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Abstract—The method of Green’s functions for layered magneto-

dielectric structures with arbitrary extraneous electric and magnetic 

currents is described. Application peculiarities of the method for 

Cartesian, cylindrical and spherical coordinate system are under 

consideration. The equivalent circuit approach is applied for layered 

structures description. Transmitting matrices are used for wave 

propagation modelling in each layer and through boundaries between 

layers. It is shown that the boundary transmitting matrix for flat and 

spherical structures is equal to the unit matrix. Different kinds of 

loads are used for region boundaries modelling. Suggested method 

with transmitting matrices allows one to develop universal algorithms 

with common modules for wave propagation, antennas radiation and 

scattering problems associated with flat, cylindrical and spherical 

structures of any number of layers, arbitrary permittivity and 

permeability. As an example, the problem of minimizing the 

reflection from a perfectly conducting surface with a two-layer cover 

using the Green’s functions method is considered.  

 

Keywords—Green’s function, radiation, scattering, layered 

structures, reflection, electromagnetic waves.  

I. INTRODUCTION 

OMPUTER simulation software such as the Ansys HFSS, 

FEKO, CST Microwave Studio is widely used in 

microwaves and radio engineering electromagnetic design. 

Modern computers can carry out complicated electrodynamic 

radiation, propagation and scattering problems [1]–[4]. 

Algorithms of modern software used for electromagnetic 

modeling are based on splitting the analyzed objects into 

elementary elements and applying numerical methods such as 

the finite element method and finite difference method. 

However, use of the numerical algorithms embedded in most 

software products leads to significant processing time and 

resource costs. Calculations are greatly complicated in the 

presence of layered media with different electro-physical 
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parameters. As an example of such kind of problems the 

Luneburg lens radiation calculation and the synthesis of non-

reflecting coatings can be mentioned [5], [6]. 

Application of algorithms based on analytical approaches 

allows one to speed up electromagnetic calculations 

essentially. This is particularly true if optimization procedure 

of geometrical and electrical properties of microwave devices 

and electro-physical properties of applied materials is used. 

The limitation of the analytical methods is the requirement of 

consistency of analyzed objects shape with coordinate systems. 

In spite of this fact the mentioned approach may be 

successfully used for a lot of radiation, excitation, propagation 

and scattering problems solving as the first step before 

electromagnetic simulation. For example, it is fruitful for 

nonreflecting covers design and optimization. Before 

optimizing the complex shape cover, the flat structure can be 

optimized. The advantage of analytical methods is the 

understanding of the observed physical processes.  

In this paper, we consider the application of the Green's 

function method for solving electromagnetic excitation, 

diffraction and radiation problems. Our way of solution allows 

us to solve electromagnetic problems in different coordinate 

systems using the same approach and similar algorithms. To 

describe the observed processes, the same models are used in 

electromagnetic modeling. The proposed approach allows one 

to create fast algorithms for electrodynamic problems solving 

in particular with areas containing layered magneto-dielectrics. 

The equivalent electrical circuit approach is applied for 

layered structure modelling. Transmitting matrixes are used for 

wave propagation through layers and boundaries between 

layers’ calculation. Different kinds of loads are used for region 

boundaries modelling. Green’s functions for Cartesian, 

cylindrical, and spherical regions are shown and compared. 

Suggested method allows one to produce universal algorithms 

with common modules for electromagnetic wave propagation, 

antennas radiation and scattering problems associated with 

flat, cylindrical and spherical structures of any number of 

layers with arbitrary permittivity and permeability. Materials 

with negative refraction index (metamaterials) may be 

considered as well. 
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II. GREEN’S FUNCTIONS FOR CARTESIAN, CYLINDRICAL AND 

SPHERICAL LAYERED STRUCTURES 

Almost all radiation and scattering problems can be solved 

using elementary radiation sources, such as an electric dipole, 

a magnetic dipole, and a Huygens element [3]. The latter is a 

combination of electric and magnetic dipoles. Thus, only two 

types of extraneous sources can be considered as an exciter of 

electromagnetic fields. Radiated and scattered electromagnetic 

fields from any antenna or irradiated object can be obtained by 

integrating electric and magnetic currents distributed on the 

antenna or object surface.  

