

Abstract— A recent trend in multiobjective evolutionary

algorithms is to increase the population size to approximate the Pareto

front with high accuracy. On the other hand, the NSGA-II algorithm

widely used in multiobjective optimization performs non-dominated

sorting in solution ranking, which means an increase in computational

complexity proportional to the square of the population. This

execution time becomes a problem in engineering applications. It is

also difficult to achieve high speeds while maintaining the accuracy of

solution searching by simply applying fast, parallel processing to

standard genetic operations. In this paper, we propose NSGA-II

distributed processing in a many-core environment and a migration

method that shares extreme Pareto solutions of the current generation

among all cores after performing compensation of the non-dominated

solution set obtained by distributed processing. Using typical

real-valued functions, constrained knapsack problems, and a

simultaneous optimization problem that arises in the design of

multiple vehicle models for evaluation, we show that the proposed

migration method can significantly reduce execution time while

obtaining higher accuracy in solution searching compared with

NSGA-II executed on a single CPU.

Keywords— multiobjective evolutionary algorithms, NSGA-II,

parallel processing, many-core CPU, knapsack problem.

I. INTRODUCTION

n recent years, the trend in multiobjective evolutionary

algorithms has been to increase the population size to

approximate the Pareto-optimal front [1] with high accuracy [2].

Increasing the population size, however, results in an

exponential increase in the computational complexity required

for evaluating the dominant-subordinate relationships among

solutions. As a result, execution time can be a problem when

applying such an approach to engineering applications. For

example, NSGA-II [1], an algorithm widely used in

multiobjective optimization, performs non-dominated sorting in

Mikiko Sato is the specially appointed associate professor of Tokai

University, Tokyo, Japan, (corresponding author to provide phone:

03-3441-1171 (1419); e-mail: mikiko.sato@ tokai.ac.jp).

Minami Miyakawa is the specially appointed researcher of Hosei University,

Tokyo, Japan and the research fellow of Japan Society for the Promotion of

Science.

Hiroyuki Sato is the associate professor of the University of

Electro-Communications, Tokyo, Japan.

Yuji Sato is the professor of Hosei University, Tokyo, Japan.

solution ranking resulting in a computational complexity at the

very least of (M: number of objectives, N: population

size) in every generation [3].

On the other hand, research on methods of implementing

evolutionary algorithms on massively parallel computers as one

means of speeding up calculations has been quite active since

the 1990s [4], [5]. Research on parallel computation of

evolutionary algorithms using a many-core environment as in a

multicore processor or graphics processing unit (GPU) has also

begun [6], [7]. These prior studies have centered on research

that aims to speed up standard genetic operations through

parallel processing, and they have produced effective results

with respect to a variety of benchmark problems and actual

applications. Here, a number of evolutionary algorithms have

been proposed for multiobjective optimization, but such

algorithms typified by NSGA-II, SPEA2 [8], MOEA/D [9], and

NSGA-III [10] add original processing different from ordinary

genetic operations to improve convergence performance and the

diversity of the non-dominated solution set. The need for such

processing reflects the difficulty of achieving high speeds while

maintaining the accuracy of solution searching by simply

applying fast, parallel processing to standard genetic operations.

For example, the standard island model for parallel processing

of evolutionary algorithms in a many-core environment repeats

the process of dividing the population into subgroups (islands),

applying standard genetic operations in parallel, and performing

the migration of elite individuals within each island to other

islands at appropriate times. However, when dividing

non-dominated sorting among multiple islands and evaluating

the elite individuals (non-dominated solutions) on each island

across the entire population, they may not be truly

non-dominated after all. This problem becomes especially

noticeable as the number of islands is increased to speed up

processing.

In response to this problem, we previously proposed a

method that improves performance while maintaining the

accuracy of the Pareto-optimal solution set by repeating

NSGA-II distributed processing in a many-core environment as

inspired by the divide-and-conquer method combined with

migration processing for compensation of the non-dominated

solution set obtained by distributed processing [11], [12]. We

Evaluation of Simultaneously Optimizing

Multiple Models in Vehicle Design using

Distributed NSGA-II Sharing Extreme

Non-Dominated Solutions

Mikiko Sato, Minami Miyakawa, Hiroyuki Sato, and Yuji Sato

I

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018

ISSN: 1998-0140 227

evaluated this method with benchmark problems using a

number of typical real-valued functions and showed that

execution time for obtaining a Pareto-optimal solution set of

equivalent hypervolume (HV) could be greatly shortened and

that a higher accuracy in solution searching could be obtained.

In this paper, we propose a migration method that shares

extreme Pareto solutions of the current generation among all

cores after performing compensation of the non-dominated

solution set obtained by distributed processing. We also, using

constrained knapsack problem and a simultaneous optimization

problem that arises in the design of multiple vehicle models,

demonstrate its effectiveness in improving diversity in solution

searching.

