
 

 

 
Abstract—In fact, many modern real-world optimization 

problems have the great number of variables (more than 1000), which 
values should be optimized. These problems have been titled as 
large-scale global optimization (LSGO) problems. Typical LSGO 
problems can be formulated as the global optimization of a 
continuous objective function presented by a computational model of 
«Black-Box» (BB) type. For the BB optimization problem one can 
request only input and output values. LSGO problems are the 
challenge for the majority of evolutionary and metaheuristic 
algorithms. In this paper, we have described details on a new DECC-
RAG algorithm based on a random adaptive grouping (RAG) 
algorithm for the cooperative coevolution framework and the well-
known SaNSDE algorithm. We have tuned the number of 
subcomponents for RAG algorithm and have demonstrated that the 
proposed DECC-RAG algorithm outperforms some state-of-the-art 
algorithms with benchmark problems taken from the IEEE CEC’2010 
and CEC’2013 competitions on LSGO. 
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I. INTRODUCTION 
oday, there are a lot relevant real-world optimization 
problems that involve many variables into optimization, 

for example [1]–[6]. These optimization problems with high 
dimensionality are known as large-scale global optimization 
problems (LSGO). LSGO problems are especially difficult 
because of the following important factors. Firstly, the search 
space of an optimization problem grows exponentially as the 
number of decision variables increases. This effect is known 
as the curse of dimensionality. Secondly, the type of the 
problem is the «Black-Box» (BB) optimization. We have no 
information about properties of the objective function 
landscape. Thirdly, the fitness evaluation of a solution for 
large-scale problems is usually computationally expensive and 
the number of evaluations is limited. 

Without loss of generality, a BB LSGO problem can be 
stated as follows [7]:

 
𝑓𝑓(𝑥̅𝑥) = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) → 𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥̅𝑥 ∈ 𝑋𝑋 (1) 

𝑥𝑥𝑖𝑖𝐿𝐿 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖𝑈𝑈 , 𝑖𝑖 = 1,𝑛𝑛����� (2) 
𝑔𝑔𝑗𝑗 (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ≤ 0, 𝑗𝑗 = 1,𝑚𝑚������ (3) 
ℎ𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 0, 𝑘𝑘 = 1, 𝑙𝑙���� (4) 

 
where 𝑥̅𝑥 ∈ 𝑋𝑋, 𝑋𝑋 ⊆ 𝑅𝑅𝑛𝑛  denotes the continuous decision 

space, 𝑥̅𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ∈ 𝑅𝑅𝑛𝑛  is a real-value vector of 
decision variables. 𝑓𝑓 ∶ 𝑋𝑋 → 𝑅𝑅1 stands a real-value continuous 
nonlinear objective function. In equation (2), 𝑥𝑥𝑖𝑖𝐿𝐿 and 𝑥𝑥𝑖𝑖𝑈𝑈  define 
lower and upper side constrains for search interval, 
respectively. Equations (3) and (4) define inequality and 
equality constraints, respectively. In this study, we consider 
the unconstrained LSGO minimization problem. 

As it is known, metaheuristics show good performance for 
solving LSGO problems [8]. One of the effective LSGO 
technique applies methods based on cooperative coevolution 
(CC) framework [9]. The general idea of CC is connected with 
dividing a large optimization problem into several 
subcomponents and optimize them independently in order to 
solve the large optimization problem. In our previous papers 
[10], [11], we have proposed a novel variable grouping 
algorithm for CC framework that was titled as «Random 
Adaptive Grouping» (RAG). We have combined the well-
known SaNSDE algorithm and RAG with CC framework. The 
whole metaheuristic algorithm is titled as DECC-RAG. 

In this study, we have demonstrated the results of the 
performance investigation for DECC-RAG with different 
numbers of subcomponents on the IEEE LSGO CEC’10 and 
CEC’13 benchmarks. We have performed the detailed analysis 
of the DECC-RAG using statistics methods and Wilcoxon 
signed-rank test. It can be concluded that the proposed DECC-
RAG algorithm outperforms some well-known state-of-the-
arts algorithms on the LSGO CEC’10 and CEC’13. 

The rest of the paper is organized as follows: Section II 
gives the preliminaries; Section III describes the proposed 
DECC-RAG algorithm; Section IV contains the descriptions 
of numerical experiments and discussed results; Section V 
concludes this paper and discussed further research. 
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II. PRELIMINARIES 

A. Classical Differential Evolution (DE) and Self-adaptive 
Differential Evolution with Neighborhood Search (SaNSDE) 
Differential evolution (DE) is one the most popular and 

efficient evolutionary algorithm proposed for optimization in 
the space of real variables. DE is a stochastic, population-
based search strategy developed by [12]. DE and its varieties 
[13]-[16] have good performance in on optimization problems 
of different difficulty levels. One of the further developments 
of DE is the SaNSDE algorithm proposed by [17]. We have 
chosen this algorithm for our investigation because of self-
adaptive tuning of its parameters during optimization process. 

As known, the performance of any evolutionary algorithm 
strongly depends on its control parameters. The general list of 
DE parameters contains the type of mutation, the scale factor 
value F and the crossover probability value CR. Frequently, 
F ∈ [0;2], CR ∈ [0;1]. The main feature of the SaNSDE 
algorithm is that the algorithm stochastically selects a type of 
mutation and values of CR and F, and then adapts F and CR 
values based on the success of implementing a mutation 
operation. After a predefined number of generations, the 
SaNSDE recalculates probabilities for selection of a type of 
mutation and values of CR and F. 