An electromagnetic field in any point of view defined by 

vector r  generated by extraneous electric ( )J r  and/or 

magnetic ( )M r  source current density located in the point of 

the source region V   defined by vector r  is calculated as 

follows 

11 12( ) ( , ) ( )+ ( , ) ( )

V'

dv'      
 E r r r J r r r M r ,  (1) 

21 22( ) ( , ) ( )+ ( , ) ( )

V'

dv'      
 H r r r J r r r M r ,  (2) 

where 11( , ) r r , 22 ( , ) r r , 12 ( , ) r r , 21( , ) r r  are the 

electric, magnetic and “transfer” Green’s function, respectively 

[7]. Taking into account the vector nature of the 

electromagnetic field each tensor in (1), (2) is a matrix of the 

3rd order. The type of the functions significantly depends on 

the used coordinate system. The most applicable are Cartesian, 

cylindrical and spherical coordinate systems. The solution will 

be much easier if the boundaries between layers are 

perpendicular to only one of the coordinates (Fig.1). For the 

Cartesian system all axes are equal, but as such we use the axis 

z . For cylindrical and spherical regions, the boundaries are 

perpendicular to the radial coordinate. The environment 

remains homogeneous along the other two coordinates. The 

Fourier type decomposition is used for these cross sections. 

 

 
Fig. 1 The layered structure in Cartesian, cylindrical and spherical 

coordinate systems 

 

The part of the Green's function which describes the 

inhomogeneous medium along the chosen coordinate axis is 

denoted as characteristic part. The characteristic part is found 

from the differential equation solution taking into account the 

boundary conditions. The problem is simplified by using the 

representation of electromagnetic field as the combination of 

electric and magnetic waves. In this case, two modal 

transmission lines describe an inhomogeneous medium (Fig.2). 

Electric and magnetic spectral field components are equated to 

the modal voltages and currents in the equivalent E- and H-

lines [7]. This is a consequence of the fact that the Maxwell 

equations in the decomposition of E  and H  waves become 

similar to the telegrapher's equations with currents and 

voltages in the long line model.  

At the stage of the formulas derivation, various boundary 

conditions are taken into account. There are several types of 

region boundaries as follows: unlimited space, a perfect or real 

conductors placed in sections 1    and N   , as well as a 

magneto-dielectric medium for 0   in cylindrical and 

spherical coordinate system, if there is no conductive boundary 

in the direction of decreasing the   coordinate. The 

generalized coordinate   corresponds to the coordinate z ,   

or r  in Cartesian, cylindrical, and spherical coordinate system, 

respectively. 

Fig. 2. The layered structure and the equivalent circuit model with 

magnetic (upper) and electric (lower) lines 

 

Layer  iC  and boundary  i  transfer matrices are used to 

calculate modal voltages and currents in the presence of 

extraneous sources (Fig.3). 

 

 
 

Fig.3 The layer and boundary transfer matrices for the layered 

structure mode 

 

Boundary conditions at the ends of the interval are modeled 

by terminal loads. The directional resistance TZ  and 

conductivity TY  as well as resistance TZ  and conductivity 

TY  are used as inner and outer terminal loads, respectively. 

The expressions for terminal loads are shown in Table I and 

Table II. It should be noted that the value of the wave 

resistances iZ  and admittances iY  as well as propagation 

constants i  in equivalent E- and H-lines depend on the radial 

coordinate in the cylindrical and spherical coordinate systems 

and remain constant in the Cartesian coordinate system 

(Table III). 
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TABLE I.  THE EXPRESSIONS FOR OUTER TERMINAL LOADS 

Region boundary Outer Terminal Loads T T,Z Y
 

  
Free space in 
Cartesian system 
 

εN μN 

z 
zN 

εN+1 

μN+1 

 

0NY Y+ =


 

0NZ Z+ =


 

Layered flat screen 
 

εN μN 

z 
zN 

εN+1 

μN+1 

dN 

 

1
0 1 1

1

cot ,N
N N N

N

Y jY d
k

+ +
+ +

+

γ
= − γ



2 2 2
1 1N Nk+ +γ = − ξ − η  

1
0 1 1

1

tan ,N
N N N

N

Z jZ d
k

+ +
+ +

+

γ
= γ



2 2 2
1 1N Nk+ +γ = − ξ − η  

Free space around 
the cylinder 
 

εN 
μN 

ρ 

ρN 

εN+1 

μN+1 

 

( )
( )

