
 

 

  
Abstract—The paper present a consistent set of linear matrix 

inequalities which guaranties asymptotic stability of the closed-loop 
system, warranties strictly Metzlerian system structure, and adjusts 
the state and output variables coincident with prescribed quadratic 
limits. To realize with a positive control law gain, the diagonal 
stabilizability of strictly Metzlerian linear continuous-time systems is 
approved, and the related closed-form expression of design condi-
tions is provided. The results are illustrated using a particular LQ 
problem, for which numerical examples are given. 
 

Keywords—asymptotic stability, linear matrix inequalities, linear 
quadratic control, Metzlerian continuous-time systems, state feedback 
stabilization.  

I. INTRODUCTION 

Positive systems indicate the processes whose variables 
represent quantities that do not have meaning unless they are 
nonnegative [1]. Since, in the relevant continuous-time state-
space description, the system matrix of a positive system is 
Metzler, theory of Metzler matrices is naturally applied to this 
kind of dynamical systems [2]. Additionally limited in the way 
that the system input and output matrices are at least 
nonnegative matrices [3], system stabilization  means strictly 
defined task to design a positive gain matrix of control law so 
that the closed-loop system matrix is Metzler and Hurwitz [4]. 
Therefore, most of techniques applicable to ordinary linear 
systems can not be straightly nominated to positive linear 
systems [5], [6]. Mainly the books [7], [8] treat a considerable 
number of the approaches to positive system analysis, and 
include illustrative algorithms for many specific tasks, but 
there still remains a wide variety of related problems 
(controllability, observability, speed of response, robustness) 
which need to be solved and addressed to Metzlerian linear 
systems. A more detailed treatments of problems are given, 
e.g. in [9], [10]. 

The trend in synthesis of feedback control of Metzlerian 
systems tends to simplify and disambiguate the strictly defined 
design conditions. Supposing that the Metzlerian systems is 
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represented by state-space equations, the synthesis of 
stabilizing state-feedback controllers, guaranteeing the closed-
loop system is asymptotically stable and internally positive, is 
conditionally supported by linear programming to meet the   
closed-loop system positive structure [11], [12]. In order to 
reduce the number of constraints entering the solution in linear 
programming methods, an alternative synthesis procedure with 
is proposed in [13], where the system parameter boundaries 
are defined by n linear matrix inequalities (LMI), if the system 
is strictly Metzlerian. Because a solution of such defined base 
set of LMIs only assures that the closed-loop system matrix is 
strictly Metzler, the design conditions are complemented by 
another LMI that imposes a stable asymptotic solution. Since 
the applied LMI variables are of diagonal matrix structure, it 
can be refereed about diagonal stabilizability of the strictly 
Metzlerian continuous-time linear systems.  

Constraining the class of controller matrix gains to be 
positive, it does not alleviate the complexity of the solutions 
for non strictly Metzlerian systems. Proceeding along the same 
lines, and pursuing the formal system analogy, some appli-
cable extensions of the above formulations for strictly positive 
discrete-time linear systems can be found in [14], [15]. 

Analyzing the challenging problem of state-feedback 
stabilization of strictly Metzlerian linear continuous-time 
systems, the main motivation of this paper are design 
conditions formulated for infinite-time horizon control with 
linear quadratic cost functions. Since, at defined constraints on 
elements of a strictly Metzlerian system matrix structure, the 
task cannot be formulated using a Riccati equation form, the 
matrices of cost function are used to extend that one LMI, 
which reflects stability condition in overall completion of the 
LMIs set in design conditions. The configuration chosen corres-
ponds a way exploiting the minimizing of the quadratic cost 
criterion subject to a closed-loop stability constraint, the 
framework used is standard and convenient because other additive 
constraints may be included into design formulation. 

