
  

Abstract— In this paper, we have proposed a method to help 

students of High School to choose a career having multiple options 

available after High School. It is based on the student’s marks and 

their Teacher’s perception of their own marks using generalized 

intuitionistic fuzzy divergence measure. The method is also 

compared with distance measure using intuitionistic fuzzy sets 
(IFS) and pythagorean fuzzy sets (PFS). Tables are drawn using the 

results based on the feedback collected from the student’s 

perception and their teacher’s perception about their High School 

result and compared with the table of membership and non-

membership values required in each subject versus career written 

arbitrarily.   

 

Keywords— Aggregator operator; Intuitionistic Fuzzy sets; 

Career determination; Distance in Pythagorean Fuzzy sets.  

I. INTRODUCTION 

HE classical theory of sets is based on the concept 

that the elements either are included or excluded from 

the set, i.e., based upon whether they follow the rule or they 

do not. But in day-to-day life that is not the case; elements 

may belong to a set to a certain degree. There may also be 

vagueness in the definition of the rule. Zadeh, in 1965 [1], 

extended the concept of crisp set theory to that of fuzzy set 

theory wherein elements have a degree of membership or 

inclusiveness and non-membership, i.e. non-inclusiveness, 

whose sum is equal to 1. This degree of inclusiveness and 

non-inclusiveness ranges from 0 to 1. Fuzzy sets with 

membership value 1 or 0 can be considered as crisp sets. 

Thus, fuzzy set is a generalization of classical sets. There is 

a wide range of applications of fuzzy set theory such as 

multi-criteria decision making, image processing, pattern 

recognition, traffic monitoring system, etc. 

 

This concept was extended by Atanassov in 1986 [2] to 

intuitionistic fuzzy sets (IFS) to overcome the difficulties 

faced by Zadeh's fuzzy set theory. It takes into account 

hesitancy which is missing in fuzzy set theory. He 
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demonstrated with an example where it is shown that in 

some situations IFS can be applied and fuzzy sets concept 

cannot be applied [3]. In A-IFS (Atanassov-Intuitionistic 

fuzzy sets), there are membership and non-membership 

values assigned to each element of the set. Hesitancy value 

is given by subtracting the sum of membership and non-

membership values from 1. As the name suggests, 

membership value represents the degree of inclusiveness, 

non-membership value represents the degree of 

exclusiveness and hesitancy value represents the uncertainty 

of inclusiveness or exclusiveness. As crisp sets are a part of 

fuzzy sets, fuzzy sets are a part of intuitionistic fuzzy sets. 

A-IFS is applied wherever FS can be applied and, in some 

situations, it improves the results due to the introduction of 

hesitancy value such as multi-criteria decision making, 

medical decision support system, psychological analysis, 

etc.[4-8]. The concept of distances in intuitionistic fuzzy sets 

was defined by Szmidt et al. [9-10]. The new definitions of 

distances introduced in the early 20th century are compared 

with already available distances in fuzzy sets. In fuzzy sets, 

distances are defined using membership and non-

membership values, whereas, in A-IFS, the hesitancy values 

are also included.  A distance measure between two 

Intuitionistic fuzzy sets was defined by Hatzimichailidis et 

al. [11] in 2012. It is a generalization of the previous 

distances proposed and the author has shown an application 

of it in pattern recognition. The results obtained are accurate 

from the already known distances and has shown a high 

degree of confidence. 

 

Aggregation operators were developed to conjugate two 

sets, as the use of max and min operators caused the loss of 

data, hence filled the gap in real data and aggregated data. It 

was first introduced in 1985 by Dubois and Prade [12] where 

they have defined arithmetic mean and geometric mean for 

fuzzy sets. Zu [13] in 2007 has extended the concept of 

aggregation operator and defined Intuitionistic Fuzzy Hybrid 

Averaging (IFHA) Operator. Yager [14] extended the 

concept of weighted aggregation operators to ordered 

weighted operators (OWA), where the membership values of 

the elements of the fuzzy set are ordered in descending 

order. Since then many more aggregation operators have 

been developed. These operators are widely used in the field 

of data mining, multi-criteria decision making, sensor fusion 

etc.  Verma et al. [15] have proposed a new divergence 

measure which provides flexibility in multi-criteria decision 
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making. 

