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Abstract—Advanced numerical analysis of structures forces the
massive implementation of numerical algorithms, whose convergence
can be verified just for the norms of decompositions to finite
elements, etc., tending (in some reasonable sense) to zero, not for
real discrete calculations. This brings non-physical discontinuity and
imperfectness to all numerical results. This paper shows a possible
remedy utilizing, at least for sufficiently smooth loads and material
characteristics, some knowledge of analytical solutions in standard
variational formulations.

As a model example, a beam on elastic medium is considered. The
variational formulation of its response to statical loads is adopted to
involve the knowledge of classical solution, in the simplest case for
the whole beam, in the more realistic one for its particular elements.
Finally, we obtain only the sparse system of linear algebraic equa-
tions, without any duty of numerical differentiation or integration.
Some natural generalization to response to dynamical loads, to plates
replacing beams, etc. are sketched, together with the brief references
to practical applications.

Keywords—Beam on elastic foundation, weak and strong solu-
tions, numerical analysis.

I. INTRODUCTION

PROGRESS in both hardware and software development,
together with new achievements in mechanics of struc-

tures, building physics, computational and numerical mathe-
matics and related research areas leads to extensive, frequently
parallel numerical computations, handling discretized versions
of variational principles of continuum mechanics, typically
using some finite element techniques. However, their conver-
gence (usually in a weak sense) relies on the infinitesimally
small norms of families of decompositions of such elements,
whereas particular steps with such finite norms suffer from
non-physical discontinuity and imperfectness of solution, even
if high smoothness of solution can be verified theoretically
– cf. [3], Chap. 14. This can be suppressed by local mesh
refinement techniques, together with domain decomposition
tricks, in some degree – cf. [23], Appendix B. However, in
this paper we shall introduce another approach, making use
of some (at least partial) knowledge of exact solution. As a
model problem we shall take a statical analysis of a beam of
elastic foundation, generalizable in several directions in the
natural way.

The frequently applied model (cf. [2], [12] and many other
rather new papers) relies on the historical one-parameter for-
mulation by [29] and [22]; the overview of later achievements
in the development of more-parameter models by [6], [9],
[18], [19], [10], [14], [27], etc., is contained in [15], more
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recent results like [28] and [8] are discussed in [4] in details.
Most these approaches implement the Green functions, with
expectable numerical difficulties. An alternative approach is
presented in [16], referring to certain analogy to the nonlocal
beam theory by [5].

In this paper we shall work namely with a slight modifica-
tion of the model by [16]. Our aim is to prove that, under
some additional smoothness assumptions on applied loads
(and, clearly, also on material characteristics), the evaluation
of general solution of a strong problem can be helpful to force
some better continuity during the numerical analysis of a weak
(variational) problem.

II. FORMULATION OF A MODEL INTERACTION PROBLEM

Following [16] (including illustrative schemes), let us con-
sider a beam lying on an elastic foundation. In the standard
3-dimensional real Euclidean space R3, supplied with the
Cartesian coordinate system (x, y, z), we are able to localize
such beam using x ∈ [0, l] where l denotes its positive length.
The deformation of a beam has 3 possible causes: i) the
vertical load qz(x) on [0, l], ii) some single vertical forces
T̄z(x), iii) some single (bending) moments M̄y(x) (in the
plane perpendicular to y), both in ii) and iii) for a finite number
of discrete points x. To simplify the notation, without any
loss of generality, we are allowed to consider non-zero T̄z(0),
T̄z(l), M̄y(0) and M̄y(l) only.

As the geometrical and material characteristics we shall
introduce the sectional area A, the bending inertia Jy and
the Young moduli of elasticity for bending E and for tor-
sion G; for simplicity, we shall use the composite charac-
teristics GA and EJy everywhere. Let the vector (u, v, w)
characterize the change of position of particular points of
a beam, respecting the small strain simplification and the
Kirchhoff bending theory, i. e. u = zϕy , v = 0 (due to
the symmetry), εxx = z dϕy/dx for the normal strain and
γxz = du/dz + dw/dx = ϕy + dw/dx for the tangential
strain, consequently