Used notations are conventional so that Tx , TX  denote 
transpose of the vector x , and matrix X , respectively, +x , 

+X  indicate a nonnegative vector and a nonnegative matrix, 
0X ≻  means that X  is a symmetric positive definite matrix, 

( )ρ X  reports the eigenvalue spectrum of the square matrix 
X , the symbol nI  marks the n-th order unit matrix, diag[ ]i  
enters up a diagonal matrix, n+ℝ , n r×

+ℝ  signify the set of all n 
dimensional real non-negative vectors and n r×  real non-
negative matrices, respectively. 
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II. LINEAR CONTINUOUS-TIME POSITIVE SYSTEMS 

To define the system positive structures, and to extend their 
formal stabilizability properties, it is preferred in the follo-
wing the state-space system description defined in the standard 
way as 

( ) ( ) ( )t t t= +q Aq Buɺ                                                          (1) 

( ) ( )t t=y Cq                                                                       (2) 

where the equations (1), (2) belong to the Metzlerian class of 
positive systems if  ( ) nt +∈q ℝ ,  ( ) rt +∈u ℝ ,  ( ) mt +∈y ℝ  (all 
variables are nonnegative) for all 0t ≥ .  

In the general case, the matrix  n n×∈A ℝ is restricted to 
being strictly Metzler (its diagonal elements are negative and 
its off-diagonal elements are positive) and the matrices 

 n r×
+∈B ℝ ,  m n×

+∈C ℝ  are nonnegative (all its entries are 
nonnegative and at least one is positive). Satisfying these 
restrictions, the system (1), (2) is referred as a linear strictly 
Metzlerian system. Note, a strictly Metzler matrix is stable if it 
is Hurwitz. 

Terminating the class of admissible controllers to be linear 
and considering, for simplicity, a SISO linear strictly 
Metzlerian system (1), (2) controlled by the dimensionally 
compatible control, constrained to use a linear function of the 
state measurements, and a strictly positive real vector k  such 
that 

       ( ) ( ),  T nu t t= − ∈k q k ℝ                                                   (3) 

then the state-space enrollment of the closed-loop system is 
given as 

( ) ( ) ( ) ( )T
ct t t= − =q A bk q A qɺ                                            (4) 

( ) ( )t t=y Cq                                                                       (5) 

where 
T

c = −A A bk                                                                       (6) 

has to be a strictly Metzler matrix. Consequently, the closed-
loop system matrix structure (5) prescribes the algebraic 
inequalities corresponding to the strictly Metzler matrix cA  as 
follows 

0 for all 1,2, ,cii ii i ia a b k i n= − < = …                               (7) 

 0 for all , 1,2, , ,cij ij i ja a b k i j n i j= − > = … ≠                 (8) 

             where the detailed formats of the Metzler system matrix 
parameters, as well as the state controller gain vector structure 
are 
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21 22 2 2 2
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n

n
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= = =     
     

         

A b k
⋮ ⋮

⋯

⋮

⋯

⋯
                 (9)                                                       

Although the structure of the state feedback control law (3) 
is simple, it should be noted that the positiveness constraint for 

the solvability of the gain k  is extended by the set of 2n  
scalar inequalities (6), (7).  

Generalizing for MIMO (multiple input, multiple output) 
systems, the following lema yields. 

Lemma1: [15] Within the basic notations as above and 
applying the vector input variable 

1

( ) ( ) ( )

T

T
r

t t t

 
 

= − = −  
 
 

k

u Kq q

k

⋮                                              (10)                                                      

on the strictly Metzler MIMO system (1), (2), while the 
positive gain matrix  r n×∈K ℝ is prescribed to force the 
closed-loop system matrix 

1

r
T

c k k
k =

= − = −∑A A BK A b k                                             (11)            

then the matrix cA  is Metzler, if for given non-negative matrix 
 n r×

+∈B ℝ and a strictly Metzler matrix  n n×
+∈A ℝ  there exist 

positive definite diagonal matrices  , n n
k

×
+∈P R ℝ  such that for 

1,2, 1h n= … − , 1,2,k r= …  

0T=P P ≻                                                                      (12) 

0T
k k=R R ≻                                                                    (13) 

(1 )
1

( , ) 0
r

n dk k
k

i i ↔
=

−∑A B R ≺                                              (14) 

(1 )/
1

( , ) 0
r

h hT h hT
n n dk k

k

j j h ↔
=

+ −∑T A T P T B T R ≻             (15) 

subject to the notations  

1

0 0 0 1
1 0 0 0

0 0 1 0

 , T−

 
 
 
 
 

= =T T T

⋯

⋯

⋱

⋯

                                      (16)              