There exist many approaches for solving LSGO problems 
using DE and other evolutionary algorithms. We can divide all 
approaches into two main categories: cooperative coevolution 
(CC) algorithms with problem decomposition strategy and 
non-decomposition-based methods. As it has been shown in 
many studies, CC approaches usually demonstrates higher 
performance. The most popular CC approaches use different 
strategies for grouping of objective variables. Some well-
known techniques are the static grouping [9], the random 
dynamic grouping [18] and the learning dynamic grouping 
[19]. 

B. Cooperative coevolution and variable grouping 
Decomposition methods based on cooperative co-evolution 

are the most popular and widely used approaches for solving 
LSGO problems. Cooperative coevolution (CC) is an 
evolutionary framework that divides a solution vector of an 
optimization problem into several subcomponents and 
optimizes them independently in order to solve the 
optimization problem. 

The first attempt to divide solution vectors into several 
subcomponents was proposed by [20]. The approach proposed 
by Potter and Jong (CCGA) decomposes a n-dimensional 
optimization problem into n one-dimensional problems (one 
for each variable). The CCGA employs CC framework and the 
standard GA. Potter and Jong had investigated two different 
modification of the CCGA: CCGA-1 and CCGA-2. The 
CCGA-1 evolves each variable of objective in a round-robin 
fashion using the current best values from the other variables 
of function. The CCGA-2 algorithm employs the method of 
random collaboration for calculating the fitness of an 
individual by integrating it with the randomly chosen 
members of other subcomponents. Potter and Jong had shown 

that CCGA-1 and CCGA-2 outperforms the standard GA. 
The following pseudo-code presents general CC stages: 
 

Pseudo-code of Cooperative Coevolution 
Decompose objective vector into m 
smaller subcomponents; 
while (termination condition is not 
achieved) do 
  for i = 1 to m 
    optimize i-th subcomponents with 
some EA; 
  end for 
end while 
return best_solution. 

 
The CC method is used for a wide range of real-world 

applications [21], [22] and [23]. 

III. PROPOSED APPROACH 
We have analyzed pros and cons of grouping-based 

methods and DE-based approached, and have proposed a new 
EA for solving large-scale global optimization problems. The 
main idea of the proposed search algorithm is to combine of 
an original method of grouping variables for the CC with 
problem decomposition strategy with the self-adaptive DE 
(SaNSDE). The choice of the self-adaptive approach is 
necessary as we have no any information on a dependence 
between variables. Thus, parameters of the search algorithms 
should be adapted during the optimization process as 
information about the grouping quality becomes available. 

As it is known, the CC approach can be efficient only if the 
grouping of variables is correct. As shown in [19], the learning 
dynamic grouping is not able to divide variables into correct 
subcomponents for many LSGO problems.  

In the proposed approach, the grouping of variables is 
random and adaptive. In the approach, the number of grouped 
variables is equal for each subcomponent. Such limitation 
excludes the following problems: 

• uneven distribution of computational resources 
between search algorithms (population sizes of EAs 
for each subcomponent). 

• tuning minimum and maximum numbers of variables 
into group. 

The proposed method of grouping (RAG (random adaptive 
grouping)) works as follows. The n-dimensional solution 
vector is divided into m s-dimensional sub-components (m x s 
= n). We randomly group variables into groups of equal sizes 
using the uniform distribution. As we need to estimate the 
quality of the distribution of variables, we will perform the EA 
run within the predefined budget T of the fitness function 
evaluation (each EA optimizes its corresponding 
subcomponent). During the optimization period of the 
algorithm, we record the increment of the function in each 
subcomponent Δfi. After that, we will choose m/2 
subcomponents with the worse performance (smallest Δfi) and 
randomly mix indices of its variables. Finally, we will reset all 
EA parameters for the worst m/2 sub-components after 
regrouping variables and reset every Δfi values. The reset is 
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necessary because of the fact that new grouping of variables 
defines a completely different optimization problem. 

The complete algorithm is called DECC-RAG. The 
procedure of DECC-RAG can be descripted by the following 
pseudo-code. 

 
Pseudo-code of DECC-RAG algorithm 
Set FEV_global, T, m, FEV_local = 0; 
An n-dimensional object vector is randomly 
divided into m s-dimensional 
subcomponents; 
Randomly mix indices of variables; 
while (FEV > 0) do 
  for i=1 to m 
    Evolve the i-th subcomponent with 
    SaNSDE algorithm, record CBS and PBS; 
    Δfi+=|PBS

*-CBS**| 
  end for 
  if (FEV_local >= T) 
   then choose m/2 subcomponents with the 
    worse performance (m/2 smallest Δfi) 
    and randomly mix indices of its 
    subcomponents, restart parameters of  
    SaNSDE in these m/2 subcomponents, 
    FEV_local = 0, reset Δfi values; 
  end if 
end while 
return the best solution. 
*previous best solution 
**current best solution 

IV. EXPERIMENTAL SETTINGS AND RESULTS 
We have evaluated the performance of DE, SaNSDE and 

the proposed DECC-RAG algorithm with different group size 
on the 20 LSGO benchmark problems provided within the 
CEC’2010 special session on Large Scale Global Optimization 
[24] and on the 15 LSGO benchmark problems provided 
within the CEC’13 special session on Large Scale Global 
Optimization [25]. These benchmark problems have been 
specially endowed with the properties that real-world 
problems have. 

The DECC-RAG algorithm settings are the next: NP = 50 
(population size for each subcomponent) and T = 3x105. T is a 
parameter that represents a number of FEVs (function 
evaluations) before the stage of randomly mixing of the worse 
m/2 subcomponents.  

