
 

 

  
Abstract—In this paper, a new approach for polynomial 

approximation of fractional order functions based on Carlson’s 
method is presented.  This novel technique allows the user to choose 
the frequency range (low, medium or high), in which the 
approximation is to be developed. In order, to obtain a numerical 
solution using any iterative formulae, the initial conditions play a 
very important role. The Newton iterative formula used by Carlson 
starts with an initial estimate of one. With this initial guess, the 
frequency versus magnitude characteristics of the approximation 
obtained always has 1 rad/s as the centre frequency. Moreover, the 
choice of frequency range is not possible in the Carlson’s method. In 
this paper, we propose a new formula for the starting (initial) value of 
the approximation. The advantage of the formula is that it can be 
directly used for frequency band implementation of fractional order 
functions     i.e. the approximation can be obtained in any desired 
frequency range with centre frequency not necessarily being one. The 
consistency of the novel approach has been verified for three 
fractional order functions. Comparisons with existing techniques 
have been presented and it is validated that the technique proposed in 
the paper shows better performance in all the frequency ranges. 
 

Keywords— fractional order functions, initial guess, polynomial 
approximation 

I. INTRODUCTION 
N recent years there has been a noticeable progress in the 

application areas of fractional calculus, prominently in 
circuits and systems, signal processing, control systems, 
electro-analytical chemistry, physics and biomedical 
engineering. The rapid growth in these areas has drawn the 
attention of many researchers working in the fields of science 
and engineering. Fractional order functions help in modeling 
various processes like diffusion, electrical and mechanical 
properties of certain materials, electrical conductance of 
biological systems, transmission lines etc. Fractional systems 
being irrational in nature cannot be implemented in its present 
form. As a substitute, its integer approximation is derived 
using the rational approximation methods. These methods are 
based on various concepts viz. interpolation, continued 
fraction expansion, weighted sum of first order filter sections 
and differential evolution algorithm [1]–[4]. An elaborative 
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description of the approximation methods is given in [5] of 
which Charef method, Carlson method and Oustaloup method 
are the most popular ones. Carlson and Halijak produced an 
approximation formula based on regular Newton process 
which developed approximations to fractional capacitors 
(1/s)1/n in the form of ratios of polynomials with initial 
assumption one [6]–[9]. This method is widely used by 
researchers to obtain rational transfer function of fractional 
order systems [5], [10]–[17]. In all these papers, it is found 
that the frequency response (bode plot) of the approximation is 
built symmetrically only around the frequency value 1 rad/s 
and therefore the interval of frequencies where the 
approximation holds true always has one as the centre value. 

The novel idea in this paper is that, with a change in the 
initial condition of the Newton iterative formula, we have been 
able to develop polynomial approximations of fractional order 
functions in any chosen frequency range. This means that the 
centre frequency is no more restricted to 1 rad/s and the 
approximations for low, medium and high frequency ranges 
can now be obtained to suit the required application. 
Therefore, the advantage of the novel approach is that it can be 
directly used for frequency band implementation of fractional 
order functions. The user first chooses the frequency range in 
which the approximation is to be developed. With this novel 
approach, we have overcome the limitation of the Carlson’s 
method where choice of frequency range cannot be done.  The 
paper is divided into five sections as follows: Section 2 
describes the proposed Nitisha-Pragya-Carlson (NPC) 
Approximation method. In Section 3, the performance of the 
method is analyzed with the help of examples. The comparison 
of proposed method with some existing methods viz. Charef 
method and Oustaloup method is discussed in Section 4. 
Conclusions are presented in Section 5.  

II. PROPOSED NPC APPROXIMATION 
The proposed NPC Approximation for F(x) = a±1/n is given 

as  
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‘a’ is real variable, n ϵ N and i=1,2,3…. indicates the 
number of iterations performed. Equation (1) is a general 
version of the formula produced for a1/n in [6]. Here we have 
used it as a general form for both the cases of a+1/n and a-1/n.  
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The first step to start the approximation is to choose the 
frequency range [R1 R2], (R1 is the lower frequency and R2 is 
the upper frequency), in which the approximation is to be 
developed.  