(1 )/ 1,1 , 1,1 ,( , ) diagn n h n h n n h n hj j h a a a a↔ + − − + + =  A ⋯ ⋯                  

(17) 

[ ]
11 1

21 2
1 2

1

r

r
r

n nr

b b
b b

b b

 
 

= =  
 
  

B b b b

⋯

⋯
⋯

⋮

⋯

                                 (18) 

1 2diagdk k k nkb b b=   B ⋯                                            (19)                                                           

Then, if there are satisfied the above conditions for 
prescribed set of variables, the control gain is                          

1, , [ 1 1 1 ]T T T
dk k k dk

−= = =K R P k l K l ⋯             (20) 

Remark 1: Since the rows and columns of an n n×  square 
matrix are indexed from 1 to n, the addition modulo 1n +  on 
the set of residues S is considered in the following as 

1( ) 1mod nj h r++ = + , where r is the element of S to which the 
result of the usual sum of integers j and k is congruent modulo 

1n + . The used shorthand symbolical notation is 

(1 )/( ) 1n nj h r↔+ = + . 

Comment 1: As it is seen from Lemma 1, the resulting 
conditions prescribe the Metzlerian structure of  n n

c
×

+∈A ℝ  
but do not guarantee that cA  is Hurwitz matrix [14]. To solve 
the stabilization problem for a strictly Metzlerian system (1), 
(2) with a diagonally stabilizable pair ( , )A B  the following 
theorem is proposed. 
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Theorem 1: [16] The control law (3) stabilizes the linear 
strictly Metzlerian system (1), (2) if for given positive definite 
diagonal matrices  n n×∈Q ℝ ,  r r×∈U ℝ there exist positive 
definite diagonal matrices  , n n

k
×∈P R ℝ such that for 

1,2, 1h n= … − , 1,2,k r= … , 

0T=P P ≻                                                                      (21) 

0T
k k=R R ≻                                                                    (22) 

    

1 1
1

1
1

0

r r
T T T

dk k k dk
k k

r
T

k k
k

= =
−

= −

 
+ − − ∗ ∗ 

 
 − ∗
 
 −
 
 

∑ ∑

∑

AP PA B l l R R l l B

h l R U

P 0 Q

≺                             

(23)   

(1 )
1

( , ) 0
r

n dk k
k

i i ↔
=

−∑A B R ≺                                              (24) 

(1 )/
1

( , ) 0
r

h hT h hT
n n dk k

k

j j h ↔
=

+ −∑T A T P T B T R ≻            (25) 

where T , (1 )/( , ) n nj j h ↔+A , dkB , kb , kR , Tl   are introdu-
ced in (16)-(19) and                                       

0 01 0 0T
k k=   h ⋯ ⋯                                                      (26) 

is the vector with the value 1 on the k -th position. 
When the above conditions hold, the positive control gain 

 r n×∈K ℝ  is given in (9), where 
1, T T

dk k k dk
−= =K R P k l K                                              (27) 

This encompass the design conditions with connection to 
LQ problem defined in Theorem 1. In this viewpoint, the  
condition unifies the design with quadratic constraints and 
feedback full state control for a class of strictly Metzlerian 
linear dynamical systems with performance appraisals of 
infinite time horizon and quadratic costs, focusing perfect 
state-feedback measurements and addressing the benefits of 
feedback in multi-input/multi-output Metzlerian linear dynami-
cal systems. 

Applying the above given positive definite diagonal 
matrices  , n n

k
×∈P R ℝ , 1,2,k r= … , corroborated in theorem  

formulation, different matrix inequalities can be used instead 
of the complex inequality structure (23) to ensure stability in 
Lyapunov sense while, if the set of inequalities is affirmative,  
an asymptotically stable closed-loop system is obtained.  

The simplest applicable matrix inequality which can replace  
inequality (23), but with no constraint on the system state and 
input variables, takes the form 

  
1 1

0
r r

T T T
dk k k dk

k k= =
+ − −∑ ∑AP PA B l l R R l l B ≺                 (28) 

while the control input is generated by the closed-loop control 
policy (10). Evidently,  (28) can be simply derived from (23) 
prescribing the zero matrices  n n×∈Q ℝ and  r r×∈U ℝ . 