(2) '2
1 2 20

0 1 0(2)
1 1

,m N NN
N N

N m N N

HkY jY k h
H

+ +
+

+ +

γ ρρ
= γ = −

γ γ ρ



 

( )
( )

(2) '2
1 2 20

0 1 0(2)
1 1

,m N NN
N N

N m N N

HkZ jZ k h
H

+ +
+

+ +

γ ρρ
= γ = −

γ γ ρ



 

Inner surface of a 
PEC cylinder with 
a layer 
 

εN 
μN 

ρ 

ρN 

εN+1 

μN+1 

ρN+1 

 

( )
( )

2 1 1 1 11
0 0

1 2 1 1 1

,
,

m N N N NN
N N

N m N N N N

C
Y jY k

S
+ + + ++

+ + + +

γ ρ γ ρ′ε
= ρ

γ γ ρ γ ρ

  

( )
( )

2 1 1 1 11
0 0

1 2 1 1 1

,
,

m N N N NN
N N

N m N N N N

S
Z jZ k

C
+ + + ++

+ + + +

γ ρ γ ρ′µ
= ρ

γ γ ρ γ ρ

  

Inner surface of an 
impedance 
cylinder 

 

εN 
μN 

ρ 

ρN 

σ 

 

( )
0

0

12
2N N

j
Y k− −σ

= ρ
ωµ



 

( )0
0 1

2N NZ k j− ωµ
= ρ +

σ



 

Free space in 
spherical system 
 

εN 
μN 

r 

rN 

εN+1 

μN+1 

 

( )
( )

(2) '
0

0 (2)
0

m N
N

m N

h k r
Y jY

h k r
+ =


 

( )
( )

(2) '
0

0 (2)
0

m N
N

m N

h k r
Z jZ

h k r
+ =


 

 
In the Table I and Table II the index N is the number of the 

last layer, (2)
mH , (2) '

mH , mJ , mJ ′ , (2)
mh , (2)

mh′ , mj  and mj′  are 
cylindrical and spherical Hankel and Bessel functions and its 
derivative, respectively. The functions 1mC , 2mS , 1mS , 2mC , 

ns , ns′ , nc  and nc′  are the combination of the cylindrical and 
spherical functions of the 1-st and 2-nd kind, respectively [8]. 
The plus sign indicates that we determine the input resistance 
or admittance in the equivalent circuit to the right of the 
boundary. The minus sign shows that we define these values to 
the left of the boundary. The value 1

0 0 120Z Y −= = π  Ohm. 

TABLE II.  THE EXPRESSIONS FOR INNERTERMINAL LOADS 

Region boundary Inner Terminal Loads T T,Z Y
 

 
Free space in 
Cartesian system 
 

ε1 μ1 

z 
z1 

ε2 μ2 

 

1 0Y Y− =
  

1 0Z Z− =
  

Layered flat screen 
 

ε1 μ1 

z 
z1 

ε2 

μ2 

d1 

 

2 2 21 0
1 0 1 1 1 1

1
cot ,kY jY d k− ′ε

= − γ γ = − ξ − η
γ



 

2 2 21 0
1 0 1 1 1 1

1
tan ,kZ jZ d k− ′µ

= γ γ = − ξ − η
γ



 

Dielectric cylinder 
 

ε1 μ1 ρ 

ρ1 

ε2 

μ2 

 

( )
( )

2 2 21 11
1 0 0 1 1 1

1 1 1
,m

m

J
Y jY k k h

J
− ′ γ ρ′ε

= − ρ γ = −
γ γ ρ

  

( )
( )

2 2 21 11
1 0 0 1 1 1

1 1 1
,m

m

J
Z jZ k k h

J
− ′ γ ρ′µ

= − ρ γ = −
γ γ ρ

  

Layered PEC 
cylinder  
 

ε1 μ1 

ρ 

ρ1 

ε2 

μ2 

ρ0 

 

( )
( )

2 1 1 1 1 0 2 21
1 0 0 1 1 1

1 2 1 1 1 0

,
,

,
m

m

C
Y jY k k h

S
− γ ρ γ ρ′ε

= ρ γ = −
γ γ ρ γ ρ


 

( )
( )

2 1 1 1 1 0 2 21
1 0 0 1 1 1

1 2 1 1 1 0

,
,

,
m

m

S
Z jZ k k h

C
− γ ρ γ ρ′µ

= ρ γ = −
γ γ ρ γ ρ



 