 

In fuzzy and intuitionistic fuzzy sets, the sum of the 

membership and non-membership should be less than or 

equal to one. Yager et al. [16] introduced an extension of 

IFS, i.e. Pythagorean fuzzy set, where the membership 

values and the non-membership values are pythagorean 

complement of each other with respect to the strength of 

commitment. The sum of the squares of the membership 

values and the non-membership values are less than the 

square of the strength of commitment. This squaring causes 

the domain of the fuzzy sets to increase. Various 

applications were shown by researchers and a lot of papers 

were published [17-22]. Some results were proposed on 

Pythagorean fuzzy sets by Peng et al. [23] in 2017. The 

aggregation operator [24] and distances [25] on PFS were 

defined and it has been used to combine the data in the form 

of PFS. 

 

In this paper, IFS and PFS concept is used to draw the 

conclusion of the career based on the students and teachers 

perception of the subjects chosen by the students. A 

questionnaire response from the candidate and teacher's is 

used to convert the data into intuitionistic fuzzy values. The 

aggregator operator and generalized intuitionistic fuzzy 

divergence measure are used to analyze the result obtained. 

The results of the IFS and PFS are compared and shown in 

the form of a table. 

II. BASIC DEFINITIONS 

In this section, we will define some basic definitions 

related to fuzzy, intuitionistic fuzzy and pythagorean fuzzy 

sets. We will list the distances and aggregation operators for 

fuzzy, intuitionistic fuzzy and pythagorean fuzzy sets. 

Further, the generalized intuitionistic fuzzy divergence 

measure will be used in this research paper for calculating 

divergence between two intuitionistic fuzzy set matrices. Its 

results will be compared with the distance measure in 

intuitionistic fuzzy sets and pythagorean fuzzy sets. 

Definition 1 (Fuzzy Sets) [1]: Let us consider a non-empty 

set X. A fuzzy set A defined on the elements of the set X 

having the membership value ( )xµA , defined as 	� =
�< �, �	
�� >: � ∈ �, �	
�� ∈ �0,1��. 
 

Definition 2 (Intuitionistic Fuzzy Sets) [2]: Let us consider 

a non-empty set X. An intuitionistic fuzzy set A defined on 

the elements of the set X having the membership value

( )xµ A  and non-membership value ( )xν A , defined as

( ) ( ){ }Xxxν,xµx,=A AA ∈:>< , where 

( ) ( )xν+xµ AA   lies in the interval [0,1]. 

Furthermore, we have ( ) ( ) ( )( )xν+xµ=xπ AAA −1  

called the hesitancy margin of x  in A. 

 

 

Definition 3 (Pythagorean Fuzzy Sets) [23]: 

Let X be a universe of discourse, a pythagorean fuzzy set is 

given by 

 ( ) ( ) X}x>xν,xµx,{<=P pp ∈:  

where [ ]0,1→: Xµ p  denotes the degree of membership 

of an element x and [ ]0,1→: Xν p denotes the degree of 

non-membership of the element x, where the element 

Xx∈ to the set P, respectively with condition that 

( ) ( ) 1≤0
22 ≤+ xνxµ pp . The degree of hesitancy 

( ) ( ) ( )( )22
1 xνxµ=xπ ppp +− . 

 

Definition 4 (Distances for FS) [9]: The most widely used 

distance measures for fuzzy sets A, B in 

{ }nx,…,x,x=X 21
  are 

● The Hamming distance, ( )BA,d  

  ( ) ( ) ( )| |∑ −
n

=i

iBiA xµxµ=BA,d
1

 

● The normalized Hamming distance, ( )BA,l  

                                 

( ) ( ) ( )| |∑ −
n

=i

iBiA xµxµ
n

=BA,l
1

1
   

● The Euclidian Distance, 

                                 

( ) ( ) ( )( )∑ −
n

=i

iBiA xµxµ=BA,e
1

2
 

● The normalized Euclidian distance, ( )BA,q  

( ) ( ) ( )( )∑ −
n

=i

iBiA xµxµ
n

=BA,q
1

21
 

Szmidt and Kacprzyk [9] extended the concept of distances 

defined in fuzzy sets to intuitionistic fuzzy sets, in which the 

hesitancy factor is also considered which is missing in the 

distances defined for fuzzy sets. 

