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Abstract—With the recent impetus in the development of
generic properties and formal frameworks for understanding
and organizing the different clustering methods at a technical
level, the interest in measures to compare partitions has risen,
specially motivated by the applications these have to average-
based consensus methods, and the various notions of clusterabil-
ity. In this regard, Shortest Path Length metrics (also known
as Minimum Number of Structural Transformations metrics)
have been established as one of the great paradigms for the
comparison of not only partitions, but of structured data in
general. It has been proven that these metrics can encode many
of the properties of the primary notion of proximity that the
refinement relation endows the lattice of partitions with. On the
other hand, another property that has naturally emerges in many
mathematical model in combinatorial optimization, economics,
machine learning, among others, is submodularity, which has
proven to be quite useful from the algorithmic and computational
point of view. Motivated by these facts, a question arose: Are
there Shortest Path Length metric which are submodular in
any of its arguments? In this paper, we prove that there is no
shortest path length metric on the lattice of partitions which is
submodular in any of their arguments, thus demonstrating that
measures such as Mirkin metric and Variation of Information fail
to meet this property. We also prove that there are dissimilarity
measures that are nonnegative; symmetric; satisfy the triangle
inequality; for a chain of partitions, respects the nearness
among partitions in the chain (which basically represent the
aforementioned primary notion of proximity); and, in addition,
are submodular in each of their arguments. These constitute a
novel family of measure for comparing partitions with promising
attributes.

Index Terms—Short Path Length Metrics; Sub-modularity;
Clustering; Lattice of Partitions

I. INTRODUCTION

THE development of technology and computing has en-

abled the processing of large datasets and every day it

becomes more necessary to rely on tools to carry out this task

automatically. The exploratory analysis of data, seeking for

an underlying structure that allows to understand the intrinsic

interrelations among them, is often an obligatory task that

precedes any further analysis or processing. In this regard,

clustering methods play a crucial role. Clustering algorithms

receive a finite dataset X and produce a partition P of X
attempting to ensure that data in the same cluster of P are

closer to each other than those in different clusters of P. Ap-

plications of clustering methods can be find in all the fields of

knowledge, including mathematics, computer science, biology,

social sciences, machine learning, artificial intelligence, and
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engineering. However, in spite of its popularity, until the past

decade, the study of clustering methods was centered at a very

general level of description [1].

Recent contributions have mainly addressed this issue from

two different viewpoints. The first is devoted to the develop-

ment of formal theories for clustering methods and the search

for generic concepts and rules that allow us to understand

the behavior of clustering algorithms [1], [2], [3], while the

second is dedicated to the development of more sophisticated

algorithms whose modus operandi consists of combining the

results of independent algorithms (i.e., the ensemble) to pro-

duce a final partition that is, according to a certain criterion,

better than the originals [4], [5]. Such algorithms are called

consensus algorithms.

Measures for quantifying the distance between partitions

have gained significant attention with the progress of consen-

sus methods, playing a fundamental role in the process of

fusing the partitions in the ensemble into a holistic solution.

In other formal approaches to clustering methods, such as

the analysis of clusterability [6], these measures are used to

evaluate the robustness of the algorithms by means of generic

properties. In the specify scope of partitions comparison,

studies at a more technical level have adopted a perspective

based on the theory of partially ordered sets [7], [8]. The

rationale lies in the fact that the space PX where the partitions

of finite data set X exist has a lattice structure induced by

the refinement relation, which establishes a primary notion

of proximity on PX . This notion requires that distance mea-

sures satisfy nonnegativeness; symmetry; triangle inequality;

for a chain of partitions, nearness among partitions in the

chain is respected; and a sort of predominance of common

sub/superstructures. Measures for comparing partitions have

been analyzed regarding their suitability to represent such

notion of proximity.

