
 

Abstract— This paper is focused on the optimal missile pitch 
control problem. Firstly, the analysis of the system by using Root 
Locus and Routh’s stability criterion is performed. Then, Second 
Ziegler-Nichols and Systematic tuning methods are implemented. 
Different types of controllers: P, PI and PID are analyzed. PID 
controller has been selected as the best choice. Integral Square Error 
(ISE) criteria is chosen for the optimal system. Optimal controller 
parameters are found applying Parseval’s theorem, based on the 
coefficients of the steady-state error in the frequency domain. 
Results are confirmed by using Matlab and Simulink. Response of 
the system to the unit-step function, shows a good dynamical 
performance. In addition, a steady-state error has been eliminated. 
“Derivative kick” is not significant and no needs to apply a non-
linear saturation block (limiter) to the system. A disturbance is also 
added to check its influence on the system dynamics. Only a slight 
increase of the ISE was recorded. 
 

Keywords—Parseval’s Theorem, Missile, Optimal Pitch 
Control, ISE Criteria, PID Controller.  
 

I. INTRODUCTION 

A missile, as well as, an airplane is characterized by six 
degrees of freedom of movement. To control the final 
trajectory, there are therefore three major control units: yaw, 
pitch and roll (see Fig. 1). The analysis and implementation 
of the missile control system was carried out on an 
“aerodynamic missile”, as there is no coupling between 
longitudinal and lateral mode, thanks to roll stability [9]. 
Moreover, in order to simplify the analysis, the missile 
system was considered as a single compact body, omitting 
vibrations, residual fuel, etc. 

The analysis was focused on the development of a pitch 
control system or also known as a longitudinal control. The 
lifts positioned at the rear make a directional change up and 
down, increasing or decreasing the lift [1]. 
 

            
           Fig. 1 Missile dynamical reference frame 
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II. MATHEMATICAL MODEL 

A. Open Loop Model                
   
The open control system of the missile pitch control has been 
described using two transfer functions: a missile part (1) and 
a servo system (2), [13]:               
  
 
 

                                 
−7.21
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By adding two transfer functions together (servo system 

and missile, combined) we get an open loop transfer 
function,  
G(s):  
 

             G(s) =  19830
𝑠𝑠4+42.9𝑠𝑠3+2753𝑠𝑠2+229𝑠𝑠−6490

          
(3)                      

 
 
 

A unit-step response of the open loop system is shown on  
Fig. 2. 
 

 
                Fig. 2 Open loop step response  
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 Obviously, the system is unstable due to unstable pole(s). 
 

B. Closed loop system 
In order to design a missile control system that can correct 

pitch errors, a negative unity feedback has to be applied to 
the structure, which will stabilize the system. 
In addition, with an appropriate controller, it gives us a good 
dynamical behavior of the system, in terms of speed and 
accuracy. 
 
Simulation model of the closed loop system is shown on Fig. 
3.

 
     Fig. 3 Closed loop system simulation 
 

Note: A value of the GAIN=0.329, will be discussed later. 
 

C. Root Locus analyzes 
 
Finding a range of stability is the first step in designing the 

system. One of the method applied for that range is Root 
Locus technique, which is shown on Fig. 4(a) and Fig. 4(b).  
 

 
     Fig. 4(a) Root Locus graph 

 

               
       Fig. 4(b) Root Locus graph (enlarged) 

 

By analyzing the graphs is evident the unstable nature of 
the system [4, 8, 11].  

 
    The open loop transfer function is characterized by a 
constant number in the numerator (no zeros) and the 4th order 
polynomial in the denominator (4 poles): 2 conjugate 
complex poles on the left-hand side of the “s-plane” (stable), 
and 2 poles (A and B) on the real axis: A is positive 
(unstable) and B is negative (stable). 
The dynamic of the system reveals that the stability occurs 
just for a small range of the gain values. 
    By neglecting two poles at the far left (they are not of 
primary importance), it is necessary to analyze the path of 
the poles closer to the imaginary axis: starting from gain 
equal zero to K→∞. The two poles (A and B) will move 
towards each other and overlap at S1,2=-0. 0328 (negative 
double pole). That means: all four poles will be stable. To 
keep the system stable, it is possible to force it to work with 
a value of gain, K= 0.329 (in Fig. 3).  
    With a further increasing of K, the two poles will cross the 
imaginary axis, producing an instability in the system. 
 