Definition 5 (Distances for IFS) [9]: Szmidt and Kacprzyk 

defined the widely used distances for two intuitionistic fuzzy 

sets, A and B, for all elements x of a non-empty set X as per 

following: 

● Hamming distance 

( )
( ) ( )| |

( ) ( )| | ( ) ( )| |∑ 








−−

−n

=i BABA

BA

IFS
xπxπ+xνxν+

xµxµ
=BA,d

12

1

 

● Normalized Hamming distance 
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( )
( ) ( )| | ( ) ( )| |

( ) ( )| |∑ 








−

−−n

=i BA

BABA

IFS
xπxπ+

xνxν+xµxµ

n
=BA,q

12

1

 
● Euclidian distance 

( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

∑


















−

−

−
n

=i

BA

BA

BA

IFS

xπxπ+

xνxν+

xµxµ

=BA,e
1 2

2

2

2

1

 
 

● Normalized Euclidian distance 

( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

∑


















−

−

−
n

=i

BA

BA

BA

IFS

xπxπ+

xνxν+

xµxµ

n
=BA,l

1 2

2

2

2

1
 

 

Definition 6 (Distances in Pythagorean Fuzzy Sets) [21]: 

The following distance measure defined by Zhang and Xu 

between two PFS 1p  and 2p  is: 

The distance between 1p  and 2p is as follows: 

( )

( ) ( )
( ) ( )
( ) ( )( )




















−+

−+

−

22

22

22

21

21

21

121

2

1

pp

pp

pp

=p,pD

ππ

νν

µµ

 

 

In this paper, we have also used aggregation operator to 

combine results obtained from the student point of view and 

of their Teacher’s perception. Aggregation operators are 

defined for both fuzzy sets and Intuitionistic fuzzy sets.  

 

Definition 7 (Intuitionistic Fuzzy Aggregation Operator 

[IFWA]) [13]:  

Let [ ] ( )n,…,=j,f,t=a
j

a
j

aj 1,21− , be a collection of 

intuitionistic fuzzy values; then their aggregated value by 

using the IFWA is defined as 

( ) ( ) ( ) 







−−− ∏ ∏

n

j=

n

j=

j
w

j
a

j
w

j
anw f,t=a,…,a,aIFWA

1 1

21 111

, where ( )T

nw,…,w,w=w 21  is the weight vector of 

( ),n,=j,a j 1,2,...  with [ ]0,1∈jw  and ∑
n

=j

j =w
1

1.  

Definition 8 (Generalized Intuitionistic Fuzzy 

Divergence) [15]:  

Let A and B are two intuitionistic fuzzy sets defined on 

{ }nx,…,x,x=X 21 having the membership values 

( )iA xµ  and ( ) n,…,=i,xµ iB 1,2 , and non-membership 

values ( )iA xν , ( ) n,=i,xν iB 1,2,... respectively. The 

measure of generalized intuitionistic fuzzy divergence 

denoted by ��
�|�� and defined between two IFS A and B 

as 

��
�|�� = �
�

∑

�
�
�
�
� �	
��� !" #$
%&�

�#$
%&�'
�(��#)
%&�

++	
��� !" ,$
%&�
�,$
%&�'
�(��,)
%&�

+-	
��� !" .$
%&�
�.$
%&�'
�(��.)
%&�/

0
0
0
1

�
�2�   

where 1.≤≤0 λ  

 

Definition 9 (Symmetric Generalized Intuitionistic Fuzzy 

Divergence) [15]: The symmetric generalized Intuitionistic 

Fuzzy divergence measure between two IFS A and B is 

defined as  

��
�; �� = ��
�|�� + ��
�|��. 
 