In this paper, the authors have derived a formula for the 
initial guess as 
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 Where 1 2cR R R=  becomes the center frequency. 

Applying the proposed approximation for the complex 
variable ‘s’ we replace the real variable ‘a’ by the complex 
variable ‘s’, and substitute the value of x0 in (1), Thus we can 
develop new approximations for the fractional order function 
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 in the specified frequency range.   

 

The recursive formulae are as follows: 

Fractional order differentiator s1/n 
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where x1 and x2 are the first and second iterates respectively 
approximating s1/n. 

Fractional order integrator s-1/n 
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where x1 and x2 are the first and second iterates respectively 
approximating s-1/n. 

Using these formulae, new approximation of F(s) can 
directly be obtained for different frequency ranges – low, 
medium and high, as against the indirect procedure mentioned 
in [10]. 

III. PERFORMANCE ANALYSIS AND DISCUSSION  
In this section, the recursive formulae developed are 

verified by simulating  

• a fractional differentiator of order ½ and a fractional 
integrator of order ¾ for different low, medium and high 
frequency ranges 

• a fractional integrator of order 0.65 for the frequency 
range [10-2 102] rad/s i.e. for a range having centre 
frequency 1 rad/s 

The effectiveness of the results is validated with the help of 
frequency responses for all the cases. It is observed that this 
novel approximation holds true for fractional differentiator / 
integrator of any order in any specified frequency range. 

A. Example 1: Fractional differentiator of order ½ (s0.5)  
The polynomial approximations of fractional differentiator 

of order ½ using NPC Approximation method (5) in the 
different frequency bands are 

• Frequency band [10-2 101] rad/s – low frequency  
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• Frequency band [102 105] rad/s – medium frequency 
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• Frequency band [104 107] rad/s – high frequency 
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We can see that in each case ((8) – (10)) there is a recursive 
distribution of poles and zeros around the centre frequency and 
with a change in frequency range, only the position of poles 
and zeros vary as should be the case. 

The response of any ideal fractional differentiator / 
integrator for a given frequency range is determined as 

    
+/- 20  dB

/
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log
magnitude differentiator integrator

ω
 

× 
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 (11) 

where ω is the frequency value in rad/s. 
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Further, slope of the magnitude characteristics is given as 
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Figs. 1–3 show the magnitude and phase plots of 
G_1/2_low_pz(s), G_1/2_med_pz(s) and G_1/2_high_pz(s) in the 
frequency ranges [10-2 101], [102 105] and [104 107] rad/s 
respectively. It is observed that the magnitude response of 
these polynomial approximations (green dashed line) matches 
with the ideal response (blue bold line) in the whole frequency 
band. As can be seen we have been able to develop the plots 
for frequency ranges where centre frequency is not 1. This 
shows that the formula for initial estimate developed in this 
paper is suitable for all frequency ranges. From (11), the actual 
magnitude for a fractional order differentiator of order ½ 
becomes (½) × 20logω dB and for different values of ω, the 
actual magnitude is listed in Table I. A constant phase of     
(½) × 90° = 45° is obtained for about two and a half decades 
around the centre frequency for all the three frequency ranges. 
Also, the plots exhibit a slope of +10dB/decade. 

TABLE I. Magnitude of ideal fractional differentiator of order ½ for 
different frequencies 

 ω 
(rad/s) 

Ideal magnitude(dB) 

10-2 -20 
10-1 -10 
100 0 
101 10 
102 20 
103 30 
104 40 
105 50 
106 60 
107 70 

 

 
Fig. 1 Response of s0.5 for frequency range [10-2 101] rad/s 

 

 
Fig. 2 Response of s0.5 for frequency range [102 105] rad/s 

 
Fig. 3 Response of s0.5 for frequency range [104 107] rad/s 

 

