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LQ Problem in Stabilization of Linear
Metzlerian Continuous-time Systems

D. Krokavec and A. Filasova

represented by state-space equations, the synthesis of

Abstract—The paper present a consistent set of linear matristabilizing state-feedback controllers, guaranteeing the closed-
inequalities which guaranties asymptotic stability of the closed-lodpop system is asymptotically stable and internally positive, is
system, warranties strictly Metzlerian system structure, and adj“%_@nditionally supported by linear programming to meet the

the state and output variables coincident with prescribed quadr ] e
limits. To realize with a positive control law gain, the diagon:ﬁ%sed loop system positive structure [11], [12]. In order to

stabilizability of strictly Metzlerian linear continuous-time systems i§€duce the number of constraints entering the solution in linear
approved, and the related closed-form expression of design corf0gramming methods, an alternative synthesis procedure with
tions is provided. The results are illustrated using a particular L@ proposed in [13], where the system parameter boundaries
problem, for which numerical examples are given are defined by linear matrix inequalities (LMI), if the system
is strictly Metzlerian. Because a solution of such defined base
KeyV\{ords—asymptotic_ stability, linear ‘matrix inequalities, linearget of LMIs only assures that the closed-loop system matrix is
quac‘ir.atlc. control, Metzlerian continuous-time systems, state feedb%ﬁhctly Metzler, the design conditions are complemented by
stabilization. another LMI that imposes a stable asymptotic solution. Since
the applied LMI variables are of diagonal matrix structure, it

- o . can be refereed about diagonal stabilizability of the strictly
Positive systems indicate the processes whose Var'ablkﬁétzlerian continuous-time linear systems

represent quantities that do not have meaning unless they a'onstraining the class of controller matrix gains to be

nonnegative [1]. Since, in the relevant continuous-time stat§agitive, it does not alleviate the complexity of the solutions
space description, the system matrix of a positive systemgig o strictly Metzlerian systems. Proceeding along the same
Metzler, theory of Metzler matrices is naturally applied to th'ﬁnes, and pursuing the formal system analogy, some appli-

kind of dynamical systems [2]. Additionally limited in the way, e extensions of the above formulations for strictly positive

that the system input and output matrices are at |€qfcrete-time linear systems can be found in [14], [15].
nonnegative matrices [3], system stabilization means SmCtlyAnaIyzing the challenging problem of state-feedback

defined task to design a positive gain matrix of control law Sqapjjization of strictly Metzlerian linear continuous-time
that the closed-loop system matrix is Metzler and Hurwitz [4Lystems the main motivation of this paper are design
Therefore, most of techniques applicable to ordinary line@pitions formulated for infinite-time horizon control with
systems can not be straightly nominated to positive lineghe quadratic cost functions. Since, at defined constraints on
systems [5], [6]. Mainly the books [7], [8] treat a considerablgements of a strictly Metzlerian system matrix structure, the
number of the approaches to positive system analysis, §ady cannot be formulated using a Riccati equation form, the
include illustrative algorithms for many specific tasks, bufyayices of cost function are used to extend that one LMI,
there still remains a wide variety of related problemgich refiects stability condition in overall completion of the
(controllability, observability, speed of response, robustnessyys set in design conditionghe configuration chosen corres-

which need to be solv.ed and addressed to Metzlerian “.n%%rndsa way exploiting the minimizing of the quadratic cost
systems. A more detailed treatments of problems are giveiiarion subject to a closed-loop stability constraifte t

e.g. in [9], [10]. . ~ framework used is standard and convenient because other additive
The trend in synthesis of feedback control of Metzleriagonstraints may be included into design formulation.

systems tends to simplify and disambiguate the strictly definedysed notations are conventional so that, X' denote
design conditions. Supposing that the Metzlerian SYStemStliénspose of the vectoX , and matrix X , respectively, x, ,