All experimental settings are as proposed in the rules of the 
CEC’2010 and CEC’2013 LSGO competition were used for 
experiments: 

• dimensions for all problem are D = 1000 
• 25 independent runs for each benchmark problem 
• 3x106 fitness evaluations in each independent run 

of algorithm 
• number of subcomponents m is {4, 8, 10, 20, 40, 

50, 100}. We use the following notation: DECC-
RAG(m) 

• the performance of algorithms is estimated using 
the median value of the best found solutions 
 

All experiments were executed on the following system: 
• OS: Ubuntu 16.04 LTS 

• CPU: AMD Ryzen 7 1700x (3.4GHz), 16 threads 
• RAM: 16GB 
• IDE: Code::Blocks 
• Language: C++ 
• Compiler: g++ (gcc) with O3 optimization flag 

 
As it is known, LSGO problems are computationally 

expensive. Table I and Table II show the runtime of 10000 
fitness evaluations for each benchmark problem using 1 thread 
of the AMD Ryzen 7 1700x CPU on LSGO CEC’10 and 
LSGO CEC’13, respectively. Note that, in this study, we have 
used gcc compiler with O3 optimization flag to reduce program 
code running time. 

In this study, we have implemented DE, SaNSDE and our 
DECC-RAG algorithms using C++ language. Also, we have 
implemented all our numerical experiments using the OpenMP 
framework for parallel computing with 16 threads, where each 
thread was allocated for one benchmark problem. 

TABLE I. RUNTIME OF 10000 FES (IN SECONDS) ON THE CEC’10 LSGO 
BENCHMARK PROBLEMS. 

F1 F2 F3 F4 F5 F6 F7 
0.467 0.234 0.25 0.543 0.258 0.276 0.025 

F8 F9 F10 F11 F12 F13 F14 
0.025 0.613 0.397 0.421 0.02 0.023 0.79 
F15 F16 F17 F18 F19 F20 - 

0.566 0.617 0.018 0.024 0.02 0.03 - 

TABLE II. RUNTIME OF 10000 FES (IN SECONDS) ON THE CEC’13 LSGO 
BENCHMARK PROBLEMS. 

F1 F2 F3 F4 F5 F6 F7 
2.11 2.63 2.66 2.20 2.77 2.87 0.7 
F8 F9 F10 F11 F12 F13 F14 
2.6 3.16 2.25 2.42 0.03 2.5 2.41 
F15 - - - - - - 
1.92 - - - - - - 

 
Table III and Table IV show results of Wilcoxon rank-sum 

test of statistical significance in the results of 25 independent 
runs for DECC-RAG (8) vs other DECC-RAG(m), DE and 
SaNSDE. The calculation of p-values has been performed 
using the R language in the R-studio software. The p-value for 
all tests was equal to 0.05. 

The results of 25 independent runs of DE, SaNSDE and 
DECC-RAG(m) are presented in Table V and Table VI. The 
first column contains the benchmark problem number, the next 
columns contain median performance for all investigated 
algorithms of the best-found solutions obtained with 25 
independent runs. 

Table VII and Table VIII are presented comparison of 
DECC-RAG(8) vs other well-known (DMS-L-PSO [26], 
DECC-G [18], MLCC [27], DECC-DG [19]) state-of-the-art 
algorithms on the LSGO CEC’10 and CEC’13 benchmarks, 
respectively. The columns contain the median value of 25 
independent runs. The numerical results of DMS-L-PSO, 
DECC-G, MLCC, DECC-DG on the LSGO CEC’10 and 
CEC’13 we have taken from [28]. 

Table IX and Table X are presented the detailed results of 
the DECC-RAG(8) algorithm on the considered benchmarks. 
For the majority benchmark problems the differences between 
the median and mean values are very low, which implies that 
DECC-RAG(8) is rather robust. 
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TABLE III. WILCOXON RANK-SUM TEST (SIGNIFICANTLY, P < 0.05) DECC-
RAG(8) VS OTHER EAS ON LSGO CEC’10 PROBLEMS 

vs DECC-RAG(8)  LSGO CEC’10 

DE 
+ (better) 
- (worse ) 
≈ (no sig.) 

1 
18 
1 

SaNSDE 
+ (better) 
- (worse ) 
≈ (no sig.) 

2 
15 
3 

DECC-RAG(4) 
+ (better) 
- (worse ) 
≈ (no sig.) 

8 
9 
3 

DECC-RAG(10) 
+ (better) 
- (worse ) 
≈ (no sig.) 

4 
9 
7 

DECC-RAG(20) 
+ (better) 
- (worse ) 
≈ (no sig.) 

4 
15 
1 

DECC-RAG(40) 
+ (better) 
- (worse ) 
≈ (no sig.) 

2 
18 
0 

DECC-RAG(50) 
+ (better) 
- (worse ) 
≈ (no sig.) 

1 
19 
0 

DECC-RAG(100) 
+ (better) 
- (worse ) 
≈ (no sig.) 

0 
20 
0 

TABLE IV. WILCOXON RANK-SUM TEST (SIGNIFICANTLY, P < 0.05) DECC-
RAG(8) VS OTHER EAS ON LSGO CEC’13 PROBLEMS 

vs DECC-RAG(8)  LSGO CEC’13 

DE 
+ (better) 
- (worse ) 
≈ (no sig.) 

0 
14 
1 

SaNSDE 
+ (better) 
- (worse ) 
≈ (no sig.) 

2 
11 
2 

DECC-RAG(4) 
+ (better) 
- (worse ) 
≈ (no sig.) 

8 
5 
2 

DECC-RAG(10) 
+ (better) 
- (worse ) 
≈ (no sig.) 

3 
6 
6 

DECC-RAG(20) 
+ (better) 
- (worse ) 
≈ (no sig.) 

