
 

 

 

Abstract— A recent trend in multiobjective evolutionary 

algorithms is to increase the population size to approximate the Pareto 

front with high accuracy. On the other hand, the NSGA-II algorithm 

widely used in multiobjective optimization performs non-dominated 

sorting in solution ranking, which means an increase in computational 

complexity proportional to the square of the population. This 

execution time becomes a problem in engineering applications. It is 

also difficult to achieve high speeds while maintaining the accuracy of 

solution searching by simply applying fast, parallel processing to 

standard genetic operations. In this paper, we propose NSGA-II 

distributed processing in a many-core environment and a migration 

method that shares extreme Pareto solutions of the current generation 

among all cores after performing compensation of the non-dominated 

solution set obtained by distributed processing. Using typical 

real-valued functions, constrained knapsack problems, and a 

simultaneous optimization problem that arises in the design of 

multiple vehicle models for evaluation, we show that the proposed 

migration method can significantly reduce execution time while 

obtaining higher accuracy in solution searching compared with 

NSGA-II executed on a single CPU. 

 

Keywords— multiobjective evolutionary algorithms, NSGA-II, 

parallel processing, many-core CPU, knapsack problem. 

I. INTRODUCTION 

n recent years, the trend in multiobjective evolutionary 

algorithms has been to increase the population size to 

approximate the Pareto-optimal front [1] with high accuracy [2]. 

Increasing the population size, however, results in an 

exponential increase in the computational complexity required 

for evaluating the dominant-subordinate relationships among 

solutions. As a result, execution time can be a problem when 

applying such an approach to engineering applications. For 

example, NSGA-II [1], an algorithm widely used in 

multiobjective optimization, performs non-dominated sorting in 
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solution ranking resulting in a computational complexity at the 

very least of  (M: number of objectives, N: population 

size) in every generation [3]. 

On the other hand, research on methods of implementing 

evolutionary algorithms on massively parallel computers as one 

means of speeding up calculations has been quite active since 

the 1990s [4], [5]. Research on parallel computation of 

evolutionary algorithms using a many-core environment as in a 

multicore processor or graphics processing unit (GPU) has also 

begun [6], [7]. These prior studies have centered on research 

that aims to speed up standard genetic operations through 

parallel processing, and they have produced effective results 

with respect to a variety of benchmark problems and actual 

applications. Here, a number of evolutionary algorithms have 

been proposed for multiobjective optimization, but such 

algorithms typified by NSGA-II, SPEA2 [8], MOEA/D [9], and 

NSGA-III [10] add original processing different from ordinary 

genetic operations to improve convergence performance and the 

diversity of the non-dominated solution set. The need for such 

processing reflects the difficulty of achieving high speeds while 

maintaining the accuracy of solution searching by simply 

applying fast, parallel processing to standard genetic operations. 

For example, the standard island model for parallel processing 

of evolutionary algorithms in a many-core environment repeats 

the process of dividing the population into subgroups (islands), 

applying standard genetic operations in parallel, and performing 

the migration of elite individuals within each island to other 

islands at appropriate times. However, when dividing 

non-dominated sorting among multiple islands and evaluating 

the elite individuals (non-dominated solutions) on each island 

across the entire population, they may not be truly 

non-dominated after all. This problem becomes especially 

noticeable as the number of islands is increased to speed up 

processing. 

In response to this problem, we previously proposed a 

method that improves performance while maintaining the 

accuracy of the Pareto-optimal solution set by repeating 

NSGA-II distributed processing in a many-core environment as 

inspired by the divide-and-conquer method combined with 

migration processing for compensation of the non-dominated 

solution set obtained by distributed processing [11], [12]. We 
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evaluated this method with benchmark problems using a 

number of typical real-valued functions and showed that 

execution time for obtaining a Pareto-optimal solution set of 

equivalent hypervolume (HV) could be greatly shortened and 

that a higher accuracy in solution searching could be obtained. 