X, indicate a nonnegative vector and a nonnegative matrix,
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II. LINEAR CONTINUOUS-TIME POSITIVE SYSTEMS Lemmal: [15] Within the basic notations as above and
To define the system positive structures, and to extend th@RPlying the vector input variable
formal stabilizability properties, it is preferred in the follo- le
wing the state-space system description defined in the standargt) = -Kq(t) =-| @ |q(t) (10)
way as o
G(t) = Aq(t) + Bu(t) (1) , ’ ,
() = Cq(t) (Zgn the strictly Metzler MIMO system (1), (2), while the
y ositive gain matrix KO R"™is prescribed to force the

where the equations (1), (2) belong to the Metzlerian class @bsed-loop system matrix

positive systems ifqt) 0 RY, u®t)d R., yt)d RY (all r

variables are nonnegative) for at 0. A =A-BK = A—Zbkkl (11)
In the general case, the matAx] R™"is restricted to k=1

being strictly Metzler (its diagonal elements are negative apgap, the matrixA, is Metzler, if for given non-negative matrix
its off-diagonal elements are positive) and the matriceéD R™ and a strictly Metzler matrixAl] R™" there exist
BO RY, cO R™" are nonnegative (all its entries are - o

. .. . . nxn
nonnegative and at least one is positive). Satisfying the%osmve definite diagonal matricei3, R [ R, such that for

e
restrictions, the system (1), (2) is referred as a linear strict =12..n-1 k=12...r

Yy

Metzlerian system. Note, a strictly Metzler matrix is stable ifit P =P' =0 (12)
is Hurwitz. R =Rl ~0 (13)
Terminating the class of admissible controllers to be linear r
and considering, for simplicity, a SISO linear strictly A(,i)q.p —Z:BdkRk <0 (14)
Metzlerian system (1), (2) controlled by the dimensionally k=1
compatible control, constrained to use a linear function of the r
state measurements, and a strictly positive real vdctstch TNAG, |+ Mo nymnT "Tp —ZTthkT "R, ~0 (15)
that k=1
u(t) = —kTq(t), KO R (3)subject to the notations
00---01
then the state-space enrollment of the closed-loop system is 10.-00 4
given as T= .. , T=T (16)
G(t) = (A-bk")q(t) = Aq(t) 4) 00--10
y() = Ca(t) ®) A(j,j+h) @-n)in = diag[al,hh ' 8popn Qpoheg anh:|
where (17)
AT
A, = A-Dbk (6) by, - by
has to be a strictly Metzler matrix. Consequently, the closed- —[b b. b ]: by, -+ by (18)
loop system matrix structure (5) prescribes the algebraic 12 r :
inequalities corresponding to the strictly Metzler mathx as by - by
follows ;
_ By =diag by by - by (19)
ag =a; bk <0 foralli=1,2,.. n (7) ) T N
o o Then, if there are satisfied the above conditions for
a5 =a&; —hk; >0 foralli,j=12,.. n,i# ] (8) prescribed set of variables, the control gain is
where the detailed formats of the Metzler system matrix Ky = R.P™, ki =1TKy, I"=[11-- 1] (20)
parameters, as well as the state controller gain vector structure _
are Remark 1. Since the rows and columns of axn square
b K matrix are indexed from 1 to, the addition modulsm+1 on
ap a1 - Ap 1 1

A A b K the set of residuesS is considered in the following as

A= 72 T2z EA ) p=| T2 k=] 2 9)  (j +h)oqnes =T +1, wherer is the element o to which the

’ ' result of the usual sum of integ¢randk is congruent modulo

n+l. The wused shorthand symbolical notation is
Although the structure of the state feedback control law (C-i)j +h)(1ﬁ nyim =7 +1.

is simple, it should be noted that the positiveness constraint forcomment 1: As it is seen fronLemma 1, the resulting

the solvability of the gaink is extended by the set a  conditions prescribe the Metzlerian structure &f(] RT™"

Ay Qpp " 8pp bn kn

scalar inequalities (6), (7). but do not guarantee that. is Hurwitz matrix [14]. To solve
Generalizing for MIMO (multiple input, multiple output) the stabilization problem for a strictly Metzlerian system (1),
systems, the following lema vields. (2) with a diagonally stabilizable paifA,B) the following

theorem is proposed.
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Theorem 1: [16] The control law (3) stabilizes the linear [ll. ENHANCED CONTROL DESIGN
gtrictly Metzlerian system (1), (2) if for given positive definite  The following theorem gives a more general version of the
diagonal matricesQO R™",U 0 R""there exist positive design conditions, implying from the slack matrix decoupling
definite diagonal matrices P, R, 0 R™"such that for principle.