D. Routh’s Stability Criteria 
 
Routh’s stability criteria [11] is an analytical method for 

determining a stability range, purely based on the 
coefficients of the characteristic equation, C.E.: 

 
                       C.E. = 1+G(s) = 0                    (4)                              

 
By using this criterion, it is found that the system will be 

stable in a small range of the gain (5): 
 

       0.327 < 𝐾𝐾 < 1.065                                     (5) 
 
That means: if the gain is smaller than 0.327 and bigger than 
1.065, the system will become unstable.  
Note: GAIN =0.329 (in Fig. 3) is in that range of stability, 
which shows the correctness of Root Locus method. 
 
   A closed loop response to the unit step function, based on 
simulation model is given in Fig. 5. A proper reducer 
transmission gear has been introduced, which will reduce a 
large rotation from one of the gears, as well as to avoid 
mechanical breakdown. 
 

          
          Fig. 5 Closed loop response 
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    The closed loop system response does not have a steady-
state error, which is one of the key requirements of the 
missile control system. On the other hand, system is 
relatively slow (settling time around 80 secs), which is not a 
huge disadvantage in the case of ballistic intercontinental 
missile, which travels for a long period. For other types of 
missiles speed is also an important requirement and the 
reaction of the system must be fast (i.e. a correction to the 
right path), to avoid a collision point of the missile far away 
from the target. 
   Anyway, it is just a first step for designing appropriate 
system, including an “optimal” controller.  

III. DESIGNING CONTROLLER 

A.  Ziegler-Nichols Second Tuning Method 
 
 One of the most common tuning methods is the Second 
Ziegler-Nichols tuning method that gives us a range of 
parameters in which we are trying to find the best 
(“optimal”) controller parameters. This method can be used 
in our case because our system is not always unstable, nor 
always stable for any proportional gain [11].  
 The starting point for that method is to disable an integral 
and derivative controller part and try to achieve sustain 
oscillations with only proportional parts, which occur when 
system is on the “edge of stability”. In other words, that 
happens when system is “neutral” or starting to be unstable 
(i.e. when dominant system’s poles are on the imaginary 
axis), Fig. 4b. 
 Using simulation model in Fig. 3, (with a “low” 
proportional gain=0.5, in the range of stability), Fig. 6, till 
obtaining sustain oscillations, Fig. 7(a) and Fig. 7(b). 
     

         
       
        Fig. 6 Step response when gain=0.5 
 

       
         Fig. 7(a) Sustain oscillations when gain=1.0234 
 
      
 
                 

                                
         Fig. 7(b) Sustain oscillations (enlarged), gain=1.0234 

 
From the above response, it is possible to calculate an 

ultimate period (PU=21.007-18.226=2.781) and record gain 
when those oscillations occur, as an ultimate gain 
(GU=1.0234).  

Based on those two parameters (PU, GU) and using Table 
1, 
it is possible to calculate P (proportional), PI (Proportional + 
Integral) and PID (Proportional + Integral + Derivative) 
controller parameters: 
 

• KP  -Proportional gain constant 
• TI  -Integral time constant 
• TD  -Derivative time constant 
• KI  -Integral gain constant, where KI= KP/TI 
• KD -Derivative gain constant, where KD= KP* TD 

 
Table 1 

Type of controller KP TI TD 
P 0.5* GU 

  PI 0.45* GU PU /1,2 
 PID 0.65* GU PU /2 PU /8 

  
Note: Ziegler-Nichols Second tuning method is based on 
empirical formula and it is not so occurate. That means, 
Ziegler-Nichols Second tuning method, gives us only 
guidance regarding to the controller selection, as well as the 
initial settings for cotrollers parameters [4]. 
   Responses of the system with P, PI and PID controllers 
calculated from Table 1, are shown on Fig. 8, Fig. 9 and Fig. 
10, respectively. 
 