III.  ENHANCED CONTROL DESIGN 

The following theorem gives a more general version of the  
design conditions, implying from the slack matrix decoupling 
principle. 

Theorem 2: The control law (3) stabilizes the linear strictly 
Metzlerian system (1), (2) if for given positive definite 
diagonal matrices  n n×∈Q ℝ ,  r r×∈U ℝ and given positive 

 δ ∈ ℝ  there exist positive definite diagonal matrices 
 , , n n

k
×∈P V R ℝ  such that for 1,2, 1h n= … − , 1,2,k r= … , 

0T=P P ≻                                                                      (29) 

0T=V V ≻                                                                      (30) 

0T
k k=R R ≻                                                                    (31) 

1 1

1
1

1
1

2 0

r r
T T T

dk k k dk
k k

r
T

dk k
k

r
T

k k
k

δ δ δ
= =

=
−

= −

 
+ − − ∗ ∗ ∗ 

 
 − + − ∗ ∗
 
 

− ∗ 
 

− 

−

∑ ∑

∑

∑

AP PA B l l R R l l B

V P A B l l R P

h l R 0 U

P 0 0 Q

P
≺                       

(32) 

(1 )
1

( , ) 0
r

n dk k
k

i i ↔
=

−∑A B R ≺                                              (33) 

(1 )/
1

( , ) 0
r

h hT h hT
n n dk k

k

j j h ↔
=

+ −∑T A T P T B T R ≻            (34) 

where T , (1 )/( , ) n nj j h ↔+A , dkB , kb , kR , Tl   are introdu-
ced in (16)-(19) and Tkh in (26). 

When the above conditions hold, the positive control gain 
 r n×∈K ℝ  is given in (9), where 

1, T T
dk k k dk

−= =K R P k l K                                              (35) 

 
Proof: Reflecting the fact that the system (1), (2) is linear, 

the Lyapunov function is chosen in the form 

( ( )) ( ) ( )Tv t t t=q q Sq                                                          (36) 

with  n n×∈S ℝ  taking the diagonal positive definite structure. 
Considering positive definite diagonal matrices  n n×∈Q ℝ , 

 r r×∈U ℝ , the Lyapunov function derivative in the sense of 
the Krasovskii theorem [17]  is predefined as 

( ( )) ( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( )) 0

T T

T T

v t t t t t

t t t t

= +

≤ − + <

q q Sq q Sq

q Qq u Uu

ɺ ɺɺ
                       (37) 

and substituting (10)  it yields 

( ( )) ( ) ( ) ( ) ( ) ( )( ) ( ) 0T T T Tv t t t t t t t= + + + <q q Sq q Sq q Q K UK qɺ ɺɺ                    

(38) 
Writing (4)  with (11) as 

( ) ( ) 0c t t− =A q qɺ                                                              (39) 

then with an arbitrary positive definite diagonal matrix 

 n n×
+∈M ℝ and with a positive scalar  δ +∈ ℝ it yields 

(t) (t) )( ( (t) (t)) 0T T
cδ+ − =q q qM M A qɺɺ                            (40) 

Therefore, adding (36) and its transposition to (34) it is 
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obtained 

 

( (t)) ( ) ( ) ( ) ( )

( )( ) ( )

(t) (t) )( (t) (t))

( (t) (t)) (t) (t )( ) 0

(

T T

T T

T T

T TT
c

c

v t t t t

t t

δ
δ

= +
+ +

++
+

−
− + <

q q Sq q Sq

q Q K UK q

M M A q

A q

q

q qM

q

q M

q

ɺ ɺɺ

ɺ

ɺ

ɺ

ɺ

(41) 

and with 

( ) ( ) ( )T T T
v t t t =  q q qɺ                                                      (42) 

then (41) can be rewritten as 

( ( )) ( ) ( ) 0T
v v v vv t t t= <qq q Tɺ                                                (43) 

where 

  0
2

T
c

v
c

c

T

δ δ
 + + ∗=  

−
+

+ −  

MA A M Q K UK
T

S M MA M
≺                   (44) 

Because of the strictly structure ofcA , the inequality (44) is 
a bilinear inequality, it is necessary to define the 
transformation matrix cT for  transformation (44)  into the 
linear form so that 