In this paper, we propose a migration method that shares 

extreme Pareto solutions of the current generation among all 

cores after performing compensation of the non-dominated 

solution set obtained by distributed processing. We also, using 

constrained knapsack problem and a simultaneous optimization 

problem that arises in the design of multiple vehicle models, 

demonstrate its effectiveness in improving diversity in solution 

searching. 

The remainder of this paper is organized as follows. Section 2 

presents the background of our research and our latest migration 

method of DNSGA-II, Section 3 introduces the benchmark 

problem of simultaneous optimization of multiple models in 

vehicle design, and evaluates the method using the benchmark 

problem. Section 4 then discusses experimental results and 

Section 5 concludes the paper. 

II. DISTRIBUTED NSGA-II 

A. Background 

Several studies on fast, parallel processing of multi-objective 

evolutionary algorithms have already been reported [13], [14], 

[19], but these have focused on research for applying standard 

genetic operations for single-objective problems to 

multi-objective problems and on research related to methods of 

dividing an objective space. Here, one method for dividing 

objective space [19] can be an extremely effective parallel 

high-speed method provided that the shape of the Pareto front is 

understood to some degree beforehand. However, if the 

distribution of the Pareto front should have some bias or be 

irregular, and if there is no prior knowledge of the shape of that 

Pareto front, it will then be difficult to divide the variable space 

or objective space appropriately. In this paper, with the aim of 

proposing a general-purpose distributed method that can be 

applied even without prior knowledge of the Pareto front 

distribution, we propose a distributed processing method that 

assumes random division of the population. On the other hand, 

high-accuracy multi-objective evolutionary algorithms such as 

NSGA-II, SPEA2, MOEA/D, and NSGA-III add original 

processing different from ordinary genetic operations to 

improve convergence and the diversity of the non-dominated 

solution set, which reflects the fact that simply applying the 

technologies of prior research cannot maintain the accuracy of 

solution searching. To give an example, the island model 

repeats the process of dividing the population into subgroups 

(islands), executing NSGA-II in parallel, and migrating elite 

individuals on each island to other islands at appropriate times. 

However, when executing non-dominated sorting — a feature of 

NSGA-II — on multiple islands in a divided manner and 

evaluating the elite individuals (non-dominated solutions) on 

each island across the entire population, the problem arises that 

some of those solutions may not be non-dominated after all. In 

this way, when generating next-generation individuals (search 

points) as new individuals based on solution candidates 

erroneously classified as non-dominated solutions in genetic 

operations for each subgroup, search accuracy cannot be 

expected to sufficiently improve compared with generating 

next-generation individuals based on correct non-dominated 

solutions. In addition, increasing the number of islands to 

accelerate processing increases the frequency of appearance of 

solution candidates erroneously classified as non-dominated 

solutions. 

Actually, in our previous work, we showed that search 

accuracy (HV) tends to drop when increasing parallelism 

without appropriate migration for a fixed total population [12]. 

To address the above issue, we have proposed the method for 

achieving fast, parallel processing of DNSGA-II while 

maintaining the accuracy of the Pareto-optimal front as an 

efficient migration method [12], [20], [21]. 

Fig.1 Concept of DNSGA-II with migration. 

B. Basic Concept of DNSGA-II 

The concept of DNSGA-II with migration included is shown 

in Fig. 1. In the figure, the method executes NSGA-II in each 

subgroup in parallel, gathers the non-dominated solution sets 

(rank 1 solution sets) obtained by solution searching on each 

CPU, and again performs non-dominated sorting with ranking 

as compensation processing. Next, the method performs 

migration by allocating to each CPU a portion of the 

non-dominated solution set obtained by compensation. It then 

proceeds to the next generation of solution searching by 

NSGA-II on each CPU. This repeated execution of NSGA-II 

distributed processing in a many-core environment while 

performing compensation processing of the false 

non-dominated solution sets obtained in each subgroup 

achieves high-speed NSGA-II while maintaining the accuracy 

of solution searching. In contrast to the conventional island 

model, which aims to improve the accuracy of solution 

searching by having elite individuals in each subgroup undergo 

migration to other islands, the key feature of this proposal is 

distributed processing of NSGA-II in a many-core environment 

while performing compensation processing of the false 

non-dominated solution sets obtained in each subgroup.  