The remainder of this paper is organized as follows. Section 2

presents the background of our research and our latest migration

method of DNSGA-II, Section 3 introduces the benchmark

problem of simultaneous optimization of multiple models in

vehicle design, and evaluates the method using the benchmark

problem. Section 4 then discusses experimental results and

Section 5 concludes the paper.

II. DISTRIBUTED NSGA-II

A. Background

Several studies on fast, parallel processing of multi-objective

evolutionary algorithms have already been reported [13], [14],

[19], but these have focused on research for applying standard

genetic operations for single-objective problems to

multi-objective problems and on research related to methods of

dividing an objective space. Here, one method for dividing

objective space [19] can be an extremely effective parallel

high-speed method provided that the shape of the Pareto front is

understood to some degree beforehand. However, if the

distribution of the Pareto front should have some bias or be

irregular, and if there is no prior knowledge of the shape of that

Pareto front, it will then be difficult to divide the variable space

or objective space appropriately. In this paper, with the aim of

proposing a general-purpose distributed method that can be

applied even without prior knowledge of the Pareto front

distribution, we propose a distributed processing method that

assumes random division of the population. On the other hand,

high-accuracy multi-objective evolutionary algorithms such as

NSGA-II, SPEA2, MOEA/D, and NSGA-III add original

processing different from ordinary genetic operations to

improve convergence and the diversity of the non-dominated

solution set, which reflects the fact that simply applying the

technologies of prior research cannot maintain the accuracy of

solution searching. To give an example, the island model

repeats the process of dividing the population into subgroups

(islands), executing NSGA-II in parallel, and migrating elite

individuals on each island to other islands at appropriate times.

However, when executing non-dominated sorting — a feature of

NSGA-II — on multiple islands in a divided manner and

evaluating the elite individuals (non-dominated solutions) on

each island across the entire population, the problem arises that

some of those solutions may not be non-dominated after all. In

this way, when generating next-generation individuals (search

points) as new individuals based on solution candidates

erroneously classified as non-dominated solutions in genetic

operations for each subgroup, search accuracy cannot be

expected to sufficiently improve compared with generating

next-generation individuals based on correct non-dominated

solutions. In addition, increasing the number of islands to

accelerate processing increases the frequency of appearance of

solution candidates erroneously classified as non-dominated

solutions.

Actually, in our previous work, we showed that search

accuracy (HV) tends to drop when increasing parallelism

without appropriate migration for a fixed total population [12].

To address the above issue, we have proposed the method for

achieving fast, parallel processing of DNSGA-II while

maintaining the accuracy of the Pareto-optimal front as an

efficient migration method [12], [20], [21].

Fig.1 Concept of DNSGA-II with migration.

B. Basic Concept of DNSGA-II

The concept of DNSGA-II with migration included is shown

in Fig. 1. In the figure, the method executes NSGA-II in each

subgroup in parallel, gathers the non-dominated solution sets

(rank 1 solution sets) obtained by solution searching on each

CPU, and again performs non-dominated sorting with ranking

as compensation processing. Next, the method performs

migration by allocating to each CPU a portion of the

non-dominated solution set obtained by compensation. It then

proceeds to the next generation of solution searching by

NSGA-II on each CPU. This repeated execution of NSGA-II

distributed processing in a many-core environment while

performing compensation processing of the false

non-dominated solution sets obtained in each subgroup

achieves high-speed NSGA-II while maintaining the accuracy

of solution searching. In contrast to the conventional island

model, which aims to improve the accuracy of solution

searching by having elite individuals in each subgroup undergo

migration to other islands, the key feature of this proposal is

distributed processing of NSGA-II in a many-core environment

while performing compensation processing of the false

non-dominated solution sets obtained in each subgroup.

C. Migration Method for e-DNSGA-II

To resolve the issue, we have already proposed the method

“DNSGA-II [12]” for achieving fast, parallel processing of

NSGAII while maintaining the accuracy of the Pareto-optimal

front. Here, we propose the newly migration method sharing

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018

ISSN: 1998-0140 228

extreme non-dominated solutions is shown in Fig. 2. In the

following, we denote DNSGA-II using this migration method as

Distributed NSGA-II sharing extreme non-dominated solutions

(e-DNSGA-II). In the figure, Pi, Si (i=1, …, n) indicates the

proposed migration method sharing extreme non-dominated

solutions first gathers the non-dominated solution sets (rank 1

solution sets) obtained by solution searching on each CPU and

again performs non-dominated sorting and compensation

processing with ranking. It then preferentially allocates the

non-dominated solutions at both ends of the current Pareto front

to all CPUs in place of the excluded false non-dominated

solutions. In the event that all non-dominated solutions are true

solutions after again applying non-dominated sorting, the

method deletes those individuals with small crowding distance

(CD) values replacing them with these non-dominated solutions

at both ends of the Pareto front. In short, this method performs

migration by deleting false non-dominated solutions and

non-dominated solutions with small CD values and replacing

them with extreme non-dominated solutions at both ends of the

current Pareto front (shares extreme non-dominated solutions

among all islands).