[ ] 1diag ,c
−= =T P P P M                                            (45) 

Pre-multiplying from the left side and post-multiplying from 
the right side by cT  then (44) implies 

0
2

T T
c

c

c

δ δ
 + + ∗
 

− + − 

+



A A PQP PK UKP

PSP PPP A

P P
≺                   (46) 

and  using the Schur complement property, it can write 

1

1

2 0
c

c

T
cδ δ

−
−

 ∗ ∗ ∗
 − + − ∗ ∗
 − ∗
 



+

−

A A
V P A P

KP 0 U
P 0 0 Q

P P
P

≺                       (47) 

where a positive definite diagonal matrix  n n×∈V ℝ is denoted 
as follows 

=V PSP                                                                         (48) 
Hence, with (27), (26) and with thecA  structure given in (11), 
it can write 

  

1

1

1

r
T

c k k
k

r
T

k k
k

r
T

dk k
k

=

=

=

= −

= −

= −

∑

∑

∑

A P AP b k P

AP b r

AP B ll R

                                               (49) 

1 1 1

r r r
T T T

k k k k k k
k k k= = =

= = =∑ ∑ ∑KP h k P h r h l R                         (50) 

where 

, ,T T T T
k k k dk k k= = =r k P b B l r l R                                (51) 

and the relations (49), (50) are used to modify (47) as (32).  
Then, combining (32) with (21), (22), (24), (25) concludes the 
proof.                                                                                       ∎ 

Remark 2: Theorem 2 solves the state-feedback control 

problem for linear strictly Metzlerian system (1), (2), 

given by the diagonally stabilizable pair ( , )A B  with 

quadratic constraints represented by the couple of positive 

definite diagonal weighting matrices ( , )Q U  of 

appropriate dimensions. Introducing the symmetric slack 

matrix variable P , the system parameter matrices ( , )A B  
are strictly decoupled in the LMIs (30)-(32) from the 

Lyapunov matrix V , while the matrix V verifying the 

closed-loop stability remains symmetric positive definite 

and diagonal. By this procedure, the control problem is 

parameterized in such LMIs structure, which admits more 

freedom in the controller design for Metzlerian systems 

since except free defining weighting matrices ( , )Q U  there 
is a free tuning parameter δ +∈ℝ . 

Corollary 1:  Defining the transformation matrix pT  as 
follows 

 
1,

n

n
p p p

r

n

−
 
 = = 
  

0 I
I 0T T TI

I

                                   (52) 

and premultiplying the left side and postmultiplying the right 
side, then (47) implies 

1

1

2

0
T T T

cc c

cδ δ
δ

−
−

− − + 
 − +=  −
 − 

+
P V P A 0 0

V P A A A
P

P PK PH
0 KP U

Q

P P
0

0 P 0

≺    (53) 

 The inequality (53) can be factorized as  

1

1

2

0

0

T
c

T T
c

c

c

δ δ
δ

−
−

− − + 
 − +=  
  
 
 

+  −
 

+

− 

P V P A 0 0
V P A 0 0 0H

0 0 0 0
0 0 0

0 0 0 0
0 A A PK P
0 KP U 0
0 P Q

P

0

P

P P
≺

                     (54) 

Setting 0δ = , =V P then, evidently, 

 1

1

0
T T
cc −

−

 
 

= ≤




+
−

 − 

0 0 0 0
0 A A PK P

H
0 KP U 0
0 P 0 Q

P P
                           (55) 

and it is obvious, to be satisfied (55), the following inequality 
has to yield 

 
1

1
0

cc
T

−
−

 ∗ ∗
 − ∗
 −  

+A A
KP U
P 0 Q

P P
≺                                       (56) 

Thus, it can be finally observed using (49)-(51) that (56) 
provides componentwise  interlinking with  (23).  