In our paper, we have used Generalized Intuitionistic Fuzzy 

divergence measure as it's a generalization of all the 

previous known measures and its simplicity and applicability 

in multi-criteria decision making that was shown in the 

paper. 

 

Definition 10 (Pythagorean Fuzzy Weighted Geometric 

Aggregator) [24]: 

Let a collection of Pythagorean Fuzzy Sets, denoted by ip , 

be of the form ( )iii ν,µ=p having a weight vector 

( )T

nwww=w ,...,, 21 with ∑
n

=I

i =w
1

1, then a 

Pythagorean fuzzy weighted geometric (PFWG) aggregation 

operator is a mapping  PFWPA: PP n → , where 

PFWPA ( )
2/1

1

2

2/1

1

2

21 ... 














 ∑∑
n

=I

ii

n

=I

iin ww=p,,p,p νµ
 

 

III. CAREER DETERMINATION AFTER HIGH SCHOOL 

USING FUZZY DIVERGENCE MEASURE 

 

Many research scientists have used the concept of distances 

in fuzzy sets and Intuitionistic fuzzy sets in various fields 

such as in research questionnaire, career determination, 

selection of best student, student evaluation, etc. In this 

paper, we have formed a questionnaire and given to six 

different High School Students and their Teachers of 
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different subjects. The response of the questionnaire is 

converted into Intuitionistic fuzzy values in a normalized 

way and is depicted in Tables I and II. The membership ( )µ

and non-membership ( )ν  values are shown in Table I and II, 

whereas hesitancy index is calculated as ( )ν+µ−1 . Table 

III is formed by taking the aggregation values of both 

students and teachers perception. The hypothetical Table IV 

is created from the intuitionistic fuzzy values required in 

each subject versus career. Using the definitions 8 and 9, the 

generalized intuitionistic fuzzy divergence measure between 

students and careers are depicted in Table V. The least 

divergency measure in columns of Table V for careers 

against the students will give choice to the students to 

choose a proper career.  

 

TABLE I 

STUDENT PERCEPTION ABOUT HIGH SCHOOL RESULT 

 Students 

Subjects 

 S1 S2 S3 S4 S5 S6 

 µ1 ν1 µ2 ν2 µ3 ν3 µ4 ν4 µ5 ν5 µ6 ν6 

Maths .8 .1 .9 .05 .6 .3 .55 .3 .7 .2 .75 .15 

Physics .8 .15 .8 .1 .6 .3 .5 .2 .7 .2 .8 .1 

Chemistry .6 .2 .7 .2 .7 .1 .7 .2 .6 .2 .6 .3 

Biology .5 .3 .6 .3 .8 .1 .7 .1 .5 .3 .5 .3 

Computer .8 .1 .7 .2 .6 .2 .5 .2 .9 .05 .85 .1 

English .7 .2 .6 .2 .7 .2 .8 .1 .7 .2 .7 .2 

 

Table I is depicting the student's perception of his / her high 

school result. Here S1, S2, S3, S4, S5, and S6 are used for 

six different students. The membership and non-membership 

values are shown for all students. The hesitancy  

is calculated using ( ) ( ) ( )( ).xν+xµ=xπ iii −1  Similarly 

Table II is drawn taking the perception of the teacher’s for 

students of various subjects. The response is converted into 

IFS values in a normalized way. 

 
 

TABLE II 

TEACHER’S PERCEPTION ABOUT THE STUDENTS 

 

 Students 

Subjects 

 S1 S2 S3 S4 S5 S6 

 µ1 ν1 µ2 ν2 µ3 ν3 µ4 ν4 µ5 ν5 µ6 ν6 

Maths .75 .15 .8 .15 .55 .25 .5 .2 .65 .3 .8 .1 

Physics .8 .1 .75 .15 .7 .2 .6 .2 .65 .2 .85 .1 

Chemistry .6 .2 .7 .2 .8 .15 .7 .2 .6 .1 .7 .2 

Biology .55 .25 .6 .3 .8 .1 .75 .2 .6 .2 .6 .2 

Computer .8 .1 .75 .2 .7 .2 .6 .2 .75 .2 .85 .1 

English .7 .15 .65 .25 .7 .25 .7 .2 .6 .2 .7 .2 

 