σxx = Eεxx = Ez dϕy/dx (1)

for the normal stress and

τxz = Gγxz = G(ϕy + dw/dx) (2)

for the tangential stress other strain and stress components in
R3 are neglected. Using the usual notation for the bending
moments My , i. e. the 2-dimensional integrals of zσxx over
any vertical beam section, and for the shear forces Tz , i. e.
the integrals of τxz over the same section, we have My =
EJydϕ/dx and Tz = GA(ϕy + dw/dx). In the following
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text we shall omit all above mentioned indices and apply the
simple prime symbols instead of d/dx: so we can write briefly

M = EJϕ′ , T = GA(ϕ+ w′)

instead of (1) and (2).
Let ($,ω) denote the integrals of $(x)ω(x) over [0, l],

i. e. the scalar products of $,ω ∈ L2[0, l] in the standard
notation of Lebesgue spaces (of square integrable functions)
by [21], or certain dualities in the corresponding function
spaces in more general cases. Similarly we can take [$,ω] =
$(l)ω(l) − $(0)ω(0). Moreover, let (($,ω)) refer to the 3-
dimensional integrals introduced as integrals of (($,ω)) over
all vertical beam sections. Finally, let us introduce the elastic
foundation characteristic β. The real deformation of a beam
then corresponds to the minimum of energy

Φ(w,ϕ) =
1

2
((σ, ε)) +

1

2
((τ, γ)) (3)

+
1

2
(w, βw)− (w, q)− [ϕ, M̄ ]− [w, T̄ ]

where σ must be taken from (1) and τ from (2). Thus (3) can
be converted to the form

Φ(w,ϕ) =
1

2
(ϕ′, EJϕ′) +

1

2
(ϕ+ w′, GA(ϕ+ w′)) (4)

+
1

2
(w, βw)− (w, q)− [ϕ, M̄ ]− [w, T̄ ]

III. THEORETICAL AND NUMERICAL ANALYSIS

Our aim is to minimize (4) effectively. From practical rea-
sons, let us suppose EJ > 0, GA > 0 and β ≥ 0 everywhere.
Using the first and Gâteaux differentials of Φ(w,ϕ) in any
admissible direction (w̃, ϕ̃), assuming that EJ , GA and β are
independent of (w,ϕ) (the dependence on x is still allowed),
we receive

DΦ(w,ϕ; w̃, ϕ̃) = (ϕ̃′, EJϕ) + (ϕ̃+ w̃′, GA(ϕ+ w′)) (5)

+ (w̃, βw)− (w̃, q)− [ϕ̃, M̄ ]− [w̃, T̄ ] ,

D2Φ(w,ϕ; w̃, ϕ̃; w̃, ϕ̃) = (ϕ̃′, EJϕ̃) (6)

+ (ϕ̃+ w̃′, GA(ϕ̃+ w̃′)) + (w̃, βw̃) .

The Taylor expansion for a real parameter t

Φ(w + tw̃, ϕ+ tϕ̃) = Φ(w,ϕ) + tDΦ(w,ϕ; w̃, ϕ̃)

+
t2

2
D2Φ(w,ϕ; w̃, ϕ̃; w̃, ϕ̃)

demonstrates that a minimum of (4) corresponds to

DΦ(w,ϕ; w̃, ϕ̃) = 0 , (7)

inserting (5), whereas the uniqueness of such minimum
needs positive D2Φ(w,ϕ; w̃, ϕ̃; w̃, ϕ̃) by (6). However, forcing
D2Φ(w,ϕ; w̃, ϕ̃; w̃, ϕ̃) = 0 (independent of (w,ϕ) here), we
have ϕ̃ = 0 and w̃′ = −ϕ̃ = 0 everywhere and also w̃ = 0 in
the case of positive β, which leads to the contrary. Otherwise,
admitting β = 0 identically, i. e. no elastic foundation is
present, a linear function w(x) is allowed, which corresponds
to the classical case of an insufficiently supported beam (not
solvable in the statical context properly).

Let us remind that the appropriate choice for (w,ϕ) and
(w̃, ϕ̃) is (due to the boundary conditions) a subspace V
of the Sobolev space W 1,2[0, l] (cf. [21] again); for more
general cases see [25]. The direct numerical computations rely
on some reasonable finite-dimensional approximation of V ,
e. g. using the finite element approach with Hermitean cubic
splines and derivation of such approximations from the sparse
systems of linear algebraic equations in the case of constant
EJ , GA and β, supplied by some iteration procedure in the
more general cases. However, in addition to such variational
formulation, in the following considerations we shall apply
the integration by parts by the Green - Ostrogradskii theorem
(performable at least in the sense of distributions).