Note, the enhanced formulation gives substantiation for 
different solutions obtaining in dependency on linear matrix 
inequalities (23) or (30), (32), respectively, when combining 
them with (12)-(15) to construct the control design conditions 
with connection to LQ task for  strictly Metzler linear systems.  
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IV.  ILLUSTRATIVE EXAMPLE 

The strictly Metzlerian system (1), (2) is concretized for the 
system parameters [13] 

3.3800 0.2080 6.7150 5.6760

0.5810 4.2900 2.0500 0.6750

1.0670 4.2730 6.6540 5.8930

0.0480 2.2730 1.3430 2.1040

− 
 − =
 −
 − 

A  

 

0.0400 0.0189

0.0568 0.0203 4 0 1 0
,

0.0114 0.0315 0 0 0 1

0.0114 0.0170

 
 

  = =     
 
 

B C  

Since the algebraic manipulation provides that the eigenva-
lue spectrum of  the strictly Metzler matrixA  is 

{ }( ) 1.9761, 9.4392, 4.4824 1.2499iρ = − − ±A  

such defined Metzler system is unstable. 

From the system parameter expressions the auxiliary design 
frameworks follow that 

[ ](1 4)( , ) diag 3.3800 4.2900 6.6540 2.1040i i ↔ = − − − −A  

[ ](1 4)/4( , 1) diag 0.2080 2.0500 5.8930 0.0480i i ↔+ =A  

[ ](1 4)/4( , 2) diag 6.7150 0.6750 1.0670 2.2730i i ↔+ =A  

[ ](1 4)/4( , 3) diag 5.6760 0.5810 4.2730 1.3430i i ↔+ =A  

[ ]1 diag 0.0400 0.0568 0.0114 0.0114d =B  

[ ]2 diag 0.0189 0.0203 0.0315 0.0170d =B  

while the permutation matrixT of the forth length and the 
vectors 1h , 2h are 

 1 2

0 0 0 1
1 0 0 0

,
0 1 0 0
0 0

,

1

1 0
0 1

0

 
 

=  
   = =   

 


   


h hT  

Theorem 1 gives the possibility to synthesize  state feedback 

gains by solving this diagonal LMI problem. Within defined 

design framework, prescribing the weight matrices 410=Q I , 

20.01=U I  and solving (21)-(25) rewritten for the SeDuMi 

package [18], all LMI conditions of the above theorem are 

satisfied and asymptotical stability of the closed-loop system is 

guaranteed by a stable strictly Metzler matrix cA , if the values 

of the LMI variables are 

[ ]diag 0.2083 0.0142 0.0742 0.0113=P   

[ ]1 0.7011 0.0267 0.8732 0dia 73g .02=R  

[ ]2 0.0555 0.0595 4.8489 0dia 36g .25=R  

This gives, prescribed by (10), (27), the control law matrix 
gainK that 

3.3661 1.8754 11.7690 2.4101

0.2667 4.1775 65.3565 22.4240

 
=  
 

K  

 
Fig. 1: Closed-loop system state response 

 

 
Fig. 2: Closed-loop system output response 

 
Evidently, the control law gain matrix K  is a strictly positi-

ve matrix. 

It can simple show that the solution is the stable Metzler 
matrix cA of the form 

-3.5197 0.0541 5.0103

0.3844 -4.4813 0.0549 0.0829

1.0204 4.1203 -8.8438 5.1602

0.0052 0.0976 -2.51

5.1583

2. 21 8806

c

 
 
 =
 
 
 

A    

such that its eigenvalue spectrum is 

{ }-0.9580 -9.6020 -4.3988 1 1 i7( 56) .cρ = ±A  

Defining the system forced mod by the control policy 

[ ]( ) ( ) ( ), 1.36 0.68Tt t t= − + =u Kq w w     

and setting (0) =q 0 , the simulation results for control of the 
system are shown in Fig. 1 and Fig. 2, where the state variables 
vector ( )tq , as well as the output variables vector ( )ty  are 
positive, when the parameters of the control input are set up as 
mentioned above. Because cA  is stable, then ( )tq , ( )ty  tend 
to constant values as t → ∞ .  