3 
11 
1 

DECC-RAG(40) 
+ (better) 
- (worse ) 
≈ (no sig.) 

1 
13 
1 

DECC-RAG(50) 
+ (better) 
- (worse ) 
≈ (no sig.) 

1 
13 
1 

DECC-RAG(100) 
+ (better) 
- (worse ) 
≈ (no sig.) 

0 
14 
1 

 
Fig. 1. The DECC-RAG(m) ranking on the LSGO CEC’2010. 

 
Fig. 2. The DECC-RAG(m) ranking on the LSGO CEC’2013. 
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The rank of an algorithm is defined by the median value, 
smaller median value defines smaller rank. Figures 1 and 2 
demonstrate average ranks of DE, SaNSDE and DECC-
RAG(m), respectively. As can be noted in Figure 1 and 2, on 
two benchmark stets, DECC-RAG with 8 subcomponents has 
high performance. Figures 3 and 4 demonstrate average ranks 
of DECC-RAG(8) vs other well-known state-of-the-art 
evolutionary algorithms on the LSGO CEC’10 and CEC’13, 
respectively.  

 

 
Fig. 3 The DECC-RAG(8) and other state-of-the-art ranking on the LSGO 

CEC’2010 
 

 
Fig. 4 The DECC-RAG(8) and other state-of-the-art ranking on the LSGO 

CEC’2013 
 

Figures 5-22 demonstrate the dynamic of the average 
performance (25 independent runs) of DE, SaNSDE and the 
DECC-RAG algorithms with different size of subcomponents 
for some benchmark problems. The bottom axis contains the 
number of the fitness function evaluations, and the vertical 
axis contains the average value of the fitness function. 

V. CONCLUSIONS 
In this study, we have proposed a new EA for large-scale 

global optimization problems and investigated its parameters. 
The approach uses an original random adaptive grouping 
method for cooperative coevolution framework. 

The novelty of the proposed approach is based on including 
a feedback on success of random grouping. Saving good 
combinations of variables in subcomponents allows   
improving the decomposition stage for both separable and 
non-separable LSGO problems. The breakthrough of the 
approach is that the best experimental results are achieved for 
the small number of subcomponents with large number of 
variables. This means that the DECC-RAG provides an 
efficient problem decomposition, while the conventional 
methods needs to deal with groups with small number of 
variables (classical CCGA-1 and CCGA-2 uses groups with 
only 1 variable). 

We have tested the proposed DECC-RAG algorithm on the 
representative set of 20 benchmark problems from the CEC’10 
LSGO special session and competition and CEC’13 LSGO 

special session and competition, and have compared the 
results of the numerical experiments with other classic state-
of-art techniques, such as DE and SaNSDE. We have 
estimated the performance of the DECC-RAG for different 
sizes of subcomponents, and can conclude that the best 
performance is obtained with the number of groups equal to 8 
(m = 8). 

The issues needed to be further studied are: 
• designing more effective self-adaptive methods of 

grouping variables; 
• improving the general performance of SaNSDE algorithm 

for LSGO problems. 
In further work, we will provide more detailed analysis of 

the DECC-RAG performance depending on the number of 
individuals. 
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TABLE V. THE EXPERIMENTAL RESULTS ON THE CEC’2010 LSGO BENCHMARK PROBLEMS 

Problem DE SaNSDE DECC-
RAG(4) 

DECC-
RAG(8) 

DECC-
RAG(10) 

DECC-
RAG(20) 

DECC-
RAG(40) 

DECC-
RAG(50) 

DECC-
RAG(100) 