Fig. 2 Compensation of non-dominated solution set and migration method

sharing extreme non-dominated solutions among all islands.

D. Estimates of performance

1) No parallel, high-speed processing of nondominated

sorting: Most of the execution time of NSGA-II is taken up by

non-dominated sorting, and given that the computational

complexity of non-dominated sorting is on the order of

NSGA-II (M: number of objectives, N: population

size) at the least [3], total computational complexity for G

generations of genetic operations takes on the following value:

𝑂 𝐺𝑀𝑁2 1

As a result, increasing the population size to improve accuracy

when applying NSGA-II to engineering applications presents a

problem in terms of execution time.

2) Proposed method: When executing DNSGA-II in parallel

over n CPUs by the proposed method, the execution time

required is that corresponding to a population of N/n instead of

N. In addition, as non-dominated sorting is performed for only

individuals of rank 1, the execution time required for

compensation processing is that corresponding to αN instead of

N where the ratio of rank-1 individuals to all individuals is

denoted by (0 < α ≤ 1). Accordingly, denoting the number of

migrations as m and the data transfer time for a migration as T,

total computational complexity takes on the following value:

𝑂(𝐺𝑀
𝑁

𝑛

2

+ 𝑚𝑀(𝛼𝑁)2 + 𝑚𝑇) (2)

(G: number of generations, M: number of objectives, N:

population size, n: number of CPUs, m: number of migrations,

α: ratio of rank-1 individuals (0 < α ≤ 1), T: data transfer time).

Thus, in an ideal environment in which data transfer time can

be ignored, and considering the case in which compensation

processing is performed only once at the end, we can expect the

improvement in speed to be at the most on the order of the

square of n, the degree of parallelism, compared with execution

on a single CPU.

III. EVALUATION

A. Evaluation using real-valued functions

1) Experimental method: To assess the effectiveness of

distributed parallelization using e-DNSGA-II, we compared

two items — the accuracy of solution searching and execution

time — with the total population fixed, among three types of

NSGA-II execution: conventional NSGA-II on a single CPU,

parallel NSGA-II without migration method, and DNSGA-II

with our proposed migration method (e-DNSGA-II).

Furthermore, for parallel execution of NSGA-II, we examined

the accuracy of solution searching and execution time while

varying the degree of parallelism and the migration interval. We

performed the evaluation for 2, 4, 8 and 12 degrees of

parallelism with total population fixed to 2400.

In addition to the above, we used hypervolume [15] as an

indicator of the accuracy of solution searching, and for test

problems, we used the multiobjective optimization problems

listed in Table 1 taken from the problems attached to the

NSGA-II source code [16]. The test execution environment is

summarized in Table 2. Experimental results were taken to be

the average of 20 trials.
Table 1: Problem Instance

Problem M G Generations reference point

BNH 2 150 2 (200, 55)

ZDT1 2 200 0 (1.2, 1.5)

Table 2: Execution Environment

CPU
Intel Xeon X5680x2 
(12cores, 24threads, 3.33GHz)

Memory DDR3 24GB 

OS Linux 2.6.32

Compiler gcc version 4.4.7

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018

ISSN: 1998-0140 229

2) Experimental results: Figure 3 shows experimental results

for different degrees of parallelism while keeping total

population fixed. Given a total population size of 2400, we

compare the accuracy of solution searching (hypervolume) and

the execution time of that solution searching for conventional

NSGA-II using a single CPU (in the figure, “Single core”),

conventional island model (hypervolume and execution time are

indicated by “hv island Model (5Mig)” and “Time island Model

(5Mig)” for N core), parallel NSGA-II without migration

method (hypervolume and execution time are indicated by the

black bar “hv parallel NSGA-II (NoMig)” and blue plot “Time

parallel NSGA-II (NoMig)” for N core), and the proposed

method e-DNSGA-II (hypervolume and execution time are

indicated by the green bar (“hv e-DNSGA-II (X Mig)”) and

orange plot (“Time e-DNSGA-II (X Mig)”) for N core). As

shown by the black bar in the figure, simply increasing the

degree of parallelism, though improving execution performance,

causes search accuracy to drop for these test problems.

These results revealed some differences according to degree

of parallelism and frequency of migration, but in these test

problems, performing migration with the proposed method

tended to result in a higher hypervolume compared to parallel

NSGA-II without migration method. Furthermore, the proposed

method was able to keep execution time below that of

single-CPU NSGA-II (in the figure, “Single core”) despite the

overhead associated with migration processing.