Most of the famous measures for comparing partitions, like

the lattice metric, Mirkin metric (Symmetric Difference), Dual

Symmetric Difference, and Variation of Information, are based

on the shortest path length paradigm [4], [9]. Such measures

have been rigorously studied by several authors [10], [11], [12]

from a generic and formal point of view, and they have proven

to be considerably in compliance with the natural organization

of the space of partitions. However, with the immense number

of applications that submodularity [13] has found in machine

learning (e.g., data summarization, including documents and

speech [14], [15], [16]; influence in social network [17]; deep

learning [18]), and clustering being one of the main tasks in

this and other related fields, and motivated by the positive

impact that submodularity would have on the minimization of
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consensus functions, we ask: Is there any Shortest Path Length

metric which is submodular in one of its arguments? (Notice

that if a metric is submodular in one of its arguments, then,

by symmetry, this metric would be submodular in each of

its arguments.) To our knowledge, this question has not been

addressed so far.

In this paper, we prove that there is no Shortest Path Length

Metric for comparing partitions which is submodular in each

of its arguments. In fact, our result goes further: we prove

that there is no metric on the lattice of partitions which is

submodular in each of its arguments and, at the same time,

for a chain of partitions, respects the nearness among partitions

in the chain. In addition to this impossibility result, this

paper introduces a novel family of measures for quantifying

the distance between partitions which are symmetric, satisfy

triangle inequality, for a chain of partitions, respects the

nearness among partitions in the chain, and, in addition, are

submodular in each of its arguments.

II. THE LATTICE OF PARTITIONS OF A FINITE SET X

LET X be a finite set of data with n elements. A partition

P = {C1, C2, . . . , Cs} of X is a collection of non-empty

subsets of X , called the clusters of P, such that X =

s
⋃

i=1

Ci and

Ci

⋂

Cj = ∅ whenever i 6= j. From now on, PX denotes the

set of all the partitions of X with any number of clusters (from

1 to n). Throughout this paper, |S| denotes the cardinality of

the set S, whatever the set S is. In particular, |P| denotes the

number of clusters in the partition P. The space of partitions is

endowed with a lattice structure that induces a primary notion

of proximity between the partitions encoded in the topology

of its Hasse diagram (see below), and any measure intended

to quantify the distance between partitions is expected to be

consistent with such a proximity.

The refinement of partitions —P refines P′ iff every cluster

of P is contained in a cluster of P
′, in notation, P � P

′— is

a partial order on PX . When P � P′, it is usually said that

P is finer than P′, or equivalently, that P′ is coarser than P.

Partition P and P′ such that either P � P′ or P′ � P are called

comparable. If P � P′ and P 6= P′, then we write P ≺ P′.

In addition, we will say that P′ covers P, in notation P < P′,

iff P ≺ P′ and the set {P′′ ∈ PX : P ≺ P′′ ≺ P′} is empty.

Thus, P < P′ iff P′ is obtained from P by merging exactly

two of its clusters. Given two arbitrary partitions, P and P
′,

it is always possible to find a partition that refines both of

them. The coarsest partition satisfying this property is called

the meet of P and P′ and denoted by P∧P′. Two elements of X
are placed in a same cluster of P∧P′ iff they both are placed in

a same cluster of P and in a same cluster of P′. Analogously,

it is always possible to find a partition that is simultaneously

refined by P and P′. The finest partition satisfying this property

is called the join of P and P
′ and denoted by P ∨ P

′. Two

elements of X , say x and x′, are placed in a same cluster of

P∨P′ iff there is a sequence x = x1, x2, . . . , xk = x′ such that

two consecutive elements of this sequence are either placed

in the same cluster of P or in the same cluster of P′. These

operations can be inductively extended to any finite number

of partitions. From now on, mX denotes the meet of all the

partitions in PX , while gX will denote their join. Notice that

mX has as many clusters as elements X has, all of which are

singletons, while gX has only one cluster which is X .