IV. SPECIAL CLASSES OF ANALYTICAL SOLUTIONS

Using the above sketched approach, from (5) and (7) we
obtain

− (ϕ̃, EJϕ′′)+(ϕ̃+ w̃′)− (w̃, GA(ϕ̃′+ w̃′′))+(w̃, βw) (8)

= (w̃, q) + [ϕ̃, M̄ − EJϕ′′] + [w̃, T̄ −GA(ϕ+ w′)] .

Utilizing the notation from the previous section, (8) yields

βw−T ′ = q , M ′ = T , M = EJϕ′ , T = GA(ϕ+w′) (9)

on [0, l], as well as T = T̄ and M = M̄ in its boundary points.
In particular, the limit case GA → ∞ forces ϕ = −w′ and
(9) degenerates substantially: this is the case of the classical
Winkler support. More generally, introducing the new notation,
compatible with [16], α =

√
β/(EJ) and µ = EJ/(GA), and

assuming constant values of EJ , α and µ (or EJ , GA and β,
alternatively) on [0, l], from (9) we obtain, step by step,

T = EJϕ′′ = EJ(γ′′ − w′′′) = µT ′′ − EJw′′′ ,

− EJw′′′′ = T ′ − µT ′′′ = βw − q − µβw′′ + µq′′ ,

thus finally

w′′′′ − µα2w′′ + α2w = q̄ − µq̄′′ (10)

where, for simplicity, we take q̄ = q/(EJ). Moreover, for the
evaluation of M , T and ϕ from w we can derive the formulae

M = EJϕ′ = EJ(γ′ − w′′) = µβw − µq − EJw′′ (11)

= µα2EJw − EJµw′′ − EJq̄ ,

T = M ′ = µα2EJw′ − EJµw′′′ − EJq̄′ , (12)

ϕ = γ − w′ = (µ2α2 − 1)w′ − µw′′′′ − µ2q̄′ . (13)

The crucial differential equation (10) is linear, moreover
with constant coefficients, thus its fundamental solution (at
least theoretically, for sufficiently and smooth q̄, appropriate
for formal integration steps) could be available. At first, let
us study the homogeneous case with q̄ = 0 identically. The
characteristic equation corresponding to (10), containing the
(in general complex) eigenvalues λ, is

λ4 − µα2λ2 − α2 = 0 . (14)

Let us consider 4 different (linearly independent) fundamental
solutions hj on [0, l] with j ∈ {1, 2, 3, 4}. Let us distinguish
between the following qualitative cases:
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a) If α = 0 then all 4 roots of (14) degenerate to zero.
Therefore the required system of fundamental solutions
is φ1(x) = 1, φ2(x) = x, φ3(x) = x2, φ4(x) = x3. In
all remaining cases we shall suppose α > 0 and work
with the discriminant of (14) δ = α

√
µ2α2 − 4.

b) If µα 6= 2 (thus δ 6= 0) then 4 roots of (14) are
λ1 =

√
(µα2 + δ)/2, λ2 =

√
(µα2 − δ)/2, as well as

−λ1, −λ2. Therefore the required system of fundamental
solutions is φ1(x) = exp(λ1x), φ2(x) = exp(−λ1x),
φ3(x) = exp(λ2x), φ4(x) = exp(−λ2x). However, for
µα < 2 (thus δ < 0) such approach is not optimal for
practical calculations because of the presence of complex-
valued functions; thus this case will be handled by d)
separately.

c) If µα = 2 (thus δ = 0) then λ = λ1 = λ2 by b)
coincide. Therefore the required system of fundamental
solutions is φ1(x) = exp(λx), φ2(x) = exp(−λx),
φ3(x) = x exp(λx), φ4(x) = x exp(−λx).

d) If µα < 2 (thus δ < 0) the much better approach
than b) is the following: taking ψ1 =

√
2α+ µα2/2

and ψ2 =
√

2α− µα2/2, we can rewrite all roots
of (14) by a) also in the form λ1 = ψ1 + iψ2,
λ2 = ψ1 − iψ2, etc. Therefore the required sys-
tem of fundamental solutions (real-valued here for-
tunately) is φ1(x) = exp(ψ1x) cos(ψ2x), φ2(x) =
exp(ψ1x) cos(ψ2x), φ3(x) = exp(−ψ1x) cos(ψ2x),
φ4(x) = exp(−ψ1x) cos(ψ2x).