Fig. 3 Experimental results of parallel execution with NSGA-II (No migration
with DNSGA-II).

B. Evaluation using discrete optimization problems

1) Experimental method: Using the constrained knapsack

problem described below, we performed an evaluation with

respect to discrete optimization problems. Considering that

using this problem for an evaluation takes time and that a

general island model has many design variables, we here

perform a comparison evaluation targeting two items —

hypervolume and execution time — for the case of executing

conventional NSGA-II on a single CPU and the case of parallel

execution of NSGA-II using the proposed method.

As constrained multi-objective optimization problems, we

focus on mk-KPs [17]. The mk-KPs are defined in equation (3).

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓𝑗 𝑥 = 𝑝𝑖𝑗 × 𝑥𝑗 𝑗 = 1,2, … , 𝑚

𝑛

𝑖=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝑖𝑙 × 𝑥𝑖 ≤ 𝑐𝑙

𝑛

𝑖=1

 𝑙 = 1,2, … , 𝑘

(3)

The problem has n items and k knapsacks, and each item i

has m profits pij (j = 1, 2, ... , m) and k weights wil (l = 1, 2, ... , k).

The task is to find a set of items

maximizing m objectives while not exceeding k knapsack

capacities cl. The knapsack capacity cl is defined in equation (4).

φ is the feasibility ratio for each knapsack (constraint), and we

can control the strictness of constraints and we can control the

strictness of constraints by varying φ. The mk-KP is different

from the multi-objective knapsack problem (MOKP) [18] in

that the numbers of objectives m and knapsacks k can be

independently determined.

𝑐𝑙 = 𝜑 𝑤𝑖𝑙

𝑛

𝑖=1

 𝑙 = 1,2, … , 𝑘 (4)

 Parameters used in the experiment are listed in Table 3 and

the test execution environment is summarized in Table 4.

Experimental results were taken to be the average of 10 trials.

Table3: Experimental Parameters

Population Size 2400

Degree of Parallelism 1, 2, 4, 8

Number of Generations 180000

Migration Interval 50, 300, 600, 1000

Number of Objectives 2, 3

Constraint 2

Crossover Rate 0.7

Mutation Rate 0.1

Number of Items 300

Elimination Rate 0.5

Table 4: Test Execution Environment

CPU
Intel Corei7-860

(4cores, 8threads, 2.8GHz)

Memory DDR3 8GB 

OS Ubuntu 16.04.3 LTS

Compiler gcc version 5.4.0

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018

ISSN: 1998-0140 230

2) Experimental results:

a) Experiments comparing hypervolume and execution time:

For the sake of brevity, we here examine the case for a migration

interval of 300. The same behavior was observed for the other

migration intervals. Execution results for conventional

NSGA-II using a single CPU (in the figure, “Single core”),

parallel NSGA-II without migration method (“parallel NSGA-II

(NoMig)”), and e-DNSGA-II (“e-DNSGA-II (300Mig)”) are

shown in Figs. 4 and 5 for two objectives and three objectives,

respectively. The left and right axes in the figures show

hypervolume and execution time, respectively. For the case of

two objectives in Fig. 4, the e-DNSGA-II method proposed here

achieve a high hypervolume. Similarly, for the case of three

objectives in Fig. 5, the results for e-DNSGA-II show high

hypervolume. Additionally, for no migration, results for both

two and three objectives reveal that search accuracy

(hypervolume) drops with increase in parallelism. We consider

the reason for this to be that when executing non-dominated

sorting on multiple islands in a divided manner the problem

arises that some of the solutions may not be non-dominated after

all.

Fig. 4 Hypervolume and execution time of each method (2 objectives)

Fig. 5 Hypervolume and execution time of each method (3 objectives).

Next, for the case of executing NSGA-II on a single CPU, an

optimal hypervolume could not be obtained even after eight

hours. As a result, the execution time of NSGA-II is

approximately 5.0 times and 5.8 times that of e-DNSGA-II (8

cores) for achieving a suboptimal solution with a hypervolume

of 1.18E+0.7 and 7.8E+10 for two and three objectives,

respectively. These results reflect the high-speed operation of

the proposed e-DNSGA-II method.

b) Comparison of diversity and convergence by shape of

Pareto-optimal front: The shapes of the Pareto-optimal front

for e-DNSGA-II and single-CPU NSGA-II are compared in

Figs. 6 and 7 for two and three objectives, respectively. Figure 6

plots Pareto fronts as minimization problems for the sake of

calculating HV values. For the case of two objectives in Fig. 6,

it can be seen that the proposed e-DNSGA-II method achieves

greatly improved diversity at both extremes of the

Pareto-optimal front. It can also be observed from these results

that the final number of non-dominated solutions increases from

the 24 of NSGA-II to the 39 of e-NSGA-II and that the latter

features a uniform distribution of non-dominated solutions.

