E(i, j), (2)

where k, l ∈ {−1, 0, 1} and (k, l) belong to one of eight
directions. It is necessary distinguish between corrupted and
edge pixels, two values are defined, and they are known
as related gradients. These values are calculated by using
neighboring pixels that form a right angle in the same direction
as the basic gradient (see Fig. 2(b)).

(a) Vicinity of a central
pixel.

(b) Gradients related to
the NW direction.

Fig. 2. Vicinity of 3× 3 to calculate basic and related gradients.

The next step consists of defining a fuzzy gradient in each a
direction to distinguish between a noisy pixel and a noise-free

pixel. The fuzzy gradient value ∇FRA(i, j) for direction R is
defined as follows:

IF [

|∇RE(i, j)| is largeAND |∇′RE(i, j)| is smallOR
|∇RE(i, j)| is largeAND |∇′′RE(i, j)| is smallOR
∇RE(i, j) is big positiveAND∇′RE(i, j)AND
∇′′RE(i, j) are big negativeOR
∇RE(i, j) is big negativeAND∇′RE(i, j)AND
∇′′RE(i, j) are big positive ]

THEN
∇FRE(i, j) is large,

where ∇RE(i, j) is the basic gradient and, ∇′RE(i, j) and
∇′′RE(i, j) are the related gradients connected with a given
direction R = {NW,N,NE,E, SE, S, SW,W}. In order to
determine whether a central pixel is contaminated by impulsive
noise, the following fuzzy rule is used:

IFmost of the eight∇FRE(i, j) are large

THEN the central pixel E(i, j) is an impulse noise pixel.

In particular, if four or more fuzzy gradients are large, then
the analyzed pixel is tagged as a noisy pixel. The detection
of random spikes impulses is performed on each a pixel. If
a pixel is detected as a corrupted one, then their position is
tagged, thus generating an image as a map of the corrupted
pixels.

2) Restoration of pixels corrupted by impulsive noise: The
restoration of corrupted pixels is realized for each channel
RGB of independent form. Let explain below the process for
channel R. Once, that all impulses in the image are identified
and tagged, the next step consist of replacing the noisy pixels
using filtering technique. In the filtering of pixels contaminated
by impulsive noise, the information generated by the impulsive
noise detector is used. Each a pixel is analyzed to know if a
noisy pixel exists in its position. In the detection of impulses
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process, it can not be avoided that some pixels, that belong
to edges and /or textures, are detected as noisy pixels. So, it
is necessary to include additional information to correct this
fact.

The edge extraction techniques of an image are based
in changes of intensity within a neighborhood, so that the
impulses could be detected as a edge. In order to extract the
edges of an image contaminated by mixed noise, two steps
have been proposed:

1) Blurring the image contaminated by mixed noise.
2) Edges extraction.
Firstly, the blurring of noisy image is performed using a

median filter with a vicinity of 5×5 pixels. Finally, the edges
extraction is performed using the proposed technique by Canny
et. al. [? ]. This process is shown in figure 2.

(a) Noisy image. (b) Blur image. (c) Edges channel R.

Fig. 3. Edge extraction process for an image contaminated with mixed noise.

First, if the position (i, j) is found a tagged as a noisy
pixel, following a neighborhood W of size 3 × 3 pixels
is taken. Then, the restoration of the pixel is performed
considering whether the pixel belongs to an edge or not.

First case. The pixel does not belong to an edge.
The restoration stage of corrupted pixel is based on the
Median Filter vector (VMF) proposed by Astola [22] and is
only applied to those pixels that are marked as noisy ones.

Firstly, the sum of absolute differences (SAD(i, j)) of each
a pixel with its neighbors is performed. The value SAD(i, j)
is defined as:

SADi,j =
3∑
k=1

3∑
l=1

|W (i, j)−W (k, l)| (3)

where (i, j) is the position of pixel, and (k, l) are the positions
of their neighbors. From this process nine values are obtained,
as shown in figure 4.

Fig. 4. Obtaining of value SADi,j .