Table III values are calculated by taking the aggregation of 

students and teacher’s perception of IFS values from Table I 

and II. Here equal weights are taken for both Tables I and II,  

 

 

that is .=wi 0.5  Intuitionistic Fuzzy aggregation operator 

is used to aggregate two Tables, i.e. I and II, of concern. 
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TABLE III 

AGGREGATION (IFWA) OF TABLE I AND TABLE II STUDENTS 

 

 Students 

Subjects 

 S1 S2 S3 S4 S5 S6 

 µ1 ν1 µ2 ν2 µ3 ν3 µ4 ν4 µ5 ν5 µ6 ν6 

Maths .78 .13 .86 .10 .58 .28 .53 .25 .68 .25 .78 .13 

Physics .80 .13 .78 .13 .65 .25 .55 .20 .68 .20 .83 .10 

Chemistry .60 .20 .70 .20 .76 .13 .70 .20 .60 .15 .65 .25 

Biology .53 .28 .60 .30 .8 .10 .73 .15 .55 .25 .55 .25 

Computer .80 .10 .73 .20 .65 .30 .55 .20 .84 .13 .85 .10 

English .70 .18 .63 .23 .70 .23 .76 .15 .65 .20 .70 .20 

 

TABLE IV 
IFS VALUES REQUIRED IN EACH SUBJECT VERSUS CAREER 

  Subjects 

Career 

 Maths Physics Chemistry Biology Computer English 

 µ1 ν1 µ2 ν2 µ3 ν3 µ4 ν4 µ5 ν5 µ6 ν6 

Engineering .8 .1 .8 .1 .6 .2 .5 .3 .8 .1 .7 .2 

Medical .6 .2 .7 .2 .7 .2 .7 .2 .6 .2 .6 .2 

B.Sc. Biology .5 .3 .6 .2 .7 .2 .7 .2 .5 .3 .7 .2 

B.Sc. Maths .8 .1 .8 .1 .7 .2 .5 .3 .8 .1 .5 .3 

BCA .7 .2 .6 .2 .5 .3 .5 .3 .8 .1 .5 .3 

 

Table IV is constructed of IFS values in such a manner 

where more membership value is given depending on the 

choice of careers. The career in engineering requires a good 

background in Mathematics, Physics, and Computers. 

Similarly to choose a career in Medical, one should good in 

Biology, Physics, and Chemistry. Similarly, for other 

careers, fuzzy values are given corresponding to each subject 

of concern. Table V is constructed using the generalized 

intuitionistic fuzzy divergence measure [15]. It is seen that  

 

 

students S1 and S6 have less value of divergence in 

Engineering, S2 in B.Sc. Mathematics, S3 in Medical, S4 in 

B.Sc. Bio, S5 in BCA. Thus, it is concluded from Table V 

that for students S1 and S6 it is better to choose Engineering, 

S2 to choose B.Sc. Mathematics, S3 to choose Medical, S4 

to choose B.Sc. Biology, S5 to choose BCA. So, finally, it is 

concluded from the table that the lesser divergence value 

will be a preferable choice of the students in choosing a 

career.  

 

TABLE V 

CAREERS AGAINST STUDENTS USING INTUITIONISTIC FUZZY DIVERGENCE MEASURE 

  Students 

Career 

 S1 S2 S3 S4 S5 S6 

Engineering 0.00790 0.03765 0.11746 0.13498 0.04414 0.01735 

Medical 0.22447 0.07087 0.03664 0.03784 0.09085 0.08724 

BSc. Biology 0.39908 0.12438 0.05969 0.02095 0.13003 0.16150 

BSc. Mathematics 0.06868 0.03229 0.13134 0.06725 0.06725 0.02791 

BCA 0.06567 0.07717 0.12954 0.12359 0.04296 0.07140 

 

In table V, Hamming distance for Intuitionistic fuzzy set, 

proposed by Szmidt and Kacprzyk [10] is used to showcase  

 

the dissimilarity between the students’ fuzzy values and the 

standard fuzzy set  
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TABLE VI 