B. Example 2: Fractional integrator of order ¾ (1/s0.75) 
The polynomial approximation of fractional integrator of 

order ¾ is obtained as s-3/4 = (s-1/4) × (s-1/2). In such cases 
where the approximation is obtained after decomposing the 
fractional differentiator / integrator into further simple 
fractional order functions, the order of the resultant 
approximation is usually high. The higher order approximation 
can be reduced using order reduction techniques [18], [19]. 
The order of the second iteration approximation (7) of 
fractional integrator s-3/4 obtained using NPC Approximation 
method for the three different frequency ranges [10-2 101],  
[101 103] and [104 107] rad/s is ten each. It is further reduced to 
fourth order using the Schur Balance truncation algorithm   
[18]–[20]. The reduced order approximations of fractional 
integrator s-3/4 for the frequency ranges :- low [10-2 101]; 
medium [101 103]; and high [104 107] rad/s are 
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• Frequency band [10-2 101] rad/s  
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• Frequency band [101 103] rad/s 
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• Frequency band [104 107] rad/s 
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In Fig. 4, the second iteration approximation (red dotted 
line) using NPC Approximation method, the reduced 
approximation (green dashed line) and the ideal response of 
fractional integrator of order ¾ are plotted for the frequency 
range [10-2 101] rad/s.  The actual magnitude of the ideal 
fractional integrator of order ¾ is a function of ω and is given 
as (-¾) × 20logω dB. So, the characteristic has a slope of       
(-¾) × 20 = -15 dB/decade. Table II mentions these 
magnitudes for different ω. 

 
Fig. 4 Response of 1/s0.75 for frequency range [10-2 101] rad/s 

The phase of the ideal fractional integrator of order ¾ is 
constant and is equal to (-¾) × 90° = -67.5°. In Fig. 4, we see 
that the magnitude response obtained using NPC 
Approximation method is comparable to the ideal response for 
the whole frequency range and the phase of -67.5° is 
maintained for approximately two and a half decades around 
the centre frequency. 

The frequency responses of s3/4 for the frequency range   
[101 103] and [104 107] rad/s are shown in Figs. 5 & 6 
respectively. These plots validate the effectiveness of the NPC 
Approximation method for the medium and high frequency 
ranges. 

 
TABLE II. Magnitude of ideal fractional differentiator of order ¾ for 
different frequencies 

 ω 
(rad/s) 

Ideal magnitude(dB) 

10-2 30 
10-1 15 
100 0 
101 -15 
102 -30 
103 -45 
104 -60 
105 -75 
106 -90 
107 -105 

 

 
Fig. 5 Response of 1/s0.75 for frequency range [101 103] rad/s 

 
Fig. 6 Response of 1/s0.75 for frequency range [104 107] rad/s 
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C. Example 3: Fractional integrator of order 0.65 (1/s0.65) 
We have also simulated a fractional integrator of order 0.65 

in the frequency range [10-1 101] rad/s. This is done to 
demonstrate the suitability of the proposed NPC 
Approximation method for frequency ranges having centre 
frequency of 1 rad/s.   

s-0.65 is expanded as s-0.65 = (s-1/10) × (s-1/2) × (s-1/20). The 
second iteration (7) approximation of fractional integrator s-0.65 
for the frequency range [10-1 101] rad/s obtained using the 
NPC Approximation method is of order 38. It is reduced to 
fourth order using Schur balance truncation algorithm       
[18]–[20]. The fourth order transfer function of fractional 
integrator s-0.65 for the frequency range [10-1 101] rad/s is 
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The magnitude and phase plots of fractional integrator s-0.65 
for the frequency range [10-1 101] rad/s obtained using NPC 
Approximation method (red dotted line) and its reduced fourth 
order transfer function, G_0.65_pz(s) (green dashed line) are 
compared with the ideal response of fractional integrator s-0.65 
(blue bold line) in Fig. 7. It is seen that the response of 
G_0.65_pz(s) is in close match with the ideal characteristics in 
the chosen frequency range. The magnitude and phase of ideal 
fractional integrator of order 0.65 are (-0.65) × 20logω dB and 
(-0.65) × 90° = -58.5° respectively. The actual magnitudes for 
the different frequencies are given in Table III. 