It should be mentioned that the values tagged as noisy pixels
that in the neighborhood are not considered in the sum of

absolute differences. So, the value of the pixel is estimated as
follows:

ÊNotEdge(i, j) =W (r, s), (4)

Second case. The pixel belongs to an edge.
When a pixel belongs to an edge, it does not imply that it
is not contaminated by impulsive noise, so we obtain a first
approximation Ê1(i, j), considering that the pixel does not
belong to an edge (Eq. 4).

Ê1(i, j) = ÊNotEdge(i, j) =W (r, s). (5)

Next, a vicinity Wblur(i, j) from the blur image is taken
and a second approximation is obtained as follows:

Ê2(i, j) = median{Wblur(k, l)} ∀ k, l = 1, 2, 3, (6)

The restoration of pixel is defined as:

ÊEdge(i, j) =
Ê1(i, j) + Ê2(i, j)

2
(7)

B. Additive Noise Filtering

The additive noise filtering is based on sparse representation
and 3D filtering on Wavelet Transform domain. The techniques
that use sparse representation to suppress additive noise are
based in the behavior of noise in the domain of some fixed
bases like: Fourier, Cosine, Wavelet, etc. Further, the filtering
based on shrinkage method allows reducing the additive noise,
whereas the edges and fine details suffer less deterioration
when such reconstruction is performed [23].

The proposed additive noise filtering stage is performed on
WT domain and can be divided in two stages: 1) grouping
using block-matching, and 2) 3D-filtering.

1) Wavelet Domain: The Wavelet Transform (WT) has an
important role in the image processing. Four sub-bands, called
Low-Low (LL), Low High (LH), High-Low (HL) and High-
High (HH), are obtained when the WT process is applied.

Next, the additive noise suppression is performed to each a
sub-band in independent form. The additive noise suppression
stage is performed in Wavelet domain where there should
be applied two processing procedures: 1) grouping using
block-matching, and 2) 3D-filtering. The figure 5 explains the
process of additive noise suppression on WT domain.

Fig. 5. Filtering process to each sub-band Wavelet.
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Grouping via block-matching: The performing the proce-
dure of block matching is realized using the three channels of
color, the highly similar blocks to a reference block should be
located, and these ones are stored in a structure called group.
It is necessary to note that the blocks are 2D arrays and the
grouping process [9] is formed as a 3D array.

The similarity degree between two blocks is obtained em-
ploying a similarity measure. If the similarity is higher than a
chosen threshold, the block can be considered as similar one
and it enters to a current group. In this framework, the sum
absolute difference (SAD) is used as matching criterion, which
is written as follows:

SAD(p, q) =
M∑
m=1

N∑
n=1

|E(p, q)− E(p+m, q + n)|, (8)

where M and N are the image dimensions, and E(p, q)
is the reference block in the position (p, q). Let denote the
reference block as A(p, q), and then all similar blocks are
Ar(p, q).

3D filtering: The designed 3D filtering uses two processes:
thresholding and shrinkage. In the thresholding, all wavelet
coefficients that belong to each a block of the 3D array are
compared with a fixed threshold (th). If the absolute value of
a coefficient is less or equal to the threshold, this coefficient
is replaced with the zero value, as follows:

Ê3D(p, q, r) =

{
0 , |E3D(p, q, r)| ≤ th
E3D(p, q, r) , otherwise

. (9)

In the next step, there is performed the shrinkage of the
3D array, i.e., from the 3D array, there should be obtain an
approximation of the 2D array. This can be performed using an
averaging filter with chosen weights that depend on similarity
grade, as follows:

Ê(i, j) =

∑k
l=1El(i, j)wl∑k

l=1 wl
(10)

where wk are the weights that are defined as follow:

wk = 1− SAD(E1(i, j), Ek(i, j)). (11)

Finally, in order to obtain a filtered image Ŷ (i, j), the additive
noise filtering is applied to each RGB channel of an image.