Note, closed loop is asymptotically stable and externally 
positive if cA  is stable Metzler matrix and  m n×

+∈C ℝ  is a 
non-negative matrix. 
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Fig. 3: Closed-loop system state enhanced response 

 
Fig. 4: Closed-loop system output enhanced response 

 

Solving the set of LMIs (29)--(34) with the above prescri-
bed Q , U and the tuning parameter  1.8δ = the result is 

[ ]0.0216 0.0006 0.0125 0di . 5ag 000=P   

[ ]0.1152 0.0037 0.1757 d 0.ia 1g 00 8=V   

[ ]1 0.0906 0.0001 0.1308 0dia 01g .00=R  

[ ]2 0.0002 0.0066 0.8966 0dia 60g .01=R  

In this case the gain K and the matrix cA are such that 

4.1996 0.1699 10.4438 0.1346

0.0104 10.4867 71.6190 32.7143

 
=  
 

K  

   

-3.5482 0.0032 4.9451 5.0530

0.3423 -4.5125 0.0030 0.0033

1.0190 3.9412 -9.0258 4.8623

0.0001 2.0927 0.0061 -2.6620

c

 
 
 =
 
 
 

A    

while the stable eigenvalue spectrum of cA  is 

{ }-1.2896 -9.7062 -4.3764 1 1 i3( 17) .cρ = ±A  

It is evident from the eigenvalues spectrum that the closed-
loop system dynamics is in this case faster. Running under the 
same simulation conditions as are given above, the closed-loop 
system responses are presented in Fig. 3 and Fig 4. 

 
Fig. 5: Closed-loop system state standard response 

 
Fig. 6: Closed-loop system output standard response 

 
 Using the standard algorithms [13], where in the set of  
(21)-(25) is inequality (23) replaced by inequality (28), then  

[ ]0.6618 0.0590 0.1336 0di . 2ag 053=P   

[ ]1 1.2310 0.0903 2.8440 0.0716       di  ag     =R  

[ ]2 0.5664 0.3015 4.2142 1.4121        d   ia  g   =R  

and the closed-loop system parameters are 

1.8601 1.5308 21.2869 1.3463

0.8559 5.1131 31.5423 26.5640

 
=  
 

K  

   

-3.4706 0.0502 5.2680 5.1206

0.4580 -4.4807 0.2008 0.0593

1.0189 4.0948 -7.8881 5.0420

0.0123 2.1686 0.5646 -2.5711

c

 
 
 =
 
 
 

A    

Since the eigenvalue spectrum of cA  is  

{ }-0.3771 -9.0806 -4.4764 1 2 i4( 68) .cρ = ±A  

 it is evident that the closed-loop system dynamics is substan-
tially slower. 

 To compare all responses in terms of steady-state  
variable values, the setting point vector of the control policy in 
simulation is changed as [ ]0.4 0.2T =w . The closed-loop 
system responses are presented in Fig. 5 and Fig 6. 
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Note, as can be seen [16], [19], the direct use of the 
principle of static decoupling [19] can lead to that the closed-
loop system being not internally positive. Since this means that 
not for every non-negative initial system state vector the output 
of the system will be positive, when setting the operating point 
of the system in the simulations, the principle of static 
decoupling was not used. 

V. CONCLUDING REMARKS 

The paper is concentrated specifically on effective design of 
the full state feedback control for strictly Metzlerian continu-
ous-time systems, to accomplish that the closed-loop system 
matrix be strictly Metzler and Hurwitz and the control gain be 
a positive matrix. 

The principle combines the algebraic constraints, implying 
from the predefined closed-loop system strictly Metzler matrix 
structure, and defined as a basic set of LMIs with an additive 
stabilizing matrix inequality, containing moreover the 
prescribed state and input signal amplitude quadratic con-
strains, to guarantee closed-loop system asymptotic stability 
and dynamics. 

Whilst a solution can be obtained only via positive definite 
and diagonal matrix variables entering this set of inequalities, 
progress is made in incorporating an  LMI structure to realize 
the diagonal stabilizability of strictly Metzlerian linear conti-
nuous-time systems. As it is illustrated by the numerical 
example, hopefully of interest to researchers, the proposed 
fulfilment provides numerically effective computational 
frameworks with potential adaptation to not strictly Metzlerian 
systems.  

Many problems concerning the non unique solutions, such 
as design of the non-negative gain matrix for not strictly 
Metzlerian linear systems, or for discrete-time  not strictly 
positive linear systems, are still open. These problems are 
challenging and interesting research works in the future, while 
the proposed LMI structure variant seems promising in further 
aspects to be subjects to future work. 
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