h=12,.n=1k=12,.r, Theorem 2: The control law (3) stabilizes the linear strictly

P=P" -0 (2Wetzlerian system (1), (2) if for given positive definite
R =Rl ~0 (2iagonal matricesQO R™",U0 R and given positive
i T J T r T ] o0 R there exist positive definite diagonal matrices
AP+PA" =3 Byll 'R-Y RllI'Bg O O PV,R .0 R™ such that foh=1,2,..n-1, k=1,2,...r,
k=1 k=1 T
r 3 P=P' ~0 (29)
T 1
éhk' Ry U E =0 Lyt o (30)
P o Q™ R =Rl ~0 (31)
_ ) } ;
- " (23) AP+PAT -3 BylI"R-YRII™By, O O O
k=1 k=1
r r
A i) my = Y BaRc < 0 (24) V-P+3AP-3¥ByllI'R,  20P O 0O | g
k=1 ; k=1
i o S hd TR, 0o utD
T AL T+ nymT P_kZ:;‘T BaT R ~0 (25) i k=1 p 0 0 —Q_l_
where T, A(j, j +h)q.mm. Bac» B R, I are introdu- (32)
ced in (16)-(19) and o r
A1) m = Y BaRc < 0 (33)
hg =[0-+- 0% 0--- O] (26) pe=}
is the vector with the value 1 on tlketh position. hono - o h W
When the above conditions hold, the positive control gain TPAGL T+ T P_ZT BaT™ R -0 (34)
KO R is given in (9), where o k=1 T _
o where T, A(j,j +N)g_.nyn: Bac: b, Re. |7 are introdu-
Ka =RP ke =17 Ky (27)ced in (16)-(19) andy in (26).

This encompass the design conditions with connection to\When the above conditions hold, the positive control gain
LQ problem defined in Theorem 1. In this viewpoint, thek D & is given in (9), where
condition unifies the design with quadratic constraints andK, =R P™, ki =1TK, (35)
feedback full state control for a class of strictly Metzlerian
linear dynamical systems with performance appraisals of proof: Reflecting the fact that the system (1), (2) is linear,

infinite time horizon and quadratic costs, focusing perfegf,o Lyapunov function is chosen in the form

state-feedback measurements and addressing the benefits OE o) = o (1) Sa(t 36
feedback in multi-input/multi-output Metzlerian linear dynami- _V qt) =g x( )Sq_() ) N . (36)
cal systems. with SO R™" taking the diagonal positive definite structure.

Applying the above given positive definite diagonal Consrlxcilerlng positive definite diagonal matric@s] R™",
matricesP, R, 0 ™", k=1,2,...r, corroborated in theorem uoRrR™, th_g Lyapunov fuqctlon de_nvatlve in the sense of
formulation, different matrix inequalities can be used insteatge Krasovskii theorem [17] is predefined as
of the complex inequality structure (23) to ensure stability in v(a) =4" ©Sa(t) +a’ ©)SA(t) (37)
Lyapunov sense while, if the set of inequalities is affirmative, < —(q" (t)Qq(t) +u' (t)Uu(t)) <0
an asymptotically stable closed-loop system is obtained. and substituting (10) it yields

The simplest applicable matrix inequality which can replace v(q(t) =4 (©'Sa®) +q" (1)Sqt) +q" (t)(Q+KTUK)q(t) <0
inequality (23), but with no constraint on the system state and (38)

input variables, takes the form Writing (4) with (11) as

AP+PAT—inkIITRk—iRkIITBdK<O (28) Aq(t)-q(t) =0 (39)

k=1 k=1 . . . - : .
hile th N . d by the closed.| thlen with an arbitrary positive definite diagonal matrix
while the control input is generated by the closed-loop contrcivl 0 poo : - L
R d with t lad O R, it yield
policy (10). Evidently, (28) can be simply derived from (23) N * anT With a positive sca + [ YIelds
prescribing the zero matric€3 R™"andu O R™" . (@ (OM +g’ ()oM)(Aq®) —a(t)) =0 (40)