C. Post-processing

In the previous filtering stages are produced some artefacts
undesirables, so in the filtered image such artefacts should be
corrected. A Wiener filter [24] is employed to increase the
quality of filtered image as follows:

ŶWiener(i, j) = µ+
σ2
W − v2

σ2
W

[
Ŷ (i, j)− µ

]
, (12)

where µ is the local mean, σ2
W is the local variance and v2 is

the average of all the local estimated variances.

IV. EXPERIMENTAL RESULT

The experiment results were performed using a set of color
test images proposed by Malinski [25] shown in figure 6.
Mentioned set contains images with different texture and fine
details structure that can guarantee robustness of investigating
techniques.

Fig. 6. Database proposed by Malinski.

A. Evaluation criteria

The evaluation criteria used to characterize performance are
the peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM). The PSNR is an objective criterion
measurement and is defined as follows:

PSNR = 10log10

(
2552

MSE

)
, (13)

where the Mean Square Error (MSE) is calculated as:

MSE =
1

MN

M−1∑
x=0

N−1∑
y=0

[
Ê(x, y)− E(x, y)

]2
. (14)

The SSIM captures human perception and this measure was
introduced in [26] and it is defined as:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (15)

where α = β = γ = 1.

B. Efficiency of the proposed filter

The experimental results (PSNR, SSIM) for all test images
are shown in Table I. Additionally, we use the subjective
visual perception presenting filtered images and their error
images for the best state-of-the art filters to compare their
noise suppression.
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TABLE I
THE AVERAGE PSNR AND SSIM VALUES.

% 10 20 30 40 50
σ PSNR
10 34.33 33.52 31.95 28.51 24.30
20 29.43 28.76 27.43 25.21 22.12
30 25.61 25.15 24.16 22.60 20.29
40 23.17 22.72 21.94 20.66 18.80
50 21.36 20.95 20.27 19.14 17.54
σ SSIM
10 0.9873 0.9844 0.9745 0.9365 0.8592
20 0.9428 0.9343 0.9119 0.8699 0.7958
30 0.8754 0.8648 0.8416 0.8008 0.7335
40 0.8192 0.8054 0.7795 0.7394 0.6733
50 0.7682 0.7535 0.7262 0.6832 0.6204

1) Comparison with state-of-art techniques: There are dif-
ferent techniques for mixed noise suppression. In order to
evaluate the proposed method, we compare with the better
existing state-of-art techniques: Wiener [24], Bilateral [19],
NLM [8] and WESNR [21]. The filter Wiener, Bilateral and
NLM were designed to decrease the additive noise, so it is
necessary to perform, previously, the filtering of impulsive
noise to compare with our technique.

In figures 7, 8, 9 and 10 there are shown the visual
results obtained to images: pic002, pic029, pic059 and pic084
corrupted by different values of % and σ in the case of
impulsive and additive noise, respectively.

(a) Original image. (b) Noisy image.

(c) Bilateral. (d) Bilateral Er-
ror.

(e) Wiener. (f) Wiener Error.

(g) NLM. (h) NLM Error. (i) WESNR. (j) WESNR Er-
ror.

(k) FMN-3DWT-
C.

(l) FMN-3DWT-
C Error.

Fig. 7. Inverted error images (amplified by 5) of the image pic002 filtered
by Bilateral, Wiener, NLM, WESNR and FMN-3DWT-C techniques for a
mixture of noise of Additive Noise (σ = 10) and Random Impulsive Noise
(% = 10).

(a) Original image. (b) Noisy image.

(c) Bilateral. (d) Bilateral Er-
ror.

(e) Wiener. (f) Wiener Error.

(g) NLM. (h) NLM Error. (i) WESNR. (j) WESNR Er-
ror.

(k) FMN-3DWT-
C.

(l) FMN-3DWT-
C Error.

Fig. 8. Inverted error images (amplified by 3) of the image pic029 filtered
by Bilateral, Wiener, NLM, WESNR and FMN-3DWT-C techniques for a
mixture of noise of Additive Noise (σ = 30) and Random Impulsive Noise
(% = 30).