 

 
Fig. 7 Response of 1/s0.65 for frequency range [10-1 101] rad/s 

 

The results of all the three examples show that the proposed 
technique is true for any desired frequency range 
 

TABLE III Magnitude of ideal fractional differentiator of order 0.65 
for different frequencies 

 ω 
(rad/s) 

Ideal magnitude(dB) 

10-1 13 
100 0 
101 -13 

IV. COMPARISON WITH EXISTING METHODS 
We have compared NPC Approximation method with the 

existing popular approximation methods, viz. Charef method 
[21], [22] and Oustaloup method [23]. The maximum 
magnitude and phase errors for s0.5, 1/s0.75 and 1/s0.65 in 
comparison to the ideal magnitude and phase values are given 
in Tables IV, V and VI and their error plots are shown in Figs. 
8, 9 and 10 respectively. The comparisons are made for the 
following parameters: 

• Order of the approximated model 
• Width of the frequency range (in decades) 
• Centre frequency of the frequency range 

 

 
Fig. 8(a) Comparison of NPC method with existing methods for s0.5, 
[10-2 101] rad/s 

 In Figs. 8 (a), (b) & (c), the error plots for fractional 
differentiator s0.5 in three different frequency ranges – low  
[10-2 101] rad/s, medium [102 105] rad/s and high [104 107] 
rad/s are shown.  All ranges have a width of 3 decades and in 
each case, the centre frequency is not 1 rad/s (unit gain 
frequency). From Table IV and Figs. 8 (a), (b) & (c), it can be 
seen that, for all the frequency ranges, the order of the NPC 
Approximation method based model is 4 and of the Charef 
method based model is 11, which is very high.  For 
mathematical manipulation and hardware purpose, it is 
desirable that the orders of the system should be low. 
Therefore, the Charef method based models are not usable, in 
spite of the fact that its magnitude and phase errors are 
comparatively lower than those of NPC Approximation 
method. In terms of magnitude the errors of Oustaloup method 
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based models are marginally higher than the NPC 
Approximation method based models but in terms of phase, 
the error values are very high (22.7149°). 

 
Fig. 8(b) Comparison of NPC method with existing methods for s0.5, 
[102 105] rad/s 

 
Fig. 8(c) Comparison of NPC method with existing methods for s0.5, 
[104 107] rad/s 

Figs. 9 (a), (b) & (c) show the error plots for fractional 
integrator 1/s0.75 in the three different frequency ranges – low 
[10-2 101] rad/s, medium [101 103] rad/s and high [104 107] 
rad/s. The width of the medium frequency range is 2 decades 
and width of low and high frequency range is 3 decades. The 
centre frequency in each case is not 1 rad/s (unit gain 
frequency). For all the frequency ranges, the order of the NPC 
Approximation method based model is 4 and of the Charef 
method based model is 8 or 9, which is again high, and 
therefore not realizable. The order of Oustaloup method based 
model is 4, but the maximum magnitude and phase errors are 
higher than that of NPC Approximation method based models. 
Table V shows that, for the NPC Approximation method, the 
frequency range with width 2 decades has lower maximum 
magnitude and phase errors as compared to the frequency 

range with width 3 decades. But in case of Oustaloup method, 
these errors are still high even for a narrower frequency range. 

 
Fig. 9(a) Comparison of NPC method with existing methods for 
1/s0.75, [10-2 101] rad/s 

 
Fig. 9(b) Comparison of NPC method with existing methods for 
1/s0.75, [101 103] rad/s 
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Fig. 9(c) Comparison of NPC method with existing methods for 
1/s0.75, [104 107] rad/s 

 
Fig. 10 Comparison of NPC method with existing methods for 1/s0.65, 
[10-1 101] rad/s 

Fig. 10 shows the error plots for fractional integrator 1/s0.65 
in the frequency range [10-1 101] rad/s. The width of the 
frequency range is 2 decades and centre frequency is equal to 
1 rad/s, which is different from the previous two discussions. 
From Table VI and Fig. 10, it can be seen that, the maximum 
magnitude and phase error values of the Charef method based 
model is least, but the order of the model is very high. The 
order of the Oustaloup method based model is 4 and the error 
values are higher than that of our method. 

 
Fig. 11 Comparison of NPC method based model with reduced fourth 
order Charef method based model for s0.5, [10-2 101] rad/s 

 

Comparison of the proposed method is not possible with the 
Carlson method since in this method choice of frequency range 
can be done a priori.  