Next, for the case of three objectives in Fig. 7, it can be seen that

non-dominated solutions show a strong tendency to concentrate

at the center of the Pareto-optimal front for execution on a

single CPU. In contrast, it can be seen that search ability for

non-dominated solutions at the extremes of the Pareto-optimal

front improves for execution by e-DNSGA-II with the result that

many non-dominated solutions are distributed over a broad

range. The final number of non-dominated solutions increases

from the 280 of NSGA- II to the 364 of e-NSGA-II.

Fig. 6 Comparison of NSGA-II and e-NSGA-II Pareto fronts for 2 objectives.

Fig. 7 Comparison of NSGA-II and e-NSGA-II Pareto fronts for 3 objectives.

C. Evaluation using real-world problems

1) Benchmark Test of Simultaneously Optimizing Multiple

Models in Vehicle Design: In this section, we describe a

simultaneous optimization problem targeting multiple models

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018

ISSN: 1998-0140 231

of vehicles. This benchmark test is a vehicle design problem in

the context of real-world problems [22], [23]. The idea here is to

optimize a design variable vector that determines the design of

multiple models at once as a multiobjective problem. Compared

with existing benchmark problems, the benchmark test

introduced here features many vector elements and constraint

functions plus inter-variable dependency with respect to

objectives and constraint functions. As a result, an increase in

computation time for calculating optimal solutions presents a

problem.

The design variable vector is defined as

whose elements are real values xi (i = 1, …, K). Here, K is the

product where C is the number of vehicle models to

be simultaneously optimized and d is the number of design

variables per vehicle. The configuration of the design variable

vector is shown in Fig. 8. The design variables for each car are

arranged in the order of common structural components. That is,

the design variable that determines the pth common structural

component coincides with xp of the first car, xp+d of the second

car, and xp+2d of the third car. In this way, a single design

variable vector x simultaneously determines the design of C

vehicle models. The objective functions to be optimized are as

follows:

Minimize

𝑓1 𝑥

= 𝑀𝑎𝑠𝑠(
𝐶

𝑙=1
𝑥1+ 𝑙−1 𝑑 , 𝑥2+ 𝑙−1 𝑑 , ⋯ , 𝑥𝑑+8𝑙−1)𝑑) (5)

Maximize

𝑓2 𝑥

= 𝑝 ∈ 1, ⋯ , 𝑑 𝑥𝑝 ≅ 𝑥𝑝+𝑑 ≅ 𝑥𝑝+2𝑑 ≅ ⋯ ≅ 𝑥𝑝+ 𝐶−1 𝑑

 (6)

Fig.8 Design variables.

The first objective is to minimize the total mass of Mass

function calculates the mass of each car based on a multiple

regression model. The second objective is to maximize the

number of common design parts among C cars. Here, design

variables that determine individual structural components are

judged to be common if they are the same among C cars.

Specifically, design variables with a difference of less than 0.05

in their values are considered to be the same (≃). For this

benchmark test, we set C = 3 and d = 74 so that the number of

elements making up design variable vector is = 222.

In addition, the total number of constraint functions calculated

by the response surface method and constraint functions related

to magnitude relationships among variables as dictated by

design requirements is k = 54. In this paper, we use the

following equation to handle the second objective as a

minimization problem for convenience sake.
Minimize

 𝑓 ′
2
 𝑥 = 𝑑 − 𝑓2(𝑥) (7)

2) Experimental method: To assess the effectiveness of

distributed parallelization using e-DNSGA-II, we compared

two items — the accuracy of solution searching and execution

time — with the total population fixed, among two types of

NSGA-II execution: conventional NSGA-II on a single CPU,

and e-DNSGA-II with our proposed migration method.

Furthermore, for parallel execution of NSGA-II, we examined

the accuracy of solution searching and execution time while

varying the degree of parallelism and the migration interval. We

performed the evaluation for 6 and 12 degrees of parallelism

with total population fixed to 1200. The test execution

environment is summarized in Table 5. Table 6 shows the

setting parameters of NSGA-II.