Impedance 
cylinder 
 

ρ 

ρ1 

ε2 

μ2 
σ 

 

( )
1 1 0 1

0

12
2

j
Y Y k− + −σ

= = − ρ
ωµ

 

 

( )0
1 1 0 1 1

2
Z Z k j− + ωµ

= = − ρ +
σ

 

 

Dielectric sphere 
 

ε1 μ1 r 

r1 

ε2 

μ2 

 

( )
( )

1 111
1 0

1 1

m

m

j k r
Y jY

j k r
− ′′ε

= −
′µ



 

( )
( )

1 11
1 0

1 1 1

m

m

j k r
Z jZ

j k r
− ′′µ

= −
′ε



 

Layered perfectly 
conductive sphere 
 

ε1 μ1 

r 

r1 

ε2 

μ2 

r0 

 

( )
( )

1 1 1 0
1 0 1

1 1 1 0

,
,

n

n

s k r k r
Y jY

s k r k r
− ′

′= − ε


 

( )
( )

1 1 1 00
1

1 1 1 01

,
,

n

n

c k r k rYZ j
c k r k r

− ′
= −

′ε



 

 
The continuity condition of the tangential electric and 

magnetic field components at the boundaries between layers is 
applied. At any boundary the transfer matrix [ ]NΓ is 
calculated.  

It should be noted that for covered perfectly conductive 
cylinder the expressions for the inner loads 1Y −  and 1Z −  from 
the Table II of the equivalent circuit are converted to the form 

21
1 0 0 1 1

1
cot ,Y jY k− ′ε

≅ − ρ γ ∆ρ
γ



 21
1 0 0 1 1

1
tanZ jZ k− ′µ

≅ ρ γ ∆ρ
γ



, 



if 1 0 0,       , where 0  is the outer radius of 

the perfectly conductive cylinder,   is the layer thickness. 

They are the same as for a flat perfectly conductive screen 

with a slab in Cartesian system. 

TABLE III.  EQUIVALENT LINE PARAMETERS IN DIFFERENT COORDINATE 

SYSTEMS 

Coordinate 

system 

Equivalent line Characteristic of the i-th Layer 

Parameter Expression 

Cartesian 

Wave admittance of 

E-line 0i i iY Y      

Wave impedance of 

H-line 0i i iZ Z      

Propagation constant i ik   

Cylindrical 

Wave admittance of 

E-line 

22
20

0 2
i

i i

i

k m
Y Y

   
    

  

 

Wave impedance of 

H-line 

22
20

0 2
i

i i

i

k m
Z Z

   
    

  

 

Propagation constant 

2

2 2 2,i i i i

m
k h

 
       

 

 

Spherical 

Wave admittance of 

E-line 0 0i i i
Y Y k     

Wave impedance of 

H-line 0 0i i i
Z Z k     

Propagation constant 
 

2

2 1
i i

m m
k

r

 
    

 

 

 

In the Table III index m is the integer constant from 

Helmholtz equation of axial components of the electric and 

magnetic fields in the cylindrical coordinates and of radial 

components in the spherical coordinates system. In the i-th 

layer the wave number is ik , the permittivity is i
  and the 

magnetic permeability is i
 , respectively.  

Wave propagation in each layer is described with 8-port 

network and the transmitting matrix  iC . As there is no 

energy exchange between electric and magnetic waves in the 

homogeneous medium inside every layer equivalent E and H-

lines are unconnected. So, transmitting matrixes become 

simplified 

 
   
   

0
,

0

iE

i

iH

C
C

C

 
  
 

 

where  0  is a null matrix of order 2. Two ports network with 

the transfer matrix iEC    is associated with the equivalent 

electric line and another two ports network with the transfer 

matrix iHC    is associated with the equivalent magnetic line. 

Unlike the flat and spherical structures, the boundary 

conditions at the layers’ boundaries in the cylindrical structure 

cause energy exchange between E and H waves that occurs as 

in coupling lines. Taking into account the coupling of E and 

H-lines the 4-port boundary network with transmitting matrix 

 i  of order 4 is added for the cylindrical structures. 

1 0 0 0

0 1 0
,

0 1 0

0 0 0 1

i
i

i

N

N

 
 


      
 
 

 

where  2 2

2 2
0 1

1 1
,i i i

i i

mh
N k h

k


 
        

.  