           
                   
                   Fig. 8 System response with P controller  
                                    (KP=0.5117) 
 
Note: Very big overshoot and steady-state error, high 
          Oscillations and long settling time. 
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   -10 000 
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                Fig. 9 System response with PI controller  
                             (KP=0.4065, KI=0.1754) 
 
 Note: unstable system! 
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            Fig. 10 System response with PID controller  
                       (KP=0.6652, KI=1.3905, KD=0.2312) 
 
Note: Big overshoot, high oscillations, no steady-state error 
          and long settling time. 
        

Obviously, PI controller is the worst of those types, which 
was expected, because both P and I part make more 
oscillatory and less stability. P controller is stable, but not 
acceptable, mainly because of a big steady-state error. 
     PID controller is not “ideal”, but definitely better than the 
other two types. Unfortunately, overshoot and settling time 
are still high, but at least without a steady-state error (ess=0). 
    Calculating controller’s parameters using Zieglar-Nichols 
Second tuning method does not lead us to an “optimal” 
system, but gives us a range of the controller’s parameters 
for a fine tuning. That range will be used to determine the 
“optimal” parameters by using Parseval’s theorem. 

IV. OPTIMAL CONTROL BY USING PARSEVAL’S THEOREM 

A.  Parseval’s Theorem (basic concept) 

     Parseval’s theorem is also known as Rayleigh’s energy 
theorem, it“connects” a time domain with a frequency 
domain [6], in a general form: 

 

          dffEdEdtte ∫∫∫
∞

∞−

∞

∞−

∞

∞−

== 222 )2()(
2
1)( πωω
π

                (6) 

 
where: )}({)( teFE ωω =  represents the continuous Fourier 
transform of e(t), and fπω 2= is frequency in radians per 
second. The LHS side is energy in time space while the RHS 
is energy in frequency (spectral) space.  
 

   In mathematics, Parseval’s theorem usually refers to the 
results that the Fourier transformation is unitary and that the 
sum  (or integral) of the square of the function is equal to the 
sum  of the square of its transformation [5]. By using 
Parceval’s theorem it is possible to calculate the integral 
from the LHS through the frequency spectrum (positive  and 
negative) in “s” or Laplace’s domain, using formulae: 
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Combining those two formulae gives: 
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                                      (9) 

  
where: “n” is an order of the system, and “a” and “b”  are  
the coefficients of the polynomes in the descending order of 
“s”, from equation (8): 

  
     𝑎𝑎(𝑠𝑠) = 𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1 + 𝑎𝑎𝑛𝑛−2𝑠𝑠𝑛𝑛−2 + 𝑎𝑎𝑛𝑛−3𝑠𝑠𝑛𝑛−3 + ⋯+ 𝑎𝑎0 

                                           
    𝑏𝑏(𝑠𝑠) = 𝑏𝑏𝑛𝑛𝑠𝑠𝑛𝑛 + 𝑏𝑏𝑛𝑛−1𝑠𝑠𝑛𝑛−1 + 𝑏𝑏𝑛𝑛−2𝑠𝑠𝑛𝑛−2 + ⋯+ 𝑏𝑏0 

 

B.  Optimal criteria (ISE and Cost Function) 
 

 The “best” controller parameters: KP, KD and KI could 
be calculated by using an Integral Squared Error (ISE) 
criteria (10a), i.e. when ISE has a minimum value. 

 

ISE= min)( 2

0

→∫ dtte
t

                             (10a) 

 
Note: In control systems we consider that system start at t=0.   
          Also, integration could go till settling time, 𝑡𝑡 = 𝑡𝑡𝑠𝑠 . 
 
Based on the losses through a deviation (dynamic error) from 
the desired pitch, we can call ISE as a “Cost Function-C.F.” 
 