1 4.19E+08 2.00E+04 8.50E-10 1.29E-17 1.86E-18 3.98E-10 2.86E+02 2.86E+04 2.53E+07 

2 7.38E+03 2.80E+03 3.10E+03 1.22E+03 7.27E+02 2.06E+03 5.02E+03 5.47E+03 6.36E+03 

3 1.95E+01 1.47E+01 1.05E+01 2.73E+00 1.44E+00 1.32E-08 1.37E-02 2.01E-01 3.83E+00 

4 8.78E+12 2.82E+12 7.77E+11 9.77E+11 1.06E+12 1.66E+12 3.18E+12 3.81E+12 7.72E+12 

5 7.96E+07 9.00E+07 9.25E+07 1.36E+08 1.69E+08 2.47E+08 3.92E+08 5.36E+08 6.37E+08 

6 2.09E+01 1.27E+06 2.03E+01 2.03E+01 2.04E+01 1.37E+06 1.98E+07 2.00E+07 1.99E+07 

7 3.08E+08 1.90E+05 1.92E+01 1.71E+02 2.44E+03 9.29E+05 1.23E+08 2.79E+08 2.95E+09 

8 2.53E+08 8.16E+06 3.46E+05 1.04E+07 2.19E+07 4.07E+07 1.18E+08 1.83E+08 3.72E+08 

9 5.56E+08 2.31E+08 4.37E+07 5.49E+07 6.47E+07 1.20E+08 1.92E+08 2.15E+08 3.72E+08 

10 7.72E+03 9.40E+03 4.93E+03 3.64E+03 3.12E+03 2.03E+03 5.67E+03 9.26E+03 1.23E+04 

11 1.88E+02 1.74E+02 1.20E+02 2.16E+02 2.16E+02 2.35E+02 2.35E+02 2.35E+02 2.35E+02 

12 5.59E+05 4.03E+05 2.73E+04 9.23E+03 8.68E+03 2.42E+04 9.68E+04 1.28E+05 3.47E+05 

13 1.01E+09 2.52E+04 1.51E+03 1.36E+03 1.95E+03 2.78E+03 2.88E+04 3.39E+04 3.26E+05 

14 1.60E+09 7.78E+08 1.75E+08 1.63E+08 1.92E+08 4.11E+08 9.67E+08 1.31E+09 3.65E+09 

15 7.75E+03 1.06E+04 5.86E+03 5.06E+03 5.06E+03 4.40E+03 1.30E+04 1.34E+04 1.55E+04 

16 3.77E+02 3.73E+02 2.73E+02 3.71E+02 4.26E+02 4.29E+02 4.29E+02 4.29E+02 4.28E+02 

17 1.04E+06 8.68E+05 2.19E+05 1.50E+05 1.61E+05 3.77E+05 1.05E+06 1.29E+06 1.85E+06 

18 4.15E+10 5.83E+05 5.06E+03 4.30E+03 5.29E+03 6.26E+03 1.01E+05 1.00E+05 1.92E+05 

19 2.96E+06 1.93E+06 1.82E+06 2.05E+06 2.28E+06 4.20E+06 1.46E+07 1.56E+07 1.52E+07 

20 5.25E+10 2.80E+05 2.17E+03 1.99E+03 1.84E+03 1.13E+03 9.86E+02 1.05E+03 3.50E+03 

 

  

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 13, 2019 

ISSN: 1998-0140 18



 

 

TABLE VI. THE EXPERIMENTAL RESULTS ON THE CEC’2013 LSGO BENCHMARK PROBLEMS 

Problem DE SaNSDE DECC-
RAG(4) 

DECC-
RAG(8) 

DECC-
RAG(10) 

DECC-
RAG(20) 

DECC-
RAG(40) 

DECC-
RAG(50) 

DECC-
RAG(100) 

1 5.28E+08 8.53E+05 1.50E-08 9.96E-16 1.56E-16 5.42E-10 3.17E+02 2.82E+04 2.60E+07 

2 2.46E+04 2.06E+04 7.07E+03 2.35E+03 1.44E+03 1.58E+03 4.74E+03 5.40E+03 6.09E+03 

3 2.16E+01 2.10E+01 2.03E+01 2.03E+01 2.03E+01 2.04E+01 2.06E+01 2.07E+01 2.06E+01 

4 1.11E+11 2.93E+10 4.68E+09 8.89E+09 1.12E+10 2.40E+10 4.73E+10 5.13E+10 1.03E+11 

5 4.62E+06 4.88E+06 2.71E+06 3.76E+06 3.64E+06 4.81E+06 6.21E+06 7.71E+06 9.69E+06 

6 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06 

7 1.04E+09 2.20E+08 2.20E+07 1.71E+08 3.01E+08 6.41E+08 1.37E+09 1.15E+09 1.72E+09 

8 2.15E+15 2.26E+14 2.34E+14 4.46E+14 5.52E+14 1.71E+15 2.90E+15 4.05E+15 8.04E+15 

9 4.27E+08 4.81E+08 2.59E+08 2.34E+08 2.46E+08 3.26E+08 4.43E+08 4.83E+08 6.97E+08 

10 9.42E+07 9.40E+07 9.45E+07 9.44E+07 9.43E+07 9.39E+07 9.40E+07 9.44E+07 9.42E+07 

11 2.50E+11 3.18E+09 4.54E+08 2.51E+09 4.89E+09 1.22E+11 3.57E+11 3.05E+11 2.01E+11 

12 4.64E+10 1.49E+07 2.22E+03 1.88E+03 1.75E+03 1.13E+03 1.20E+03 1.06E+03 3.83E+03 

13 1.52E+10 6.92E+09 6.32E+08 3.36E+09 8.73E+09 3.48E+10 6.51E+10 4.60E+10 3.13E+10 

14 3.42E+11 5.27E+10 1.79E+08 1.07E+10 4.21E+10 2.39E+11 5.12E+11 3.59E+11 2.83E+11 

15 7.32E+09 6.12E+07 7.29E+06 1.27E+07 1.37E+07 6.77E+07 2.68E+08 5.45E+08 1.47E+09 
 

TABLE VII. COMPARISON OF DECC-RAG(8) WITH OTHER WELL KNOWN STATE-OF-THE-ART ALGORITHMS ON THE CEC’2010 LSGO BENCHMARK 

Problem DECC-RAG(8) DMS-L-PSO DECC-G MLCC DECC-DG 

1 1.29E-17 1.61E+07 3.53E-07 1.66E-14 1.42E+02 

2 1.22E+03 5.53E+03 1.32E+03 2.43E+00 4.46E+03 

3 2.73E+00 1.56E+01 1.14E+00 6.24E-10 1.66E+01 

4 9.77E+11 4.32E+11 2.46E+13 1.78E+13 5.08E+12 

5 1.36E+08 9.35E+07 2.50E+08 5.11E+08 1.52E+08 

6 2.03E+01 3.66E+01 4.71E+06 1.97E+07 1.64E+01 

7 1.71E+02 3.47E+06 6.57E+08 1.15E+08 9.20E+03 

8 1.04E+07 2.02E+07 9.06E+07 8.82E+07 1.62E+07 

9 5.49E+07 2.08E+07 4.35E+08 2.48E+08 5.52E+07 

10 3.64E+03 5.09E+03 1.02E+04 3.97E+03 4.47E+03 

11 2.16E+02 1.68E+02 2.59E+01 1.98E+02 1.02E+01 

12 9.23E+03 2.83E+01 9.69E+04 1.01E+05 2.58E+03 

13 1.36E+03 1.03E+05 4.59E+03 2.12E+03 5.06E+03 

14 1.63E+08 1.25E+07 9.72E+08 5.71E+08 3.46E+08 

15 5.06E+03 5.48E+03 1.24E+04 8.67E+03 5.86E+03 

16 3.71E+02 3.18E+02 6.92E+01 3.96E+02 7.50E-13 

17 1.50E+05 4.75E+01 3.11E+05 3.47E+05 4.02E+04 

18 4.30E+03 2.50E+04 3.54E+04 1.59E+04 1.47E+10 

19 2.05E+06 2.03E+06 1.14E+06 2.04E+06 1.75E+06 

20 1.99E+03 9.82E+02 4.34E+03 2.27E+03 6.53E+10 
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TABLE VIII. COMPARISON OF DECC-RAG(8) WITH OTHER WELL KNOWN STATE-OF-THE-ART ALGORITHMS ON THE CEC’2013 LSGO BENCHMARK 