In addition to the above, we used hypervolume [15] as an

indicator of the accuracy of solution searching. HV is the area in

objective space determined from the obtained solution set and a

reference point. A higher HV for an obtained solution set means

that the search could be performed with greater accuracy. In this

paper, we used the same normalization method for objective

function values as described in [22] and used [1.1, 0.0] as the

reference point. Experimental results were taken to be the

average of 10 trials.
Table 5: Test Execution Environment

CPU
Intel(R) Core(TM) i9-7920X CPU

(12cores, 24threads, 2.90GHz)

Memory 32GB DDR4 SDRAM

OS Ubuntu 16.04.4 LTS

Compiler gcc version 5.4.0

Table 6: Parameter of NSGA-II

Parameter Volume

Population Size

100, 200, 400

1200(100pop*12core,

200pop*6core,

400pop*3core)

Number of Generation 600

Crossover Probability 1.0

Crossover Distribution Index 10

Mutation Probability 0.05

Mutation Distribution Index 10

3) Experimental results: Experimental results are shown in

Figs. 9 and 10. For a fixed total population of 1200 divided into

12 sets of 100 individuals each, Fig. 9 compares HV values for

the same time but different migration intervals. In the figure, we

denote conventional NSGA-II executed on a single CPU for a

total population of 1200 as “single,” and the proposed

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018

ISSN: 1998-0140 232

e-DNSGA-II with migration performed every X generations for

a total population of 1200, respectively. Fig. 10 presents HV

versus generations for e-DNSGA-II with 1200 individuals

divided up equally among 12 CPUs (100 individuals per CPU)

and for conventional NSGA-II using a single CPU with a total

population of 1200. We show for reference purposes the results

obtained by single-CPU NSGA-II executed up to 50 generations

for 100 individuals. Similarly, Figs. 11 and 12 show

experimental results for a fixed total population of 1200 divided

into 6 sets of 200 individuals each.

For a fixed total population of 1200, these results show that

distributed processing by e-DNSGA-II would tend to have a

higher HV value than single-CPU NSGA-II for the same time.

Furthermore, despite the processing overhead for migration,

they also show that e-DNSGA-II obtained higher HV values

than single-CPU NSGA-II for nearly the same execution time

regardless of the migration interval. In any case, it can be seen

that the proposed method is 5 to 10 times faster than

conventional single-CPU NSGA-II with respect to the time

taken to achieve an HV value of 0.05. Furthermore, it can be

seen from Figs. 10 and 12 that no major difference in HV value

per generation could be observed between single-CPU

generation and parallel execution for both 6 and 12 CPUs.

Fig.9 Hypervolume transition by execution time (100 populations per core).

Fig. 10 Hypervolume transition by generation (100 populations per core).

Fig.11 Hypervolume transition by execution time (200 populations per core).

Fig. 12 Hypervolume transition by generation (200 populations per core).

The HV values for the same time and the shapes of the Pareto

fronts for the case of 12 CPUs (100 individuals per CPU), the

case of 6 CPUs (200 individuals per CPU), and the case of 3

CPUs (400 individuals per CPU) are shown in Fig. 13. These

results compare the convergence of Pareto fronts for different

degrees of parallelism given a migration interval of 30

generations on extending execution time to about 30 minutes. It

can therefore be seen from Fig. 13 that Pareto front convergence

improves as the degree of parallelism increases when compared

over the same execution time.

IV. DISCUSSION

First, for the BNH and ZDT1 test problems, we compared

results for the same number of generations and found that

conventional NSGA-II using a single CPU was apt to exhibit

higher performance in solution searching (higher hypervolume).

However, the use of migration whatever the degree of

parallelism was apt to increase the accuracy of solution

searching approaching that of single-CPU NSGA-II. We

consider that these test problems tend to need a sufficiently

large population per CPU, and if dividing into small populations,

that incorporating solutions from other CPUs by migration is

effective. However, when increasing the degree of parallelism

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018

ISSN: 1998-0140 233

(a) Hypervolume transition by execution time

(b) Pareto fronts after 30 min.

Fig.13 Comparison of obtained solution sets for e-DNSGA-II with migration
every 30 generations and single-CPU NSGA-II.

while keeping the population per CPU fixed, the same

hypervolume values as that of single-CPU NSGA-II were

obtained by the proposed method. On comparing

execution-time performance for the same hypervolume values

here, an improvement greater than 10 times was achieved.

Second, in the evaluation using the constrained knapsack

problem, it was seen for the case of no migration that search

accuracy tended to drop by distributed processing. We explain

the reason for this in conjunction with the evaluation results

using real-valued functions. For problems that include

singularities and problems that require a particularly high level

of diversity, dividing the population among multiple cores and

performing distributed processing will improve diversity and

raise the hypervolume value that is eventually obtained.

However, we found in this evaluation that an improvement in

diversity generally came at the expense of a drop in

convergence ability and that the hypervolume value that was

eventually obtained tended to drop. On the other hand, we

consider that applying appropriate migration as in the case of

e-DNSGA-II has the effect of compensating for this drop in

convergence ability and that, in addition to improving diversity,

has the capability of simultaneously achieving high-speed

parallel processing and improving search ability (improving

hypervolume) in the end.

Next, the results of Figs. 9 and 11 show that the proposed

method obtains the same HV at extremely high speed compared

with execution by conventional single-CPU NSGA-II.

Furthermore, a comparison of Figs. 13 suggests that an increase

in parallelism can be associated with a high speed-up ratio.