CAREERS AGAINST STUDENTS USING HAMMING DISTANCE FOR IFS 

  Students 

Career 

 S1 S2 S3 S4 S5 S6 

Engineering 0.01683 0.07658 0.16713 0.19166 0.08226 0.04337 

Medical 0.14179 0.10206 0.08012 0.07872 0.12381 0.14201 

BSc. Biology 0.17923 0.15588 0.08911 0.04985 0.15599 0.18364 

BSc. Mathematics 0.06273 0.06853 0.18283 0.20833 0.11679 0.06777 

BCA 0.10034 0.14347 0.18850 0.19166 0.09211 0.12659 

 

Table VII depicts the distance between the students’ 

membership and non-membership value, as shown in Table 

III, and the standard fuzzy set, Table IV. The distance 

measure proposed by Zhang and Xu [21] for Pythagorean 

fuzzy sets is used to calculate distances. The ranking of a 

suitability of each career for every student by all the three 

measures is shown in table VIII. 

 

 

 

TABLE VII 

CAREERS AGAINST STUDENTS USING DISTANCE FOR PYTHAGOREAN FUZZY SET 

  Students 

Career 

 S1 S2 S3 S4 S5 S6 

Engineering 0.00928 0.05886 0.14042 0.16039 0.05925 0.03095 

Medical 0.11817 0.08334 0.05885 0.06302 0.09124 0.12026 

BSc. Biology 0.14585 0.12876 0.06278 0.03588 0.12163 0.14693 

BSc. Mathematics 0.04827 0.05168 0.15320 0.17336 0.08541 0.05620 

BCA 0.08327 0.11408 0.15018 0.15670 0.06195 0.103451 

 

 

 

 
TABLE VIII 

COMPARISON TABLE USING THREE DIFFERENT DISTANCE MEASURE 

 

               Measure 

 

Students 

Symmetric 

Generalized Fuzzy 

Divergence 

Distance for 

Intuitionistic Fuzzy 

Sets 

Distance for 

Pythagorean Fuzzy 

Sets 

S1 c1≻c5≻c4≻c2≻C3 c1≻c4≻c5≻c2≻c3 c1≻c4≻c5≻c2≻c3 

S2 c4≻c1≻c2≻c5≻c3 c4≻c1≻c2≻c5≻c3 c4≻c1≻c2≻c5≻c3 

S3 c2≻c3≻c1≻c5≻c4 c2≻c3≻c1≻c4≻c5 c2≻c3≻c1≻c5≻c4 

S4 c3≻c2≻c4≻c5≻c1 c3≻c2≻c1≻c5≻c4 c3≻c2≻c5≻c1≻c4 

S5 c5≻c1≻c4≻c2≻c3 c1≻c5≻c4≻c2≻c3 c1≻c5≻c4≻c2≻c3 

S6 c1≻c4≻c5≻c2≻c3 c1≻c4≻c5≻c2≻c3 c1≻c4≻c5≻c2≻c3 
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Here, c1, c2, c3, c4, and c5 represent careers 1 to 5, i.e. 

Engineering, Medical, B.Sc. Biology, B.Sc. Mathematics and 

BCA respectively. As we observe from Table VIII, that the 

choice of the career changes according to the measure. In 

Table VIII, we see that using symmetric generalized fuzzy 

divergence the second and third choice for student S1 changes 

when we use distances in intuitionistic and Pythagorean fuzzy 

sets. For student S2, for all the measures the result remains the 

same. For student S3, generalized fuzzy divergence and 

Pythagorean gives the same result, but the distance measure 

for IFS gives different rankings. Similarly, for other students a 

small variation can be observed.  

IV CONCLUSION 

In this paper, a generalized intuitionistic fuzzy divergence 

measure, Hamming distance for intuitionistic fuzzy set, and 

distance measure for Pythagorean fuzzy set are used to find 

the proper choice of the career based on the students and 

teachers perception depicted in the form of membership and 

non-membership values in Table I and II. In Table VIII, the 

proper choice is depicted in the form of rank. 
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