Problem DECC-RAG(8) DMS-L-PSO DECC-G MLCC DECC-DG 

1 9.96E-16 1.97E+09 2.06E-06 9.07E-14 6.03E+02 

2 2.35E+03 8.61E+03 1.30E+03 3.57E+00 1.28E+04 

3 2.03E+01 2.08E+01 2.02E+01 2.00E+01 2.14E+01 

4 8.89E+09 2.97E+11 2.00E+11 1.99E+11 7.33E+10 

5 3.76E+06 3.92E+06 8.44E+06 1.17E+07 5.81E+06 

6 1.06E+06 9.98E+05 1.06E+06 1.05E+06 1.06E+06 

7 1.71E+08 1.22E+09 1.04E+09 1.15E+09 4.25E+08 

8 4.46E+14 1.68E+14 7.90E+15 8.18E+15 2.89E+15 

9 2.34E+08 3.50E+08 5.86E+08 8.85E+08 4.95E+08 

10 9.44E+07 9.11E+07 9.30E+07 9.27E+07 9.45E+07 

11 2.51E+09 9.44E+10 1.26E+11 1.90E+11 3.81E+10 

12 1.88E+03 5.22E+04 4.19E+03 2.36E+03 1.68E+11 

13 3.36E+09 1.32E+10 8.67E+09 9.94E+09 2.08E+10 

14 1.07E+10 2.21E+11 1.28E+11 2.06E+11 1.56E+10 

15 1.27E+07 1.54E+07 1.13E+07 1.57E+07 9.52E+06 
 

 

Fig. 5. Convergence of the average best found for benchmark problems 1 and 2 from LSGO CEC’2010. 

 

 
Fig. 6. Convergence of the average best found for benchmark problems 3 and 4 from LSGO CEC’2010. 
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Fig. 7. Convergence of the average best found for benchmark problems 5 and 6 from LSGO CEC’2010. 

 

 
Fig. 8. Convergence of the average best found for benchmark problems 7 and 8 from LSGO CEC’2010. 

 

 
Fig. 9. Convergence of the average best found for benchmark problems 9 and 10 from LSGO CEC’2010. 
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Fig. 10. Convergence of the average best found for benchmark problems 11 and 12 from LSGO CEC’2010. 

 

 
Fig. 11. Convergence of the average best found for benchmark problems 13 and 14 from LSGO CEC’2010. 

 

 
Fig. 12. Convergence of the average best found for benchmark problems 15 and 16 from LSGO CEC’2010. 
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Fig. 13. Convergence of the average best found for benchmark problems 17 and 18 from LSGO CEC’2010. 

 

 
Fig. 14. Convergence of the average best found for benchmark problems 19 and 20 from LSGO CEC’2010. 

 

 Fig. 15. Convergence of the average best found for benchmark problems 1 and 2 from LSGO CEC’2013. 
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Fig. 16. Convergence of the average best found for benchmark problems 3 and 4 from LSGO CEC’2013. 

 

 
Fig. 17. Convergence of the average best found for benchmark problems 5 and 6 from LSGO CEC’2013. 

 

 
Fig. 18. Convergence of the average best found for benchmark problems 7 and 8 from LSGO CEC’2013. 
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Fig. 19. Convergence of the average best found for benchmark problems 9 and 10 from LSGO CEC’2013. 

 

 
 

 
Fig. 20. Convergence of the average best found for benchmark problems 11 and 12 from LSGO CEC’2013. 

 

 
Fig. 21. Convergence of the average best found for benchmark problems 13 and 14 from LSGO CEC’2013. 
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Fig. 22. Convergence of the average best found for benchmark problem 15 from LSGO CEC’2013. 

Table X. The experimental results with DECC-RAG(8) on the LSGO CEC’2013 benchmark problems, FEs ∈ {1.2E+05, 6.0E+05, 3.0E+06} 
  F1 F2 F3 F4 F5 F6 F7 F8 