Let us now consider the vector h0 = (φ1, φ2, φ3, φ4) and the
corresponding vectors of the 1st, 2nd and 3rd derivatives (with
respect to x) h1, h2 and h3. Then W containing 4 lines h0,
h1, h2 and h3 is the well-known Wronski matrix. Moreover,
being motivated by (11), (12) and (12), we can introduce
hM = µα2φ0 − φ2, hT = h′M and hϕ = (µα2 − 1)φ1 − µφ3,
too. To handle the nonhomogeneous case (with q̄ other than
zero), we can use the additional decomposition w = wh +wq

with wh = h0C with some column vector C of real constants,
which represents the general solution in the homogeneous
case, and any particular solution wq derived for the nonho-
mogeneous case. However, for rather complicated q an easy
derivation of wq is not available: [16] pays attention namely
to linear functions q (which removes q′′ at all), the method
of undetermined coefficients (without additional tricks using
infinite series) needs to have q just as a solution of another
ordinary differential equation with constant coefficients, the
method of variation of parameters (our constants C) requires
the general inversion of W and leads to complicated integrals
typically; for more considerations of this type cf. [24]. The
best choice here seems to be the exploitation of the Cauchy
method (less frequent in the literature): using the basic facts
from theory of parametric integrals, one can verify easily that

wq(x) =

∫ x

0

v(x− t)(q̄(t)− µq̄′′(t)) dt , (15)

taking v(x) = h0(x)W−1(0)(0, 0, 0, 1)T , satisfies (10) to-
gether with the Cauchy initial conditions wq(0) = 0, w′q(0) =
0, w′′q (0) = 0 and w′′′q (0) = 1. Clearly, to obtain wq , we
need only the integrability of q and q′′ in (15) (thanks to
all remaining bounded multiplicative terms), in the best case

in the simple analytical way. However, even the numerical
quadrature in (15) is possible because we shall work namely
with w(0), w(l), ϕ(0) and ϕ(l).

Consequently we have w = wq + h0C where C should
be determined from some boundary conditions. Since such
C have (in general) no reasonable physical interpretation, it is
useful to take U = (w(0), ϕ(0), w(l), ϕ(l))T instead of C. The
construction of the transformation matrix A, using the additive
decomposition U = Uh + Uq , analogous to w = wh + wq ,

C = A(U − Uq) , U − Uq = A−1C (16)

is easy and not expensive: its 4 lines are just h0(0), hϕ(0),
h0(l) and hϕ(l); moreover, the practical construction of A−1
can be avoided using any method of solution of 4 linear
algebraic equations with 4 unknowns. Similarly, introduc-
ing the notation F = (−T (0),−M(0), T (l),M(l))T and
F̄ = (−T̄ (0),−M̄(0), T̄ (l), M̄(l))T (preserving the usual
convention for the orientation of shear forces and bending
moments), searching for the transformation matrix B satisfying

F − F̄ = BC = K(U − Uq) (17)

with K = BA−1 (B−1 is not needed anywhere), in accordance
with (11), (12) and (13), we come to the matrix B, whose 4
lines are just −hT (0), −hM (0), hT (l) and hM (l), multiplied
by EJ .

For an illustration, in the simplest case a) we receive

A =


0 0 0 1
−6µ 0 −1 0
l3 l2 l 1

−3l2 − 6µ −2l −1 0

 ,

B = EJ


6 0 0 1
0 2 −1 0
−6 l2 l 1
−6l −2 0 0

 ,

We can also notice that the approximation of w by cubic
polynomials using the Hermitean approach (and splines if
more intervals are considered, because of the presence of some
loads like T̄ and M̄ on their interfaces) is quite exact in this
case, thus no approximation error in (7) can be expected.
Nevertheless, the direct integration will be then the most
effective. In all other cases b), c) and d) such conclusions
are not true: W contains other functions than polynomials.