Although some difference can be seen in search performance

according to the migration interval, there appears to be no major

difference in the tendency to speed up.

The difficulty of determining a Pareto front with good

accuracy in a real-world problem within a realistic period of

time is not limited to the simultaneous optimization problem

taken up here in the design of multiple vehicle models. We

therefore consider the proposed method to be effective in

dealing with this issue since it can improve accuracy in solution

searching while simultaneously reducing execution time. In

addition, the proposed method can be used to achieve fast,

parallel processing of not just NSGA-II but any algorithm using

non-dominated sorting. In future research, we plan to

investigate scalability for even higher degrees of parallelism

and conduct detailed comparison experiments with the standard

island model.

V. CONCLUSION

In this paper, we proposed e-DNSGA-II, a distributed

parallel processing method that repeatedly performs NSGA-II

distributed processing in a many-core environment,

compensation of the non-dominated solution set obtained by

distributed processing, and migration by sharing among all

cores the solutions at the extreme points of the current

generation’s Pareto front. Using two typical real-valued-

function problems, a constrained knapsack problem, and a

simultaneous optimization problem occurring in the design of

multiple vehicle models, we compared the proposed method

with single-CPU NSGA-II and parallel NSGA-II without

migration method in terms of the accuracy of solution searching

and execution time. We showed that the proposed method has

the effect of improving diversity and the ability of improving

performance considerably while maintaining the accuracy of

solution searching.

ACKNOWLEDGMENT

The authors would like to extent our sincere gratitude to

Takeshi Kohira for providing the vehicle benchmark which is an

optimization benchmark with the actual engineering design

features of the car-body structural development.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018

ISSN: 1998-0140 234

REFERENCES

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr 2002.

[2] H. Ishibuchi, N. Akedo, and Y. Nojima, “Behavior of multiobjective

evolutionary algorithms on many-objective knapsack problems,” IEEE

Transactions on Evolutionary Computation, vol. 19, no. 2, pp. 264–283,

April 2015.

[3] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “An efficient approach to

nondominated sorting for evolutionary multiobjective optimization,”

IEEE Transactions on Evolutionary Computation, vol. 19, no. 2, pp.

201–213, April 2015.

[4] V. S. Gordon and L. D. Whitley, “Serial and parallel genetic algorithms as

function optimizers,” in Proceedings of the 5th International Conference

on Genetic Algorithms. Morgan Kaufmann Publishers Inc., 1993, pp.

177–183.

[5] H. Mühlenbein, “Parallel genetic algorithms population genetics and

combinatorial optimization,” in Proceedings of the 3rd International

Conference on Genetic Algorithms. Morgan Kaufmann Publishers Inc.,

1989, pp. 416–421.

[6] J. H. Byun, K. Datta, A. Ravindran, A. Mukherjee, and B. Joshi,

“Performance analysis of coarse-grained parallel genetic algorithms on

the multi-core sun UltraSPARK T1,” in IEEE Southeastcon 2009, March

2009, pp. 301–306.

[7] R. Serrano, J. Tapia, O. Montiel, R. Sepulveda, and P. Melin, “High

Performance Parallel Programming of a GA Using Multi-core

Technology,” Springer Berlin Heidelberg, 2008, pp. 307–314.

[8] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength

pareto evolutionary algorithm,” Tech. Rep., 2001.

[9] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm

based on decomposition,” IEEE Transactions on Evolutionary Compu-

tation, vol. 11, no. 6, pp. 712–731, Dec 2007.

[10] K. Deb and H. Jain, “An evolutionary many-objective optimization

algorithm using reference-point-based nondominated sorting approach,

part i: Solving problems with box constraints,” IEEE Transactions on

Evolutionary Computation, vol. 18, no. 4, pp. 577–601, Aug 2014.

[11] Y. Sato, M. Sato, and M. Miyakawa, “Distributed NSGA-II with

migration using compensation on many-core processors for improving

performance and accuracy,” in Proceedings of the Genetic and

Evolutionary Computation Conference Companion, ser. GECCO ’17.

New York, NY, USA: ACM, 2017, pp. 161–162. [Online]. Available:

http://doi.acm.org/10.1145/3067695.3075974

[12] Y. Sato, M. Sato and M. Miyakawa, "Distributed NSGA-II using the

divide-and-conquer method and migration for compensation on

manycore processors," 2017 21st Asia Pacific Symposium on Intelligent

and Evolutionary Systems (IES), Hanoi, 2017, pp. 83-88.

[13] T. Hiroyasu, M. Miki, and S. Watanabe, “Divided range genetic

algorithms in multiobjective optimization problems,” in Proceedings of

International Workshop on Emergent Synthesis (IWES99, 1999, pp. 57–

66.