FEs = 1.2E+05 

Best 
Median 
Worst 
Mean 
Std 

1.17E+09 
1.35E+09 
1.62E+09 
1.37E+09 
9.69E+07 

1.17E+04 
1.22E+04 
1.25E+04 
1.21E+04 
2.21E+02 

2.12E+01 
2.13E+01 
2.13E+01 
2.13E+01 
2.00E-02 

1.84E+11 
5.31E+11 
1.44E+12 
5.86E+11 
2.97E+11 

7.33E+06 
1.02E+07 
1.33E+07 
9.99E+06 
1.14E+06 

1.06E+06 
1.06E+06 
1.07E+06 
1.06E+06 
8.56E+02 

9.07E+09 
1.50E+10 
2.81E+10 
1.59E+10 
4.68E+09 

2.52E+15 
8.44E+15 
2.19E+16 
9.71E+15 
4.70E+15 

FEs = 6.0E+05 

Best 
Median 
Worst 
Mean 
Std 

7.26E+04 
1.68E+05 
3.59E+05 
1.86E+05 
7.51E+04 

2.19E+03 
2.49E+03 
3.03E+03 
2.50E+03 
1.95E+02 

2.08E+01 
2.08E+01 
2.08E+01 
2.08E+01 
1.80E-02 

2.91E+10 
5.56E+10 
1.29E+11 
6.07E+10 
2.65E+10 

2.41E+06 
3.76E+06 
4.94E+06 
3.66E+06 
6.63E+05 

1.06E+06 
1.06E+06 
1.06E+06 
1.06E+06 
8.67E+02 

1.04E+09 
3.42E+09 
8.57E+09 
3.87E+09 
1.77E+09 

7.54E+14 
1.91E+15 
1.15E+16 
2.39E+15 
2.22E+15 

FEs = 3.0E+06 

Best 
Median 
Worst 
Mean 
Std 

1.91E-16 
9.96E-16 
9.30E-15 
2.17E-15 
2.80E-15 

2.09E+03 
2.35E+03 
2.61E+03 
2.33E+03 
1.37E+02 

2.03E+01 
2.03E+01 
2.04E+01 
2.03E+01 
2.02E-02 

3.69E+09 
8.89E+09 
3.37E+10 
1.18E+10 
8.15E+09 

2.40E+06 
3.76E+06 
4.93E+06 
3.64E+06 
6.61E+05 

1.06E+06 
1.06E+06 
1.06E+06 
1.06E+06 
9.59E+02 

6.43E+07 
1.71E+08 
6.15E+08 
2.23E+08 
1.32E+08 

1.68E+14 
4.46E+14 
7.97E+14 
4.45E+14 
1.74E+14 

  F9 F10 F11 F12 F13 F14 F15  

FEs = 1.2E+05 

Best 
Median 
Worst 
Mean 
Std 

4.83E+08 
6.27E+08 
8.29E+08 
6.35E+08 
9.89E+07 

9.38E+07 
9.47E+07 
9.51E+07 
9.46E+07 
3.46E+05 

4.65E+11 
1.07E+12 
2.92E+12 
1.23E+12 
6.65E+11 

1.75E+10 
2.46E+10 
3.08E+10 
2.46E+10 
3.18E+09 

1.93E+11 
3.21E+11 
6.88E+11 
3.45E+11 
1.16E+11 

1.55E+12 
2.30E+12 
3.26E+12 
2.40E+12 
4.66E+11 

1.96E+08 
4.51E+08 
3.80E+10 
3.21E+09 
8.09E+09 

 

FEs = 6.0E+05 

Best 
Median 
Worst 
Mean 
Std 

1.24E+08 
2.37E+08 
2.86E+08 
2.25E+08 
3.64E+07 

9.33E+07 
9.45E+07 
9.50E+07 
9.43E+07 
4.36E+05 

2.27E+10 
1.25E+11 
5.14E+11 
1.74E+11 
1.29E+11 

1.17E+04 
1.47E+04 
3.39E+04 
1.58E+04 
4.75E+03 

1.45E+10 
2.76E+10 
7.01E+10 
3.18E+10 
1.42E+10 

7.37E+10 
2.16E+11 
4.91E+11 
2.30E+11 
9.69E+10 

4.29E+07 
6.96E+07 
3.71E+09 
3.60E+08 
8.14E+08 

 

FEs = 3.0E+06 

Best 
Median 
Worst 
Mean 
Std 

1.22E+08 
2.34E+08 
2.85E+08 
2.24E+08 
3.63E+07 

9.33E+07 
9.44E+07 
9.50E+07 
9.43E+07 
4.43E+05 

1.09E+09 
2.51E+09 
1.25E+11 
9.03E+09 
2.54E+10 

1.45E+03 
1.88E+03 
2.62E+03 
1.93E+03 
2.30E+02 

1.15E+09 
3.36E+09 
8.47E+09 
3.80E+09 
2.15E+09 

2.93E+08 
1.07E+10 
4.20E+10 
1.40E+10 
1.12E+10 

7.73E+06 
1.27E+07 
1.01E+08 
2.17E+07 
2.48E+07 
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Table IX. The experimental results with DECC-RAG(8) on the LSGO CEC’2010 benchmark problems, FEs ∈ {1.2E+05, 6.0E+05, 3.0E+06} 
  F1 F2 F3 F4 F5 F6 F7 F8 