Therefore, adding (36) and its transposition to (34) it is
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obtained Remark 2: Theorem 2 solves the state-feedback control
via))=d" (1)Sa(t) + d' (t) St problem for linear strictly Metzlerian system (1), (2),
(@) qT OSq(t) Tq (1) Sdt) given by the diagonally stabilizable pair (A,B) with
+q ()(Q+K UK ) (t) (41) quadratic constraints represented by the couple of positive

+(qT (OM +qT (M)A cq(t) -q (1)) definite diagonal weighting matrices (Q,U) of
appropriate dimensions. Introducing the symmetric slack

+(qT (t)A-cr _qT ®)(Mq(t) +oMq(t)) <0 matrix variable P, the system parameter matrices (A,B)

and with are strictly decoupled in the LMIs (30)-(32) from the
T - T Lyapunov matrix V , while the matrix V verifying the

4 () :[q ® g (t)J (42)closed-loop stability remains symmetric positive definite
then (41) can be rewritten as and diagonal. By this procedure, the control problem is
. T parameterized in such LMIs structure, which admits more
v, (M) =a, OT,q,({) <0 (43)freedom in the controller design for Metzlerian systems
where since except free defining weighting matrices (Q,U) there

[MA +ATM +Q+KTUK O is a free tuning paramete&r0 R , .

T S—M +3MA, _o5M (44) f Corollary 1: Defining the transformation matriq, as
ollows
Because of the strictly structure &f, the inequality (44) is o1,
a bilinear inequality, it is necessary to define the T = 1,0 Ti=7 52
transformation matrixT,for transformation (44) into the p I, TP p (52)
linear form so that I'n
T, :diag[P p] ., P=M™ (45)and premultiplying the left side and postmultiplying the right

C ) o side, then (47) implies
Pre-multiplying from the left side and post-multiplying from
-20P V-P+JAP O 0

the right side byT, then (44) implies - V—P+5PA§ AP+P Zr KT p

AP+PAT +PQP+PKTUKP [ 0 kp Ut o |70 63
<0 (46) -1
PSP - P +JA.P -20P 0 P 0 Q
and using the Schur complement property, it can write The inequality (53) can be factorized as

APTPAL O D O vorroeal 0" 00
V-P+0A.P -20P [ O <0 47 H = o e 0 00
KP 0o Ut O (47) 0 0 00
_1 =
P 0 0 Q 0 o 0 0 (54)
0 ALP+PA. PK P
where a positive definite diagonal matkixd R™" is denoted 0 A ¢ -1 <0
0 KP -U 0
as follows 0 =) 0 -0 -1
vV =pPsP (48gtting =0,V = P then, evidently,
Hence, with (27), (26) and with t# structure given in (11),
it can write 0 0 T OT 0
, H = 0 A.P+PA; PK . P <0 (55)
P=AP-Y bkl P o Kp U™ 0 |7
A Z‘bk “ 0o P 0o Q°
= AP ‘Zr:bkrT (49 and it is obvious, to be satisfied (55), the following inequality
- . has to yield
k=1
=AP-Y Byll'R, AP+PAl O O
= K -U™T 0O |<0 (56)
r ‘ r P 0 Q7
KP=) hkiP=>) hr/ =) hI"R 50
; KTk ; Kk ; KoK (50) Thus, it can be finally observed using (49)-(51) that (56)

provides componentwise interlinking with (23).
Note, the enhanced formulation gives substantiation for
re =kIP, b =Bgl, rl =I"R, (51) different solutions obtaining in dependency on linear matrix

and the relations (49), (50) are used to modify (47) as (S%Eequalltles (23) or (30), (32), respectively, when combining

Then, combining (32) with (21), (22), (24), (25) concludes raiem with (1_2)-(15) to construct the control deggn conditions
proof . with connection to LQ task for strictly Metzler linear systems.

where
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IV. ILLUSTRATIVE EXAMPLE »

The strictly Metzlerian system (1), (2) is concretized for the T ' [ —a,0
system parameters [13] otz - :3 1
[-3.3800 0.2080 6.7150 5.67 Gl —.0),
A= 0.5810 -4.2900 2.0500 0.67 ol
1.0670 4.2730 - 6.6540 5.89 o

| 0.0480 2.2730 1.3430- 2.10 ‘

[0.0400 0.018
0.0568 0.020 40 1 l—
, C= 0.02 V‘
0.0114 0.031 0 0 0 [
0.0114 0.017 e & 2 3 % 5 8 7 8 8
.- . . : . . ts)

Since the algebraic manlpulanon prowd_es that the eigenva- Fig. 1: Closed-loop system state response
lue spectrum of the strictly Metzler matwx is

P(A) ={1.9761,— 9.4392; 4.4824 1.24}31

0.6

such defined Metzler system is unstable. /

From the system parameter expressions the auxiliary desig! 085t
frameworks follow that .