C.F. =                             (10b) 

 
The Cost Function, (10b) is used to find the most efficient 

values for KP, KD and KI. This criteria will not necessarily 
produce the “best” output response with the smallest 
overshoot, nor the fastest system. It is simply used to 
determine gain values that will make the control more 
efficient. In the industry, this  criteria is used mostly to lower 
fuel consumption. The name: “Cost Function” is derived 
from the meaning of the least cost as possible (i.e. less 
deviation less C.F) [3]. 

.min)( 2∫
∞
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 It is very hard to calculate deviation from the desired pitch 
in time domain (dynamic error), e(t), even harder its 
quadratic form, as well as integral by using it in (6). That 
means, deviation can be easier found  in a frequency domain, 
E(s) from Fig. 11 (in appendix) combining transfer functions 
of the whole system: PID controller, servo system and 
missile, it gives us numerator and denominator of the 
equation (9), for n=5: 
 
     𝑎𝑎(𝑠𝑠) = 𝑠𝑠4 + 42.9𝑠𝑠3 + 2753𝑠𝑠2 + 229𝑠𝑠 − 6490 

 
     𝑏𝑏(𝑠𝑠) = 𝑠𝑠5 + 42.9𝑠𝑠4 + 2753𝑠𝑠3 + (229 + 19827.5𝐾𝐾𝐷𝐷)𝑠𝑠2 +
                  +(19827.5 𝐾𝐾𝑃𝑃 − 6490)𝑠𝑠 + 19827.5 𝐾𝐾𝐼𝐼 
The minimum value of the calculated Cost Function by using 
Parseval’s theorem, gives the optimal controller's parameters. 

 

C.  Implementing Parseval’s Theorem on ISE or C.F. 
 
    Integral (9) , for the fifth order system may be tranformed 
as a “table integral” (I5) in the form: 
 
     𝐼𝐼5 = 1

2∆5
[𝑎𝑎4

2𝑚𝑚0 + (𝑎𝑎3
2 − 2𝑎𝑎2𝑎𝑎4)𝑚𝑚1 +          

    +(𝑎𝑎2
2 − 2𝑎𝑎1𝑎𝑎3 + 2𝑎𝑎0𝑎𝑎4)𝑚𝑚2 + (𝑎𝑎1

2 − 2𝑎𝑎0𝑎𝑎2)𝑚𝑚3 + 𝑎𝑎0
2𝑚𝑚4] 

 
where: 
     

   ∆5= 𝑏𝑏0(𝑏𝑏1𝑚𝑚4 − 𝑏𝑏3𝑚𝑚3 + 𝑏𝑏5𝑚𝑚2)        𝑚𝑚0 = 1
𝑏𝑏5

(𝑏𝑏3𝑚𝑚1 − 𝑏𝑏1𝑚𝑚2) 

   𝑚𝑚1 = −𝑏𝑏0𝑏𝑏3 + 𝑏𝑏1𝑏𝑏2                           𝑚𝑚2 = −𝑏𝑏0𝑏𝑏5 + 𝑏𝑏1𝑏𝑏4   

   𝑚𝑚3=
1
𝑏𝑏0

(𝑏𝑏2𝑚𝑚2 −  𝑏𝑏4𝑚𝑚1)                      𝑚𝑚4 = 1
𝑏𝑏0

(𝑏𝑏2𝑚𝑚3 − 𝑏𝑏4𝑚𝑚2) 

 

    Taking the whole range of the PID controller’s parameters 
obtained by Ziegler-Nichols Second tuning method and 
putting derivative gain constant and KD unchanged (smaller 
KD leads us to more oscillations and overshoot, ultimately a 
bigger C.F),  
C.F has been calculated (using Microsoft Excel) and 
tabulated in Table 2: 
 
                   Table 2 

  
    