C. Migration Method for e-DNSGA-II 

To resolve the issue, we have already proposed the method 

“DNSGA-II [12]” for achieving fast, parallel processing of 

NSGAII while maintaining the accuracy of the Pareto-optimal 

front. Here, we propose the newly migration method sharing 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018

ISSN: 1998-0140 228



 

 

extreme non-dominated solutions is shown in Fig. 2. In the 

following, we denote DNSGA-II using this migration method as 

Distributed NSGA-II sharing extreme non-dominated solutions 

(e-DNSGA-II). In the figure, Pi, Si (i=1, …, n) indicates the 

proposed migration method sharing extreme non-dominated 

solutions first gathers the non-dominated solution sets (rank 1 

solution sets) obtained by solution searching on each CPU and 

again performs non-dominated sorting and compensation 

processing with ranking. It then preferentially allocates the 

non-dominated solutions at both ends of the current Pareto front 

to all CPUs in place of the excluded false non-dominated 

solutions. In the event that all non-dominated solutions are true 

solutions after again applying non-dominated sorting, the 

method deletes those individuals with small crowding distance 

(CD) values replacing them with these non-dominated solutions 

at both ends of the Pareto front. In short, this method performs 

migration by deleting false non-dominated solutions and 

non-dominated solutions with small CD values and replacing 

them with extreme non-dominated solutions at both ends of the 

current Pareto front (shares extreme non-dominated solutions 

among all islands). 

Fig. 2 Compensation of non-dominated solution set and migration method 

sharing extreme non-dominated solutions among all islands. 

D. Estimates of performance 

1) No parallel, high-speed processing of nondominated 

sorting:  Most of the execution time of NSGA-II is taken up by 

non-dominated sorting, and given that the computational 

complexity of non-dominated sorting is on the order of 

NSGA-II  (M: number of objectives, N: population 

size) at the least [3], total computational complexity for G 

generations of genetic operations takes on the following value: 

𝑂 𝐺𝑀𝑁2  1  
 

As a result, increasing the population size to improve accuracy 

when applying NSGA-II to engineering applications presents a 

problem in terms of execution time. 

2) Proposed method: When executing DNSGA-II in parallel 

over n CPUs by the proposed method, the execution time 

required is that corresponding to a population of N/n instead of 

N. In addition, as non-dominated sorting is performed for only 

individuals of rank 1, the execution time required for 

compensation processing is that corresponding to αN instead of 

N where the ratio of rank-1 individuals to all individuals is 

denoted by (0 < α ≤ 1). Accordingly, denoting the number of 

migrations as m and the data transfer time for a migration as T, 

total computational complexity takes on the following value: 

𝑂(𝐺𝑀 
𝑁

𝑛
 

2

+ 𝑚𝑀(𝛼𝑁)2 + 𝑚𝑇) (2) 

 
(G: number of generations, M: number of objectives, N: 

population size, n: number of CPUs, m: number of migrations, 

α: ratio of rank-1 individuals (0 < α ≤ 1), T: data transfer time). 

Thus, in an ideal environment in which data transfer time can 

be ignored, and considering the case in which compensation 

processing is performed only once at the end, we can expect the 

improvement in speed to be at the most on the order of the 

square of n, the degree of parallelism, compared with execution 

on a single CPU.  