V. ANALYTICAL SOLUTIONS IN NUMERICAL
CALCULATIONS

The good idea, how to implement the results from the
preceding section in the numerical analysis of (5), is seemingly
to take w = h0A−1U+wq and insert this into (5) directly. This
manifests the symmetry of the corresponding system of linear
equations where some prescribed boundary values w(0), ϕ(l),
w(l) or ϕ(l) (or their analogies for more intervals, as discussed
above), but leads to rather complicated formulae. However, the
MATLAB-based symbolic computations (referring to the core
of MAPLE), as well as numerical experiments in MATLAB,
demonstrate the preservation of such symmetry even in the
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case if an intuitive, physically motivated approach of [16],
using the system (stiffness) matrix K.

The original program in MATLAB has been prepared to
generate the special code for the MATLAB interpreter for
various configurations, to be able to check and analyse results
both at the symbolic and at the numerical level. However,
in the following illustrative example we take (for simplicity)
l = 1 and EJ = 1 everywhere, varying the setting of µ and α
only. The formal evaluation of K−1 is (except the case a))
rather expensive and its results may be confused, thus the
comparison of numerical outputs is preferable. The choice
µ = 1 and α = 0 (the case a), cf. the presentation of A
and B above) gives

K =


0.923077 −0.461538 −0.923077 −0.461538
−0.461538 1.230769 0.461538 −0.769231
−0.923077 0.461538 0.923077 0.461538
−0.461538 −0.769231 0.461538 1.230769

 .

The choice µ = 1 and α = 1 (the case d)) gives

K =


1.238331 −0.500000 −0.776778 −0.424356
−0.500000 1.238331 0.424356 −0.776778
−0.776778 0.424356 1.238331 0.500000
−0.424356 −0.776778 0.500000 1.238331

 .

The choice µ = 2 and α = 1 (the case c)) gives

K =


0.776962 −0.275007 −0.346902 −0.205637
−0.275007 1.126922 0.205637 −0.886918
−0.346902 0.205637 0.776962 0.275007
−0.205637 −0.886918 0.275007 1.126922

 .

The choice µ = 3 and α = 1 (the case b)) gives

K =


0.606271 −0.194408 −0.202896 −0.130340
−0.194408 1.087466 0.130340 −0.925302
−0.202896 0.130340 0.606271 0.194408
−0.130340 −0.925302 0.194408 1.087466

 .

The largest absolute error in asymmetry in these 4 matrices K
is of order 10−14, as well as the biggest absolute value of the
left-hand side of (10) with w = hj with some j ∈ {1, 2, 3, 4};
for this check the 4th derivatives of hj , not included in W ,
must be evaluated, too. This results corresponds to the floating-
point representation of real numbers in double precision, both
in MATLAB and in Fortran or C++, used for the development
of the finite-element based structural analysis software RFEM,
as discussed in [17], which has been also the first motivation
for this study.

The implementation of the above sketched computational
approach into the RFEM environment is still in development.
The theoretical analysis exhibits the removal of non-physical
phenomena, mentioned in Introduction, in the same sense as
in the case of Timoshenko beam, studied in [16] in great
details. The experience with more complex computational
tools, including the more-dimensional, dynamical, multiphysi-
cal, etc. ones, cannot be summarized yet. However, the careful
usage of this approach is necessary: for less smooth problems
the implementation of a finite element basis coming from
fundamental solutions of a similar problem (even as the
starting estimate for iterations) instead of the standard (and
more simple) one can be counterproductive.

VI. CONCLUSIONS AND GENERALIZATIONS

We have demonstrated the rationality of the utilization of
finite element bases coming from the (at least partially) known
fundamental solutions on one linearized one-dimensional
model problem of a beam of elastic foundations. Similarly
to the “exact” methods using integral transforms, Green func-
tions, etc., we receive the sparse systems of algebraic equations
instead of the system of ordinary differential equations in
the case of response of the building structure to statical
loads, but no infinite, singular and similar integrals occur in
the computational algorithm. The natural generalization is to
analyze response to dynamical loads, consequently we have
some ordinary differential equations instead of partial ones.
Analogous considerations can be done for plates instead of
beams, too.

The development of the RFEM-based software, imple-
menting (among others) the results presented in this paper,
including the above sketched generalizations, is documented
by [20] and [26]. This computational experience shows that
the extension of this approach to various problems of the real
world, as indicated (in very different sense and directions) by
[1], [7], [11] or [13], is desirable. However, some unclosed
problems concerning both the existence and uniqueness of
solutions and the convergence of the sequences of approximate
solutions in some practically transparent sense can be seen
as the research challenge for the near future, primarily as
a part of both projects of application research mentioned in
Acknowledgement.
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