[14] F. de Toro, J. Ortega, J. Fernandez, and A. Diaz, “Psfga: a parallel genetic

algorithm for multiobjective optimization,” in Proceedings 10th

Euromicro Workshop on Parallel, Distributed and Network-based Pro-

cessing, 2002, pp. 384–391.

[15] N. Beume, C. M. Fonseca, M. Lopez-Ibanez, L. Paquete, and J. Vahren-

hold, “On the complexity of computing the hypervolume indicator,” IEEE

Transactions on Evolutionary Computation, vol. 13, no. 5, pp.

1075–1082, Oct 2009.

[16] S. D. at KanGAL, Multi-objective NSGA-II code in C, Revision 1.1.6,

July 2011, http://www.iitk.ac.in/kangal/codes.shtml.

[17] D. P. Hans Kellerer, Ulrich Pferschy, Knapsack Problems. Springer, 2004

[18] E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization:

Methods and Applications. Technology, Zurich, 1999.

[19] H. Liu, F. Gu and Q. Zhang, "Decomposition of a Multiobjective

Optimization Problem Into a Number of Simple Multiobjective

Subproblems," in IEEE Transactions on Evolutionary Computation, vol.

18, no. 3, pp. 450-455, 2014.

[20] Y. Sato, M. Sato, and M. Miyakawa, “Distributed NSGA-II Sharing

Extreme Non-dominated Solutions,” in Proceedings of the Genetic and

Evolutionary Computation Conference Companion, GECCO ’18,

Late-Breaking Papers. New York, NY, USA: ACM, 2018, pp. 69–70.

[21] Y. Sato, M. Sato, H. Goto, and M. Miyakawa, “Distributed NSGA-II

Sharing Extreme Non-dominated Solutions for Constrained Knapsack

Problems,” in Proceedings of the 2018 International Conference on

Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO

2018), IEEE CPS. (to appear)..

[22] T. Kohira, H. Kemmotsu, A. Oyama, and T. Tatsukawa, “Proposal of

Benchmark Problem Based on Real-World Car Structure Design

Optimization,” In Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO ’18, pp. 183-184, 2018.

[23] M. Miyakawa, H. Sato, H. Matsumoto, M. Tanaka, M. Sato and Y. Sato,

“Effects of Duplication Operator in Evolutionary Simultaneous Design

Optimization of Multiple Cars,” in Proceedings of the 2018 Joint 10th

International Conference on Soft Computing and Intelligent Systems and

19th International Symposium on Advanced Intelligent Systems

(SCIS&ISIS 2018). IEEE Press.

Mikiko Sato received B.E., M.E., and Ph.D. degree in

Engineering from Tokyo University of Agriculture and

Technology, Japan in 1988, 1990 and 2006, respectively.

She is Research Associate Professor of School of

Information and Telecommunication Engineering, Tokai

University. Her research interests include soft computing

and operating system for parallel computers, many-core

systems and embedded systems. She is a member of

IEEE, ACM/SIGEVO, the IPSJ and the IEICE.

Minami Miyakawa received B.E., M.E., and Ph.D.

degrees from The University of Electro-

Communications in Tokyo, Japan in 2011, 2013 and

2016, respectively. She is a research fellow in Japan

Society for the Promotion of Science (JSPS) and

researching at Hosei University. Her research interests

include constraint-handling in evolutionary

multi-objective optimization and its applications. She

received a young researcher award from IEEE

Computational Intelligence Society Japan Chapter in

2013 and a best paper award from Transaction of the Japanese Society for

Evolutionary Computation in 2015.

Hiroyuki Sato received B.E. and M.E. degrees from

Shinshu University, Japan, in 2003 and 2005,

respectively. In 2009, he received Ph. D. degree from

Shinshu University. He has worked at The University of

Electro-Communications since 2009. He is currently an

associate professor. He received best paper awards on

the EMO track in GECCO 2011 and 2014, Transaction

of the Japanese Society for Evolutionary Computation

in 2012 and 2015. His research interests include

evolutionary multi- and many-objective optimization, and its applications. He

is a member of IEEE, ACM/SIGEVO.

Yuji Sato received the BE and PhD degrees in

Engineering from the University of Tokyo, Japan in

1981 and 1997, respectively. From 1981 to 2000, he

was with Hitachi Ltd, Tokyo, Japan. In April 2000, he

joined the Faculty of Computer and Information

Sciences at the Hosei University, Japan, as an Associate

Professor, and became a Professor in April 2001. He

received the 2014 Highly Commended Paper Award of

International Journal of Intelligent Computing and

Cybernetics. His current research areas include

distributed evolutionary multi-objective optimization on many-core

architecture and evolution of machine learning techniques in design. He is a

member of IEEE, ACM/SIGEVO, IPSJ.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018

ISSN: 1998-0140 235