III. EVALUATION 

A. Evaluation using real-valued functions 

1) Experimental method: To assess the effectiveness of 

distributed parallelization using e-DNSGA-II, we compared 

two items — the accuracy of solution searching and execution 

time — with the total population fixed, among three types of 

NSGA-II execution: conventional NSGA-II on a single CPU, 

parallel NSGA-II without migration method, and DNSGA-II 

with our proposed migration method (e-DNSGA-II). 

Furthermore, for parallel execution of NSGA-II, we examined 

the accuracy of solution searching and execution time while 

varying the degree of parallelism and the migration interval. We 

performed the evaluation for 2, 4, 8 and 12 degrees of 

parallelism with total population fixed to 2400. 

In addition to the above, we used hypervolume [15] as an 

indicator of the accuracy of solution searching, and for test 

problems, we used the multiobjective optimization problems 

listed in Table 1 taken from the problems attached to the 

NSGA-II source code [16]. The test execution environment is 

summarized in Table 2. Experimental results were taken to be 

the average of 20 trials. 
Table 1: Problem Instance 

Problem M    G    Generations    reference point 

BNH 2    150            2                    (200, 55) 

ZDT1 2    200            0                    (1.2, 1.5) 

 
Table 2: Execution Environment 

CPU 
Intel Xeon X5680x2   
(12cores, 24threads, 3.33GHz)  

Memory DDR3 24GB   

OS Linux 2.6.32  

Compiler gcc version 4.4.7  
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2) Experimental results: Figure 3 shows experimental results 

for different degrees of parallelism while keeping total 

population fixed. Given a total population size of 2400, we 

compare the accuracy of solution searching (hypervolume) and 

the execution time of that solution searching for conventional 

NSGA-II using a single CPU (in the figure, “Single core”), 

conventional island model (hypervolume and execution time are 

indicated by “hv island Model (5Mig)” and “Time island Model 

(5Mig)” for N core), parallel NSGA-II without migration 

method (hypervolume and execution time are indicated by the 

black bar “hv parallel NSGA-II (NoMig)” and blue plot “Time 

parallel NSGA-II (NoMig)” for N core), and the proposed 

method e-DNSGA-II (hypervolume and execution time are 

indicated by the green bar (“hv e-DNSGA-II  (X Mig)”) and 

orange plot (“Time e-DNSGA-II (X Mig)”) for N core). As 

shown by the black bar in the figure, simply increasing the 

degree of parallelism, though improving execution performance, 

causes search accuracy to drop for these test problems. 

These results revealed some differences according to degree 

of parallelism and frequency of migration, but in these test 

problems, performing migration with the proposed method 

tended to result in a higher hypervolume compared to parallel 

NSGA-II without migration method. Furthermore, the proposed 

method was able to keep execution time below that of 

single-CPU NSGA-II (in the figure, “Single core”) despite the 

overhead associated with migration processing. 

 

 

Fig. 3 Experimental results of parallel execution with NSGA-II (No migration 
with DNSGA-II). 

B. Evaluation using discrete optimization problems 

1) Experimental method: Using the constrained knapsack 

problem described below, we performed an evaluation with 

respect to discrete optimization problems. Considering that 

using this problem for an evaluation takes time and that a 

general island model has many design variables, we here 

perform a comparison evaluation targeting two items — 

hypervolume and execution time — for the case of executing 

conventional NSGA-II on a single CPU and the case of parallel 

execution of NSGA-II using the proposed method.  

As constrained multi-objective optimization problems, we 

focus on mk-KPs [17]. The mk-KPs are defined in equation (3). 

 
 
 

 
 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓𝑗  𝑥 =  𝑝𝑖𝑗 × 𝑥𝑗   𝑗 = 1,2, … , 𝑚 

𝑛

𝑖=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑤𝑖𝑙 × 𝑥𝑖 ≤ 𝑐𝑙  

𝑛

𝑖=1

 𝑙 = 1,2, … , 𝑘      

(3) 

 
The problem has n items and k knapsacks, and each item i 

has m profits pij (j = 1, 2, ... , m) and k weights wil (l = 1, 2, ... , k). 