04

A(i,)q.. 4 = diag] - 3.3800- 4.2908 6.6540 2.1( |

—¥, O

—Y, ] |

Ai,i +1)y.. 44 = diad 0.2080 2.0500 5.8930 0.04 Zoa
A(i,i +2).. 44 = diad 6.7150 0.6750 1.0670 2.2%: 0zl
Ai,i +3),.. 44 = diag 5.6760 0.5810 4.2730 1.34: ol

By, = diag[ 0.0400 0.0568 0.0114 0.01: ——
. DD i 2 3 4 5 5] 7 8 9 10
By, = diag[ 0.0189 0.0203 0.0315 0.0

t[s]
. . Fig. 2: Closed-loop system output response
while the permutation matrik of the forth length and the
vectorsh,, h,are

Evidently, the control law gain matriK is a strictly positi-

0001 ve matrix.
_/1000 _|1 _|0 It can simple show that the solution is the stable Metzler
T o » )
8 3 (:E g 0 1 matrix A, of the form
-3.5197 0.0541 5.01035.1583
Theorem 1 gives the possibility to synthesize state feedback 0.3844 -4.4813 0.0549 0.08
gains by solving this diagonal LMI problem. Within defined Ac = 1.0204 4.1203 -8.8438 5.16
design framework, prescribing the weight matri€gs 10l 4, 0'0052 5 i806 0 6976 2 %

U =0.01, and solving (21)-(25) rewritten for the SeDuMiSuch that its eigenvalue Spectrum is
package [18], all LMI conditions of the above theorem are g P _
satisfied and asymptotical stability of the closed-loop system is P(A) :{'0-9580 -9.6020 -4.3988 . B/ '}

guaranteed by a stable strictly Metzler mat#ix, if the values ~ Defining the system forced mod by the control policy

of the LMI variables are u(t) = -Kq(t) +w(t), w' =[1.36 0.6§
P = diag| 0.2083 0.0142 0.0742 0.01. and settingq(0) =0, the simulation results for control of the
R = diag[O.?Oll 0.0267 0.8732.(02@ system are shown in Fig. 1 and Fig. 2, yvhere the state variables
_ vector q(t), as well as the output variables vectpft) are
R, = diag[0.0555 0.0595 4.8489.2536| positive, when the parameters of the control input are set up as

This gives, prescribed by (10), (27), the control law matrignentioned above. Becausk, is stable, therg(t), y(t) tend
to constant values ds— o .

gainK that
3.3661 1.8754 11.7690 2.41 Note, closed loop is asymptotically stable and externally
:{0.2667 41775 65.3565 22.42ﬁ positive if A is stable Metzler matrix ar@D R is a
non-negative matrix.
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0.06 | oosl |
= | |
Z 005 Soosp |
]
/
0.04 1| 004 |
| :
0.03 o0t
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t[s]

Fig. 3: Closed-loop system state enhanced response

t[s]

Fig. 5: Closed-loop system state standard response

AR 0.45
—0 e
S N e %
DEY — 0 04 7 — ¥, (4
\II / — ¥, [t}
QAT 03sr
| /
|
Beepp 03
[
s Bdh 025
= | = [
H - I
02 | o
015 | 015 [ |
| |
o1| 04
|
a5 o
oV [ I -
! I
o 1 2 <) 4 5 [i 7 8 9 10 o =
0 1 2 3 P 5 6 7 8 g 10

t[s]
Fig. 6: Closed-loop system output standard response

t[s]
Fig. 4: Closed-loop system output enhanced response

Solving the set of LMIs (29)--(34) with the above prescri- USing the standard algorithms [13], where in the set of
bed Q, U and the tuning parameted =1.8the result is (21)-(25) is inequality (23) replaced by inequality (28), then