Also, the criterias values(PSNR, SSIM and MAE) for im-
ages presented in figures 7, 8, 9 and 10 are shown in table
II.

TABLE II
THE PSNR, MAE AND SSIM VALUES OBTAINED TO IMAGES: PIC002,

PIC029, AND PIC059.

PSNR
Bilateral Wiener NLM WESNR FMN-3DWT-C

pic002 30.13 30.65 29.41 29.66 32.33
pic029 21.96 22.29 22.12 21.36 24.19
pic059 19.55 19.82 19.91 13.90 21.96
pic084 17.10 17.65 17.72 11.84 20.02

SSIM
Bilateral Wiener NLM WESNR FMN-3DWT-C

pic002 0.9834 0.9856 0.9811 0.9808 0.9904
pic029 0.6265 0.6473 0.6411 0.6970 0.7986
pic059 0.5008 0.5205 0.5276 0.4282 0.6674
pic084 0.64013 0.67131 0.67821 0.45768 0.8019

V. CONCLUSION

A novel filtering method to suppress a mixture of additive
noise and impulsive noise is presented. The denoising ap-
proach consists of three principal stages: impulsive noise sup-
pression, additive noise suppression and post-processing. The
experimental results demonstrate that our proposal exhibits
better processing performance than state-of-the-art techniques
in suppressing mixed noise with varying texture characteristics
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(a) Original image. (b) Noisy image.

(c) Bilateral. (d) Bilateral Er-
ror.

(e) Wiener. (f) Wiener Error.

(g) NLM. (h) NLM Error. (i) WESNR. (j) WESNR Er-
ror.

(k) FMN-3DWT-
C.

(l) FMN-3DWT-
C Error.

Fig. 9. Inverted error images (amplified by 2) of the image pic059 filtered
by Bilateral, Wiener, NLM, WESNR and FMN-3DWT-C techniques for a
mixture of noise of Additive Noise (σ = 40) and Random Impulsive Noise
(% = 40).

and edges. Future work should be devoted to implementing the
current filtering approach to restore video.

ACKNOWLEDGMENT

Authors would like to thank to Instituto Politecnico Na-
cional (Mexico) and Consejo Nacional de Ciencia y Tecnolo-
gia (Mexico) (grant 220347) for their support in realizing this
work.

REFERENCES

[1] I. Pitas, Digital image processing algorithms and appli-
cations. Wiley, 2000.

[2] I. Young, J. Gerbrands, and L. Vliet, Fundamentals of
image processing. TU Delft, Faculty of Applied Physics,
Pattern Recognition Group, 1995.

[3] I. T. Young, J. J. Gerbrands, and L. J. van Vliet, Funda-
mentals of Image Processing (v.2.3). Delft University
of Technology, 2007.

[4] P. Jain and V. Tyagi, “LAPB: Locally adaptive patch-
based wavelet domain edge-preserving image denoising,”
Information Sciences, vol. 294, no. October, pp. 164–181,
2015.

[5] V. Lukin, D. Fevralev, and O. Pogrebnyak, “Nonsta-
tionary noise locally adaptive filtering in DCT domain,”
Congress (WAC), 2012, pp. 1–6, 2012.

(a) Original image. (b) Noisy image.

(c) Bilateral. (d) Bilateral Er-
ror.

(e) Wiener. (f) Wiener Error.

(g) NLM. (h) NLM Error. (i) WESNR. (j) WESNR Er-
ror.

(k) FMN-3DWT-
C.

(l) FMN-3DWT-
C Error.

Fig. 10. Inverted error images of the image pic084 filtered by Bilateral,
Wiener, NLM, WESNR and FMN-3DWT-C techniques for a mixture of noise
of Additive Noise (σ = 50) and Random Impulsive Noise (% = 50).