The task is to find a set of items  

maximizing m objectives while not exceeding k knapsack 

capacities cl. The knapsack capacity cl is defined in equation (4). 

φ is the feasibility ratio for each knapsack (constraint), and we 

can control the strictness of constraints and we can control the 

strictness of constraints by varying φ. The mk-KP is different 

from the multi-objective knapsack problem (MOKP) [18] in 

that the numbers of objectives m and knapsacks k can be 

independently determined. 

𝑐𝑙 = 𝜑 𝑤𝑖𝑙

𝑛

𝑖=1

  𝑙 = 1,2, … , 𝑘 (4) 

 
 Parameters used in the experiment are listed in Table 3 and 

the test execution environment is summarized in Table 4. 

Experimental results were taken to be the average of 10 trials. 

Table3: Experimental Parameters 

Population Size 2400 

Degree of Parallelism 1, 2, 4, 8 

Number of Generations 180000 

Migration Interval 50, 300, 600, 1000 

Number of Objectives 2, 3 

Constraint 2 

Crossover Rate 0.7 

Mutation Rate 0.1 

Number of Items 300 

Elimination Rate 0.5 

 
Table 4: Test Execution Environment 

CPU 
Intel Corei7-860 

(4cores, 8threads, 2.8GHz) 

Memory DDR3 8GB   

OS Ubuntu 16.04.3 LTS 

Compiler gcc version 5.4.0 
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2) Experimental results:  

a) Experiments comparing hypervolume and execution time: 

For the sake of brevity, we here examine the case for a migration 

interval of 300. The same behavior was observed for the other 

migration intervals. Execution results for conventional 

NSGA-II using a single CPU (in the figure, “Single core”), 

parallel NSGA-II without migration method (“parallel NSGA-II 

(NoMig)”), and e-DNSGA-II (“e-DNSGA-II (300Mig)”) are 

shown in Figs. 4 and 5 for two objectives and three objectives, 

respectively. The left and right axes in the figures show 

hypervolume and execution time, respectively. For the case of 

two objectives in Fig. 4, the e-DNSGA-II method proposed here 

achieve a high hypervolume. Similarly, for the case of three 

objectives in Fig. 5, the results for e-DNSGA-II show high 

hypervolume. Additionally, for no migration, results for both 

two and three objectives reveal that search accuracy 

(hypervolume) drops with increase in parallelism. We consider 

the reason for this to be that when executing non-dominated 

sorting on multiple islands in a divided manner the problem 

arises that some of the solutions may not be non-dominated after 

all. 

  

Fig. 4 Hypervolume and execution time of each method (2 objectives) 

 

Fig. 5 Hypervolume and execution time of each method (3 objectives). 

Next, for the case of executing NSGA-II on a single CPU, an 

optimal hypervolume could not be obtained even after eight 

hours. As a result, the execution time of NSGA-II is 

approximately 5.0 times and 5.8 times that of e-DNSGA-II (8 

cores) for achieving a suboptimal solution with a hypervolume 

of 1.18E+0.7 and 7.8E+10 for two and three objectives, 

respectively. These results reflect the high-speed operation of 

the proposed e-DNSGA-II method. 

 

b) Comparison of diversity and convergence by shape of 

Pareto-optimal front: The shapes of the Pareto-optimal front 

for e-DNSGA-II and single-CPU NSGA-II are compared in 

Figs. 6 and 7 for two and three objectives, respectively. Figure 6 

plots Pareto fronts as minimization problems for the sake of 

calculating HV values. For the case of two objectives in Fig. 6, 

it can be seen that the proposed e-DNSGA-II method achieves 

greatly improved diversity at both extremes of the 

Pareto-optimal front. It can also be observed from these results 

that the final number of non-dominated solutions increases from 

the 24 of NSGA-II to the 39 of e-NSGA-II and that the latter 

features a uniform distribution of non-dominated solutions. 