As there is no energy exchange at boundaries in flat and 

spherical structures, the matrix  i  is a unit matrix. 

Thus, the expressions for Green's functions are as follows. 

For Cartesian coordinates 

      

ij

0

( , , ; , , )

; , ; , ; , ,t

x y z x y z

j F g z z f z z G x y x y d d
 

 

   

       

  (3) 

where for unlimited space along x  and y  coordinates 

     1
, ; , e e

4

i x x i y y
tG x y x y

        


. 

In (3) characteristic functions  ;g z z  and  ;f z z  are the 

solution the differential equations with proper boundary 

conditions as follows 

 
   

2
2

2

,
,

d f z z
f z z z z

d z


      , 

 
   

2
2

2

,
,

d g z z
g z z z z

d z


      . 

If the boundary is the perfect conductor, we have at this 

section  
 ,

, 0
d g z z

f z z
d z


   . 

For the cylindrical coordinate system Green’s functions are 

define as follows 

      

ij

0

( , , ; , , )

; , ; , , , ; , ,
2

m m t
m

z z

j F g f G m h z z dh


 

       


           



 

where 

     1
, , , ; , e e

2

jm jh z z

tG m h z z
       


. 

The characteristic functions  ;mg    and  ;mf    are the 

solution the differential equations 

 
   

2
2 2

2

;1
; ,

m
m

dgd m
k h g

d d

    
           

      

 

 
   

2
2 2

2

;1
; .

m
m

dfd m
k h f

d d

    
           

      
 

If the spherical structures are under consideration the 

Green’s functions are defined as 

      0

0

( , , ; , , )=

=j ; , ; , , , ; , ,

ij

n

n n t

n m n

r r

F g r r f r r G m n


 

      

        
 

where 
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   1
, , , ; , (cos )e , (cos )e .

4

m jm m jm
t n nG m n P P

           


 

The spherical harmonics are calculated using the associated 

Legendre polynomials (cos )m
nP  . 

The characteristic functions are the solution of the 
inhomogeneous equations 

2
2

2

2
2

2

( , ')
( , ') ( '),

( , ')
( , ') ( ').

n
n

n
n

d g r r
k g r r r r

d r

d f r r
k f r r r r

d r

   
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Thus Green’s functions for three main coordinate systems 

such as Cartesian, cylindrical and spherical are given. A wide 

class of electromagnetic excitation, radiation, and diffraction 

problems can be solved using the appropriate distribution of 

extraneous currents. The using of analytical approaches allows 

one significantly speed up the calculation in electromagnetics. 

III. WAVE REFLECTION ANALYSIS AS A RADIATION PROBLEM 

SOLVING 

We applied the Green’s function method for spherical and 

cylindrical Luneburg lens investigation [9]. It was successfully 

used for spherical and geodesic antenna radomes analysis [10]. 

Application of Green’s functions for diffraction problems 

solving is described in this part. 

The synthesis of surfaces with the required reflecting 

properties is an actual problem of electrodynamics. Of 

particular interest are the problems of non-reflecting and 

selectively reflecting covers synthesis [11], [12]. Layered 

structures are widely used for non-reflecting coating design.  

The flat multilayered structure under consideration is shown 

in Fig.4. Thickness, dielectric permittivity and the magnetic 

permeability as conductivity of any layer have arbitrary value. 

We use the parallel and perpendicular electrical field 

components relative to the incidence plane. The reflected 

waves generated by a layered structure are calculated as 

radiation of the equivalent electric and magnetic surface 

currents located at the illuminated side of the covered 

conducting screen. Equivalent electric and magnetic surface 

currents for the incident wave are specified as 

 J n H ,  M E n  ,      (4) 

where H and E are magnetic and electric incident wave 

components at the illuminated surface, respectively, n is a 

normal to this surface. 

 
Fig. 4. An incident wave with perpendicular and parallel electrical 

field vector near the multilayered structure 

 

We define equivalent surface current density for the incident 

angle θ with respect to the surface normal as following. For the 

parallel polarization equivalent surface currents are specified 

as 

0 sin
0 cos e

jk x
xM E

 
   , 

0 sin
0 0 e

jk x
yJ E Y

 
 , 

for the perpendicular polarization we have 

0 sin
0 e

jk x
yM E

 
  

0 sin
0 0 cos e

jk x
xJ E Y

 
   

where 0E  is an amplitude of the incident wave, k0 is the free-

space wave number,  
1

0 120Y 


  Ohm-1 is the free-space 

wave admittance. 