[6] M. Bahoura and H. Ezzaidi, “FPGA-Implementation of
Discrete Wavelet Transform with Application to Signal
Denoising,” Circuits, Systems, and Signal Processing,
vol. 31, no. 3, pp. 987–1015, jun 2012. [Online].
Available: http://link.springer.com/10.1007/s00034-011-
9355-0

[7] Y. Jin, J. Jost, and G. Wang, “A New Nonlocal H 1 Model
for Image Denoising,” Journal of Mathematical Imaging
and Vision, vol. 48, no. 1, pp. 93–105, jan 2014. [Online].
Available: http://link.springer.com/10.1007/s10851-012-
0395-2

[8] A. Buades and B. Coll, “A non-local algorithm for image
denoising,” Computer Vision and Pattern, vol. 2, no. 0,
pp. 60–65, 2005.

[9] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian,
“Image Denoising by Sparse 3-D Transform-
Domain Collaborative Filtering,” IEEE Transac-
tions on Image Processing, vol. 16, no. 8,
pp. 2080–2095, aug 2007. [Online]. Available:
http://ieeexplore.ieee.org/document/4271520/

[10] A. Palacios-Enriquez and V. Ponomaryov, “Image De-
noising using Block Matching and Discrete Cosine
Transform with Edge Restoring,” IEEE Conference Pro-
ceedings. Conielecomp, vol. 978-1-5090, pp. 140–147,
2016.

[11] T. Mélange, M. Nachtegael, S. Schulte, and E. E. Kerre,

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018 

ISSN: 1998-0140 183



“A fuzzy filter for the removal of random impulse
noise in image sequences,” Image and Vision Computing,
vol. 29, no. 6, pp. 407–419, 2011.

[12] V. I. Ponomaryov, H. Montenegro-Monroy, F. Gallegos-
Funes, O. Pogrebnyak, and S. Sadovnychiy, “Fuzzy color
video filtering technique for sequences corrupted by
additive Gaussian noise,” Neurocomputing, vol. 155, pp.
225–246, 2015.

[13] A. J. Rosales-Silva, F. J. Gallegos-Funes, and V. I. Pono-
maryov, “Fuzzy Directional (FD) Filter for impulsive
noise reduction in colour video sequences,” Journal of Vi-
sual Communication and Image Representation, vol. 23,
no. 1, pp. 143–149, 2012.

[14] R. Lukac, “Adaptive vector median filtering,” Pattern
Recognition Letters, vol. 24, no. 12, pp. 1889–1899,
2003.

[15] P. E. Ng and K. K. Ma, “A switching
median filter with boundary discriminative noise
detection for extremely corrupted images,” IEEE
Transactions on Image Processing, vol. 15, no. 6,
pp. 1506–1516, jun 2006. [Online]. Available:
http://ieeexplore.ieee.org/document/1632204/

[16] G. Xu and J. Tan, “A Universal Impulse Noise
Filter with an Impulse Detector and Nonlocal Means,”
Circuits, Systems, and Signal Processing, vol. 33,
no. 2, pp. 421–435, feb 2014. [Online]. Available:
http://link.springer.com/10.1007/s00034-013-9640-1

[17] M. Nasri, S. Saryazdi, and H. Nezamabadi-pour, “A
Fast Adaptive Salt and Pepper Noise Reduction Method
in Images,” Circuits, Systems, and Signal Processing,
vol. 32, no. 4, pp. 1839–1857, aug 2013. [Online].
Available: http://link.springer.com/10.1007/s00034-012-
9546-3

[18] T. Veerakumar, R. P. K. Jagannath, B. N. Subudhi, and
S. Esakkirajan, “Impulse Noise Removal Using Adaptive
Radial Basis Function Interpolation,” Circuits, Systems,
and Signal Processing, pp. 1–32, jun 2016. [Online].
Available: http://dx.doi.org/10.1007/s00034-016-0352-1

[19] Y. Zhang, X. Tian, and P. Ren, “An adaptive bilateral
filter based framework for image denoising,” Neurocom-
puting, vol. 140, pp. 299–316, 2014.

[20] I. R. Terol-Villalobos and J. D. Mendiola-Santibañez,
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