Next, for the case of three objectives in Fig. 7, it can be seen that 

non-dominated solutions show a strong tendency to concentrate 

at the center of the Pareto-optimal front for execution on a 

single CPU. In contrast, it can be seen that search ability for 

non-dominated solutions at the extremes of the Pareto-optimal 

front improves for execution by e-DNSGA-II with the result that 

many non-dominated solutions are distributed over a broad 

range. The final number of non-dominated solutions increases 

from the 280 of NSGA- II to the 364 of e-NSGA-II. 

 
Fig. 6 Comparison of NSGA-II and e-NSGA-II Pareto fronts for 2 objectives. 

 
Fig. 7 Comparison of NSGA-II and e-NSGA-II Pareto fronts for 3 objectives. 

C. Evaluation using real-world problems 

1) Benchmark Test of Simultaneously Optimizing Multiple 

Models in Vehicle Design: In this section, we describe a 

simultaneous optimization problem targeting multiple models 
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of vehicles. This benchmark test is a vehicle design problem in 

the context of real-world problems [22], [23]. The idea here is to 

optimize a design variable vector that determines the design of 

multiple models at once as a multiobjective problem. Compared 

with existing benchmark problems, the benchmark test 

introduced here features many vector elements and constraint 

functions plus inter-variable dependency with respect to 

objectives and constraint functions. As a result, an increase in 

computation time for calculating optimal solutions presents a 

problem. 

The design variable vector is defined as  

whose elements are real values xi (i = 1, …, K). Here, K is the 

product  where C is the number of vehicle models to 

be simultaneously optimized and d is the number of design 

variables per vehicle. The configuration of the design variable 

vector is shown in Fig. 8. The design variables for each car are 

arranged in the order of common structural components. That is, 

the design variable that determines the pth common structural 

component coincides with xp of the first car, xp+d of the second 

car, and xp+2d of the third car. In this way, a single design 

variable vector x simultaneously determines the design of C 

vehicle models.  The objective functions to be optimized are as 

follows: 

Minimize 

𝑓1 𝑥                                                                                  

=  𝑀𝑎𝑠𝑠(
𝐶

𝑙=1
𝑥1+ 𝑙−1 𝑑 , 𝑥2+ 𝑙−1 𝑑 , ⋯ , 𝑥𝑑+8𝑙−1)𝑑) (5)

 

 

Maximize 

𝑓2 𝑥                                                                                           

=   𝑝 ∈  1, ⋯ , 𝑑 𝑥𝑝 ≅ 𝑥𝑝+𝑑 ≅ 𝑥𝑝+2𝑑 ≅ ⋯ ≅ 𝑥𝑝+ 𝐶−1 𝑑  

                                                                                                (6)

 

 

 

Fig.8 Design variables. 

The first objective is to minimize the total mass of Mass 

function calculates the mass of each car based on a multiple 

regression model. The second objective is to maximize the 

number of common design parts among C cars. Here, design 

variables that determine individual structural components are 

judged to be common if they are the same among C cars. 

Specifically, design variables with a difference of less than 0.05 

in their values are considered to be the same (≃). For this 

benchmark test, we set C = 3 and d = 74 so that the number of 

elements making up design variable vector is  = 222. 

In addition, the total number of constraint functions calculated 

by the response surface method and constraint functions related 

to magnitude relationships among variables as dictated by 

design requirements is k = 54. In this paper, we use the 

following equation to handle the second objective as a 

minimization problem for convenience sake. 
Minimize 

 𝑓 ′
2
 𝑥 = 𝑑 − 𝑓2(𝑥) (7) 

 

2) Experimental method: To assess the effectiveness of 

distributed parallelization using e-DNSGA-II, we compared 

two items — the accuracy of solution searching and execution 

time — with the total population fixed, among two types of 

NSGA-II execution: conventional NSGA-II on a single CPU, 

and e-DNSGA-II with our proposed migration method. 