After substituting (4) into (2) the total electrical field 

components are represented at the illuminated surface at the 

plane 1z z  by rather simple expressions 

0 sin0
0

1 1

2
e

jk xt
x

Y
E E

Y Y

 

 



,     (5) 

0 sin0
0

1 1

2 cos
e

jk xt
y

Y
E E

Z Z

 

 


 


.    (6) 

The input directional admittances and impedances of the 

equivalent circuit are shown in the Table I and Table II. The 

reference plane is located at 1z z . There are several layers to 

the right from the reference plane so input directional 

admittance and impedance to the right from the reference 

plane are calculated by recurrent formulas  

1

ctg

ctg

i i i i
i i

i i i i

Y d jY
Y Y

Y d jY


 


 
, 

1

ctg

ctg

i i i i
i i

i i i i

Z d jZ
Z Z

Z d jZ


 


 
. 

If there is a free space at 1z z  and no reflecting waves, the 

incident wave components are defined as 

0

0

sin
0

sin
0

cos e ,

e ,

jk xinc
x

jk xinc
y

E E

E E

 

 

 

 
      (8) 

Subtracting (8) from (9) and (10) we evaluate reflection 

coefficients by the following two formulas 

0 sin0 1

1 1

cos
e

jk x
x

Y Y
R

Y Y


 

 

 



,    (9) 

0 sin0 1

1 1

cos
e

jk x
y

Z Z
R

Z Z


 

 





.    (10) 

The terminal conductivity and impedance at the screen 

plane Nz z  are defined as 0 0 0NY Y j Y k    and 

0 0 0NEZ Z j k Z   for real conductors, where   is metal 

conductivity. For the perfect conductor NEY j   and 

0NEZ  . 
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The proposed approach is not limited by the number of 

layers under consideration. The electrodynamic properties of 

i , i , i  of each layer material are arbitrary. Magnetic 

losses may be taken into account as well. The approach 

remains correct for materials with negative refractive index. 

For example, consider a two-layer structure. The task is to 

minimize the reflection coefficient at a frequency of 10 GHz. 

In [13] the absorber based on carbon nanofibers (CNF 3 

wt%) was analyzed. It was noted that the considered cover of 

6.5 mm thickness does not allow one to obtain the reflection of 

less than minus 6 dB. However, if we place a magneto-

dielectric layer on the top of this slab the reflection coefficient 

is significantly reduced. We have optimized the two-layer 

structure. We have shown that it is possible to obtain a 

reflection coefficient of less than minus 35 dB for large range 

of incident angles with the same thickness of the composite 

cover limited by 6.5 mm (Fig.5). 

 

 
Fig. 5. Reflection of the incident wave with perpendicular and 

parallel polarization from the two-layer structure with PEC backing 

(ε1=1.7 – j2.0, ε2=13.1 – j6.5, µ1=1.5 – j2.0, µ2=1.0 – j0.0):  

d1=3 mm, d2=3.5 mm (dash line), d1=3.5 mm, d2=3.0 mm (solid line), 

d1=4.0 mm, d2=2.5 mm (dash-dot line). Parallel polarization is 

marked in red, perpendicular polarization is marked in blue. 

 

The frequency properties of the two-layer absorbing coating 

with a magneto-dielectric slab for different angles of wave 

incidence are illustrated in Fig.6. It is noted that the reflection 

of less than minus 20 dB is observed from 5.5 GHz. Parallel 

polarization is marked in red, perpendicular polarization is 

marked in blue. For the normal angle of wave incidence, the 

graphs of the reflection coefficients coincide (is marked in 

black). 

We showed the solution of a simple problem with simple 

formulas. Usually derivation of expressions for calculations is 

rather complicated. This hard work is more than compensated 

by fast calculations using compact formulas. 

 
Fig. 6. Reflection coefficient from the two-layer composite with 

PEC backing (ε1=1.7 – j2.0, ε2=13.1 – j6.5, µ1=1.5 – j2.0,  

µ2=1.0 – j0.0, d1=3 mm, d2=3.5 mm:  θ=00 (black line), θ=200 (solid 

line), θ=400 (dash line). Parallel polarization is marked in red, 

perpendicular polarization is marked in blue. 
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