From the above discussions, it can be concluded that: 
• NPC Approximation method is suitable for all frequency 

ranges and hence is better than the existing methods. 
Moreover, the order of the approximated model is always 
4, which can be easily realized on hardware. 

• Charef method yields approximated model of very high 
order: For the purpose of comparison, we tried to reduce 
the Charef based models using existing reduction order 
techniques. The response of the Charef based fourth order 
model reduced using the Schur balance truncation 
algorithm [18]–[20] is shown in Fig. 11 (Fig. 8(a) 
revisited). It is observed that the lower order model does 
not match with the ideal response, and hence this work 
was not further pursued. 

• The maximum magnitude and phase errors of 
approximated models obtained using Oustaloup method 
are comparatively higher than the proposed method. 

V. CONCLUSION 
The paper proposes an innovative formula NPC 

Approximation for obtaining polynomial approximations of 
fractional order functions. The method is based on Carlson’s 
technique.  The advantage of the formula is that it can be used 
in any frequency range – low, medium and high, which is a 
limitation of the existing Carlson’s technique where frequency 
range cannot be chosen [10]. Three illustrative examples of 
fractional order functions have been considered to establish the 
correctness of the proposed method. Also, the proposed 
method is compared with two well-known methods:  Charef 
method and Oustaloup method. It is shown through examples 
that Charef method yields models of very high order and the 
order of Oustaloup method based models is same as that of the 
proposed method, but with larger errors. For the method 
proposed in this paper by the authors, responses comparable to 
the ideal responses are obtained, for any fractional orders of 
differentiator and integrator, in any chosen frequency range. 
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TABLE IV. Comparison of NPC Approximation method with existing methods for s0.5 
 

Approximation 
method 

Order of the 
approximated 

model 
cf 

Width of 
frequency 

range 

Frequency 
range (rad/s) 

Maximum 
magnitude 

error 
(in dB) 

Maximum 
phase error (in 

degrees) 

Proposed (NPC) 4 

≠1 3 decades 

[10-2  101] 1.2249 9.2397 
[102  105] 1.2239 9.2400 
[104  107] 1.2260 9.2381 

Charef 11 (order very 
high) 

[10-2  101] 0.0823 0.5495 
[102  105] 0.0823 0.5495 
[104  107] 0.0823 0.5495 

Oustaloup 4 
[10-2  101] 1.2635 22.7149 
[102  105] 1.2635 22.7149 
[104  107] 1.2635 22.7149 
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TABLE V. Comparison of NPC Approximation method with existing methods for 1/s0.75 
 

Approximation 
method 

Order of the 
approximated 

model 
cf 

Width of 
frequency 

range 

Frequency 
range (rad/s) 

Maximum 
magnitude 

error 
(in dB) 

Maximum 
phase error 
(indegrees) 

Proposed (NPC) 4 

≠1 

3 decades [10-2  101] 1.4339 17.8709 
2 decades [101  103] 0.7559 3.3808 
3 decades [104  107] 1.4343 17.8793 

Charef 

9 (order very 
high) 3 decades [10-2  101] 0.2240 1.4947 

8 (order very 
high) 2 decades [101  103] 0.2209 1.5071 

9 (order very 
high) 3 decades [104  107] 0.2230 1.4963 

Oustaloup 4 
3 decades [10-2  101] 2.0479 33.9255 
2 decades [101  103] 2.1732 34.1777 
3 decades [104  107] 2.0507 33.9278 

 
 

TABLE VI. Comparison of NPC Approximation method with existing methods for 1/s0.65 
 

Approximation 
method 

Order of the 
approximated 

model 
cf 

Width of 
frequency 

range 

Frequency 
range (rad/s) 

Maximum 
magnitude 

error 
(in dB) 

Maximum 
phase error (in 

degrees) 

Proposed (NPC) 4 

=1 2 decades [10-1  101] 

0.5730 3.0860 

Charef 9 (order very 
high) 0.1185 0.7896 

Oustaloup 4 1.8597 29.6143 
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