 
KI       

    0,1 0,2 0,25 0,3 0,35 0,4 0,47 

  0,1 -3,65 -2,36 -2,18 -2,14 -2,20 -2,39 -3,10 

  0,2 4,03 1,64 1,20 0,93 0,74 0,61 0,46 

Kp 0,3 0,70 0,32 0,25 0,20 0,16 0,14 0,11 

  0,4 0,19 0,08 0,06 0,04 0,03 0,02 0,02 

  0,5 0,004 -0,10 -0,01 -0,01 -0,01 -0,01 -0,01 

  0,6 -0,08 -0,05 -0,05 -0,04 -0,04 -0,04 -0,03 

  0,66 -0,12 -0,07 -0,06 -0,05 -0,05 -0,05 -0,04 

 
 

A minimum value (shaded, in yellow) of the “table integral”, 
gives us “optimal” PID controller parameters: KP=0.5, 
KI=0.1, KD=0.2312. 

It should be emphasized that the values of C.F. presented 
in Table 2 do not correspond to the values obtained from an 
integral calculation, but from the “table integral”.  Of course, 
negative integral values cannot exist, but just indicate that 
system is not stable. Those values are irrelevant, because the 
system stability is a paramount of all criteria. As you can see 
from Table 2, they occur mainly where KP is out of stable 
range in equation (5), including some negative influence of 
KI on stability.  

In addition, Parseval’s theorem includes frequencies from 
negative infinity to positive infinity, while in control system 
engineering, frequencies go from zero to positive infinite (as 
it was mentioned before). 
Results of the “optimal” PID values have been checked by 
using a simulation model (Fig. 11) on the ISE scope (not 
presented in this paper). 
Output of the system with those “optimal” parameters is 
shown on Fig. 12: 
 
 

           
              0                             5                             10                           15 
           Fig. 12 Output of the system with “optimal”parameters 
 
 
 Obviously, output has significately better dynamics 
(smaller: rise, peak and settling times) with less oscillations,  
while maintains a zero steady-state error.  

V. DISTURBANCE 
 

So far, simulation of the missile control system has been 
carried out in a closed system with no external noise. 
    In a real life, every control system is subjected to 
unwanted signal(s), referred as the disturbance(s). Those 
external disturbances can cause the system to have steady 
state error, as well as more oscillation of the output. Very 
high values of disturbances can cause instability of the 
system [8].  
  A missile is subjected to many actions: wind, pressure 
difference, vibration, etc. We assume that wind is the main 
disturbance, with known strength and direction (realistically: 
10% of the input or wanted signal), [2]. The most likely 
position of the wind is before the servo and missile, where it 
has the biggest influence on the system (represented by 0.1 
step block in Fig. 11). 

 
  2.5 
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    By manipulating the values of the PID gain constants, it 
was possible to obtain the “best” ISE value, when select: 
KP=0.6652, KI=0.2 and KD=0.2312 (it remains the same).  
    Also, ISE value slightly increased compared to the one 
with no disturbance, which is understandable, because 
dynamic error increases too in the presence of disturbance. 
   Note: This result is based on simulations (from the ISE 
block), not from calculation by using Parseval’s theorem, 
which becomes more complicated with two inputs than only 
one. 

VI. CONCLUSION 
 
   The analysis of a missile control system has developed 
though Root Locus method and Routh’s criteria for stability. 
A very narrow range of stability was determined.  
Subsequent to open-loop analysis, closed-loop system was 
created in Simulink.  
Ziegler-Nichols Second tuning method was used to find an 
initial range of the controller’s parameters.  
Different controller’s types have been examined, then PID 
controller selected as the best choice. 
Criteria for “optimal” controller’s parameters was defined 
through the Cost Function (C.F.).  
Parseval’s theorem for calculating “optimal” parameters was 
applied to ISE (Integral Square Error) criteria.  
Disturbance was also added into the system which suggests 
that the object will experience 10% extra force in the 
direction of travel.  
The ISE value was slightly increased compared to the one 
with no disturbance.  
A “derivative kick” was not significant and it was not 
necessary to add an extra protection for the steering gear, 
which could lead us to a non-linear system. 
Further research could be focused on testing a real physical 
object to see if it does react as it was suggested in the 
simulation. 
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APPENDIX 
 
            Fig. 11 Simulation model for the whole system 
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