P =diag[0.0216 0.0006 0.0125.00C6] P =diag[0.6618 0.0590 0.1336.05]

V =diag[0.1152 0.0037 0.175D001§ R, =diag[1.2310 0.0903 2.8440 0.07]L6
R, = diag[0.0906 0.0001 0.1308.@00]] R, = diag[0.5664 0.3015 4.2142 1.4121
R, = diag[0.000Z 0.0066 0.8966.(11)160] and the closed-loop system parameters are

In this case the gaifk and the matriA, are such that K= 1.8601 1.5308 21.2869  1.34
|0.8559 5.1131 31.5423 26.56

« [41996 0.1699 10.4438 0.3 -
~10.0104 10.4867 71.6190 32.71 -3.4706 0.0502 '5.2680 5.12
- 0.4580 -4.4807 0.2008 0.05
135482 0.0032 4.9451 5.05 A =
1.0189 4.0948 -7.8881 5.04
0.3423 -4.5125 0.0030 0.00
A = 0.0123 2.1686 0.5646 -2.57
1.0190 3.9412 -9.0258 4.86 Sioe e e t _
0.0001 2.0927 0.0061 -2.66 ince the eigenvalue spectrumAf is
- P(A,) ={-0.3771 -9.0806 -4.4764 . 1634i}

while the stable eigenvalue spectrumAyf is
it is evident that the closed-loop system dynamics is substan-

P(A) ={-1.2896 -9.7062 -4.376¢4 . 11T3i} tially slower.

It is evident from the eigenvalues spectrum that the closed- To compare all responses in terms of steady-state
loop system dynamics is in this case faster. Running under teriable values, the setting point vector of the control policy in
same simulation conditions as are given above, the closed-l®imulation is changed asv' = [0.4 O.q . The closed-loop
system responses are presented in Fig. 3 and Fig 4. system responses are presented in Fig. 5 and Fig 6.
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Note, as can be seen [16], [19], the direct use of tii J. E. Feng, J. Lam, P. Li, and Z. Shu, “Decay rate constrained
principle of static decoupling [19] can lead to that the closed-

stabilization of positive systems using static output feedbdck,'J.
Robust and Nonlinear Controal, vol. 21, no. 1, 2011, pp. 44-54

loop system being not internally positive. Since this means thad] 3. shen and J Lam, "On static output-feedback stabilization for muilti-
not for every non-negative initial system state vector the output input multi-output positive systemsfht. J. Robust and Nonlinear

of the system will be positive, when setting the operating poiEt | Control, vol. 25, no. 16, 2015, pp. 3154-3162.

of the system in the simulations, the principle of stati

M. Ait Rami and F. Tadeo, "Linear programming approach to impose
positiveness in closed-loop and estimated statesPrat. 16th Int.

decoupling was not used. Symp. Mathematical Theory of Networks and Systems, Kyoto, Japan,

the full state feedback control for strictly Metzlerian continu*

2006, pp. 2470-2477.
[12] M. Ait Rami and F. Tadeo, "Controller synthesis for positive linear

V. CONCLUDING REMARKS systems with bounded control$EEE Trans. Circuits and Systems, vol.

The paper is concentrated specifically on effective design of 54, no. 2, 2007, pp. 151-155.
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Metzlerian systems control design,Mathematical Problems in

ous-time systems, to accomplish that the closed-loop system gngineering, vol. 2018, ID 9590253, 14 p.
matrix be strictly Metzler and Hurwitz and the control gain bE&4] D. Krokavec and A. Filasova, "On control of discrete-time LTI positive

a positive matrix.
The principle combines the algebraic constraints, implyinds) p. krokavec and A. Filasova, "Stabilization of discrete-time LTI

systems,"Applied Mathematical Sciences, vol. 11, no. 50, 2017, pp.
2459-2476.

from the predefined closed-loop system strictly Metzler matrix positive systems,Archives of Control Sciences, vol. 27, no. 4, 2017,
structure, and defined as a basic set of LMIs with an additiye PP- 575-594.

stabilizing matrix inequality, containing moreover

h 16] D. Krokavec and A. Filasova, "Stabilization of linear Metzlerian
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