FEs = 1.2E+05 

Best 
Median 
Worst 
Mean 
Std 

1.11E+09 
1.34E+09 
1.66E+09 
1.36E+09 
1.35E+08 

9.80E+03 
9.97E+03 
1.02E+04 
9.97E+03 
1.01E+02 

1.39E+01 
1.46E+01 
1.53E+01 
1.45E+01 
2.77E-01 

1.61E+13 
2.41E+13 
5.32E+13 
2.71E+13 
9.25E+12 

2.47E+08 
3.19E+08 
4.03E+08 
3.18E+08 
3.83E+07 

1.73E+02 
1.98E+03 
2.11E+07 
3.49E+06 
7.80E+06 

4.75E+09 
1.16E+10 
3.08E+10 
1.30E+10 
6.07E+09 

4.55E+09 
3.58E+10 
2.64E+11 
7.62E+10 
7.88E+10 

FEs = 6.0E+05 

Best 
Median 
Worst 
Mean 
Std 

4.84E+04 
1.05E+05 
5.72E+05 
1.46E+05 
1.18E+05 

1.82E+03 
2.78E+03 
3.90E+03 
2.78E+03 
4.44E+02 

2.43E+00 
2.85E+00 
3.45E+00 
2.86E+00 
2.45E-01 

1.66E+12 
4.72E+12 
1.03E+13 
5.02E+12 
1.99E+12 

9.60E+07 
1.46E+08 
2.14E+08 
1.51E+08 
3.43E+07 

2.10E+01 
2.10E+01 
2.08E+07 
1.78E+06 
5.74E+06 

6.48E+07 
2.13E+08 
9.96E+08 
3.12E+08 
2.59E+08 

4.62E+07 
5.54E+07 
4.07E+09 
3.28E+08 
8.19E+08 

FEs = 3.0E+06 

Best 
Median 
Worst 
Mean 
Std 

1.21E-18 
1.29E-17 
1.31E-16 
2.43E-17 
3.37E-17 

1.09E+03 
1.22E+03 
1.52E+03 
1.24E+03 
9.80E+01 

2.39E+00 
2.73E+00 
3.34E+00 
2.75E+00 
2.42E-01 

4.32E+11 
9.77E+11 
1.89E+12 
1.03E+12 
3.78E+11 

9.55E+07 
1.36E+08 
1.93E+08 
1.41E+08 
2.60E+07 

2.03E+01 
2.03E+01 
2.08E+07 
1.78E+06 
5.74E+06 

2.99E+00 
1.71E+02 
3.63E+03 
5.68E+02 
9.04E+02 

2.14E+04 
1.04E+07 
3.99E+09 
2.36E+08 
8.04E+08 

  F9 F10 F11 F12 F13 F14 F15 F16 

FEs = 1.2E+05 

Best 
Median 
Worst 
Mean 
Std 

3.84E+09 
4.80E+09 
6.03E+09 
4.82E+09 
5.25E+08 

1.32E+04 
1.37E+04 
1.41E+04 
1.37E+04 
2.77E+02 

2.10E+02 
2.35E+02 
2.36E+02 
2.28E+02 
7.99E+00 

3.76E+06 
4.56E+06 
5.53E+06 
4.51E+06 
4.20E+05 

7.68E+07 
1.14E+08 
1.90E+08 
1.17E+08 
2.49E+07 

1.23E+10 
1.44E+10 
1.68E+10 
1.45E+10 
1.25E+09 

1.45E+04 
1.51E+04 
1.62E+04 
1.52E+04 
4.27E+02 

4.06E+02 
4.28E+02 
4.30E+02 
4.26E+02 
5.84E+00 

FEs = 6.0E+05 

Best 
Median 
Worst 
Mean 
Std 

2.85E+08 
3.45E+08 
5.15E+08 
3.59E+08 
5.72E+07 

3.57E+03 
4.17E+03 
8.94E+03 
4.56E+03 
1.03E+03 

1.76E+02 
2.18E+02 
2.35E+02 
2.12E+02 
1.82E+01 

3.09E+05 
4.63E+05 
5.26E+05 
4.55E+05 
4.88E+04 

5.81E+03 
3.37E+04 
7.91E+04 
3.61E+04 
2.07E+04 

9.27E+08 
1.08E+09 
1.51E+09 
1.13E+09 
1.37E+08 

5.61E+03 
1.30E+04 
1.40E+04 
1.21E+04 
2.03E+03 

3.00E+02 
4.16E+02 
4.29E+02 
3.98E+02 
3.91E+01 

FEs = 3.0E+06 

Best 
Median 
Worst 
Mean 
Std 

4.08E+07 
5.49E+07 
7.36E+07 
5.51E+07 
7.17E+06 

3.28E+03 
3.64E+03 
4.12E+03 
3.66E+03 
1.98E+02 

1.73E+02 
2.16E+02 
2.35E+02 
2.06E+02 
1.73E+01 

6.03E+03 
9.23E+03 
1.40E+04 
9.01E+03 
2.07E+03 

7.56E+02 
1.36E+03 
4.59E+03 
1.85E+03 
1.11E+03 

1.37E+08 
1.63E+08 
2.14E+08 
1.67E+08 
1.94E+07 

4.74E+03 
5.06E+03 
6.07E+03 
5.18E+03 
3.23E+02 

2.48E+02 
3.71E+02 
4.29E+02 
3.74E+02 
5.26E+01 

  F17 F18 F19 F20     

FEs = 1.2E+05 

Best 
Median 
Worst 
Mean 
Std 

7.60E+06 
8.91E+06 
1.03E+07 
8.87E+06 
7.91E+05 

1.56E+10 
2.17E+10 
2.61E+10 
2.15E+10 
2.86E+09 

1.66E+07 
2.11E+07 
2.57E+07 
2.07E+07 
2.17E+06 

1.81E+10 
2.27E+10 
2.85E+10 
2.31E+10 
2.79E+09 

    

FEs = 6.0E+05 

Best 
Median 
Worst 
Mean 
Std 

1.43E+06 
1.92E+06 
2.06E+06 
1.83E+06 
1.90E+05 

3.81E+04 
8.23E+04 
2.47E+05 
1.02E+05 
5.37E+04 

5.95E+06 
6.97E+06 
8.65E+06 
7.06E+06 
7.14E+05 

1.19E+04 
1.37E+04 
5.86E+04 
1.68E+04 
9.32E+03 

    

FEs = 3.0E+06 

Best 
Median 
Worst 
Mean 
Std 

1.06E+05 
1.50E+05 
2.03E+05 
1.54E+05 
2.61E+04 

2.21E+03 
4.30E+03 
5.74E+04 
6.92E+03 
1.07E+04 

1.64E+06 
2.05E+06 
2.34E+06 
2.03E+06 
2.05E+05 

1.63E+03 
1.99E+03 
2.78E+03 
2.01E+03 
2.22E+02 
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