Furthermore, for parallel execution of NSGA-II, we examined 

the accuracy of solution searching and execution time while 

varying the degree of parallelism and the migration interval. We 

performed the evaluation for 6 and 12 degrees of parallelism 

with total population fixed to 1200. The test execution 

environment is summarized in Table 5. Table 6 shows the 

setting parameters of NSGA-II. 

In addition to the above, we used hypervolume [15] as an 

indicator of the accuracy of solution searching. HV is the area in 

objective space determined from the obtained solution set and a 

reference point. A higher HV for an obtained solution set means 

that the search could be performed with greater accuracy. In this 

paper, we used the same normalization method for objective 

function values as described in [22] and used [1.1, 0.0] as the 

reference point. Experimental results were taken to be the 

average of 10 trials. 
Table 5: Test Execution Environment 

CPU 
Intel(R) Core(TM) i9-7920X CPU 

(12cores, 24threads, 2.90GHz) 

Memory 32GB DDR4 SDRAM 

OS Ubuntu 16.04.4 LTS 

Compiler gcc version 5.4.0 

 
Table 6: Parameter of NSGA-II 

Parameter Volume 

Population Size 

100, 200, 400 

1200(100pop*12core, 

200pop*6core, 

400pop*3core) 

Number of Generation 600 

Crossover Probability 1.0 

Crossover Distribution Index 10 

Mutation Probability 0.05 

Mutation Distribution Index 10 

 

3) Experimental results: Experimental results are shown in 

Figs. 9 and 10. For a fixed total population of 1200 divided into 

12 sets of 100 individuals each, Fig. 9 compares HV values for 

the same time but different migration intervals. In the figure, we 

denote conventional NSGA-II executed on a single CPU for a 

total population of 1200 as “single,” and the proposed 
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e-DNSGA-II with migration performed every X generations for 

a total population of 1200, respectively. Fig. 10 presents HV 

versus generations for e-DNSGA-II with 1200 individuals 

divided up equally among 12 CPUs (100 individuals per CPU) 

and for conventional NSGA-II using a single CPU with a total 

population of 1200. We show for reference purposes the results 

obtained by single-CPU NSGA-II executed up to 50 generations 

for 100 individuals. Similarly, Figs. 11 and 12 show 

experimental results for a fixed total population of 1200 divided 

into 6 sets of 200 individuals each. 

For a fixed total population of 1200, these results show that 

distributed processing by e-DNSGA-II would tend to have a 

higher HV value than single-CPU NSGA-II for the same time. 

Furthermore, despite the processing overhead for migration, 

they also show that e-DNSGA-II obtained higher HV values 

than single-CPU NSGA-II for nearly the same execution time 

regardless of the migration interval. In any case, it can be seen 

that the proposed method is 5 to 10 times faster than 

conventional single-CPU NSGA-II with respect to the time 

taken to achieve an HV value of 0.05. Furthermore, it can be 

seen from Figs. 10 and 12 that no major difference in HV value 

per generation could be observed between single-CPU 

generation and parallel execution for both 6 and 12 CPUs. 

 
Fig.9 Hypervolume transition by execution time (100 populations per core). 

 
Fig. 10 Hypervolume transition by generation (100 populations per core). 

 
Fig.11 Hypervolume transition by execution time (200 populations per core). 

 
Fig. 12 Hypervolume transition by generation (200 populations per core). 

The HV values for the same time and the shapes of the Pareto 

fronts for the case of 12 CPUs (100 individuals per CPU), the 

case of 6 CPUs (200 individuals per CPU), and the case of 3 

CPUs (400 individuals per CPU) are shown in Fig. 13. These 

results compare the convergence of Pareto fronts for different 

degrees of parallelism given a migration interval of 30 

generations on extending execution time to about 30 minutes. It 

can therefore be seen from Fig. 13 that Pareto front convergence 

improves as the degree of parallelism increases when compared 

over the same execution time. 

IV. DISCUSSION 

First, for the BNH and ZDT1 test problems, we compared 

results for the same number of generations and found that 

conventional NSGA-II using a single CPU was apt to exhibit 

higher performance in solution searching (higher hypervolume). 

However, the use of migration whatever the degree of 

parallelism was apt to increase the accuracy of solution 

searching approaching that of single-CPU NSGA-II. We 

consider that these test problems tend to need a sufficiently 

large population per CPU, and if dividing into small populations, 

that incorporating solutions from other CPUs by migration is 

effective. However, when increasing the degree of parallelism  
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(a) Hypervolume transition by execution time 

 
(b) Pareto fronts after 30 min. 

Fig.13 Comparison of obtained solution sets for e-DNSGA-II with migration 
every 30 generations and single-CPU NSGA-II. 

while keeping the population per CPU fixed, the same 

hypervolume values as that of single-CPU NSGA-II were 

obtained by the proposed method. On comparing 

execution-time performance for the same hypervolume values 

here, an improvement greater than 10 times was achieved. 

Second, in the evaluation using the constrained knapsack 

problem, it was seen for the case of no migration that search 

accuracy tended to drop by distributed processing. We explain 

the reason for this in conjunction with the evaluation results 

using real-valued functions. For problems that include 

singularities and problems that require a particularly high level 

of diversity, dividing the population among multiple cores and 

performing distributed processing will improve diversity and 

raise the hypervolume value that is eventually obtained. 

However, we found in this evaluation that an improvement in 

diversity generally came at the expense of a drop in 

convergence ability and that the hypervolume value that was 

eventually obtained tended to drop. On the other hand, we 

consider that applying appropriate migration as in the case of 

e-DNSGA-II has the effect of compensating for this drop in 

convergence ability and that, in addition to improving diversity, 

has the capability of simultaneously achieving high-speed 

parallel processing and improving search ability (improving 

hypervolume) in the end. 

Next, the results of Figs. 9 and 11 show that the proposed 

method obtains the same HV at extremely high speed compared 

with execution by conventional single-CPU NSGA-II. 

Furthermore, a comparison of Figs. 13 suggests that an increase 

in parallelism can be associated with a high speed-up ratio. 

Although some difference can be seen in search performance 

according to the migration interval, there appears to be no major 

difference in the tendency to speed up. 

The difficulty of determining a Pareto front with good 

accuracy in a real-world problem within a realistic period of 

time is not limited to the simultaneous optimization problem 

taken up here in the design of multiple vehicle models. We 

therefore consider the proposed method to be effective in 

dealing with this issue since it can improve accuracy in solution 

searching while simultaneously reducing execution time. In 

addition, the proposed method can be used to achieve fast, 

parallel processing of not just NSGA-II but any algorithm using 

non-dominated sorting. In future research, we plan to 

investigate scalability for even higher degrees of parallelism 

and conduct detailed comparison experiments with the standard 

island model. 

V. CONCLUSION 

In this paper, we proposed e-DNSGA-II, a distributed 

parallel processing method that repeatedly performs NSGA-II 

distributed processing in a many-core environment, 

compensation of the non-dominated solution set obtained by 

distributed processing, and migration by sharing among all 

cores the solutions at the extreme points of the current 

generation’s Pareto front. Using two typical real-valued- 

function problems, a constrained knapsack problem, and a 

simultaneous optimization problem occurring in the design of 

multiple vehicle models, we compared the proposed method 

with single-CPU NSGA-II and parallel NSGA-II without 

migration method in terms of the accuracy of solution searching 

and execution time. We showed that the proposed method has 

the effect of improving diversity and the ability of improving 

performance considerably while maintaining the accuracy of 

solution searching.  
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