The undirected graph whose node set is PX and an edge

connects the partitions P and P′ if either P < P′ or P′ < P is

called the Hasse diagram of PX and denoted by H(X). This

graph encodes topological relationships between the partitions

and hence it induces a primary notion of proximity between

them. Any measure D for comparing partitions is expected

to be in compliance with this spatial organization/proximity

notion. In other words, if a set X is endowed with both,

the structure of a metric space (i.e., there is a metric defined

on X) and with the structure of a partial ordered set, then

it would be of great benefit for these structures to be in

compliance with each other [19]. One main aspect here lies

in the fact that the basic connections in this space occur

between comparable partitions, which forces all the paths

from one partition P to another partition non-comparable with

P to pass across either a common substructure (e.g., their

meet) or a common superstructure (e.g., the join). Accordingly,

nonnegativeness; symmetry; triangle inequality; for a chain of

partitions, nearness among partitions in the chain is respected;

and the rule for substructures and superstructures, are desirable

for any measure intended to quantify the distance between

partitions. As we will see below, Shortest Path Length metrics

obey the rules established by this primary notion of proximity

in a great extend, and that the reason we focus our attention

on this class of distance measures.

Submodularity, which can be thought as a sort of discrete

convexity, states the following: A function f : L → R defined

on a lattice L is said to be submodular iff, for all a, b ∈ L,

f(a)+ f(b) ≥ f(a∧ b)+ f(a∨ b), where ∧ and ∨ denote the

meet and join operators in L, respectively. Thus, a distance

measure D : PX × PX → R is submodular in its second

argument iff, for all partitions P, P
′, P

′′ ∈ PX ,

D(P, P
′) +D(P, P

′′) ≥ D(P, P
′ ∧ P

′′) +D(P, P
′ ∨ P

′′). (1)

We can interpret this property geometrically in the following

sense: the average distance from a partition P to other partitions

P′ and P′′ is never shorter than the average distance from P

to the substructure P′ ∧ P′′ and to the superstructure P′ ∨ P′′.

Thus, submodularity in the arguments of a metric also tends

to favor substructures and superstructures.

III. SHORTEST PATH LENGTH METRICS

TO define a Shortest Path Length metric d : PX×PX → R

on PX , we start by endowing each edge {Pi, Pj} of H(X)
with a length ℓ(Pi, Pj) > 0 and later we extend this length

function to the set of the paths of H(X) by defining the length

of a path p = P1, P2, . . . , Ps in H(X) as zero if s = 1 (p

consists of a single vertex), otherwise as the sum of the lengths

of its edges: ℓ(p) =

s−1
∑

k=1

ℓ(Pi, Pi+1). Then,

D(P, P
′) = min{ℓ(p) : p connects P and P

′}.
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Two special cases of Shortest Path Length metrics exist

in which the length of the edges in H(X) are defined by

means of an order-preserving function ν : PX → R by setting

ℓ(Pi, Pj) = |ν(Pi) − ν(Pj)|. To make explicit its dependence

on the function ν, we will denote the corresponding shortest

path metric by Dν .

The following Theorem due to [22] provides an analytical

expression for the metric dν for submodular and supermodular

function ν, respectively.

Theorem 1: Let ν be an order-preserving function on PX .

1) ν is a supermodular function if, and only if, for any

partitions P and P
′,

Dν(P, P
′) = ν(P) + ν(P

′)− 2ν(P ∧ P
′).

2) ν is a submodular function if, and only if, for any

partitions P and P′,

Dν(P, P
′) = 2ν(P ∧ P

′)− ν(P)− ν(P
′).

Mirkin metric M , which is defined for two arbitrary parti-

tions P = {C1, . . . , Ck} and P′ = {C′
1, . . . , C

′
k′} by

M(P, P
′) =

1

n





k
∑

i=1

n2
i +

k′
∑

j=1

(n′
j)

2 − 2

k
∑

i=1

k′
∑

j=1

n2
ij



 ,

where ni and n′
j denotes the number of elements in the ith

cluster, Ci, of P and jth cluster, C′
j , of P, respectively, and

nij stands for the number of elements in their intersection,

Ci ∩ C′
j , and Variation of Information, given by

V I(P, P
′) := −

k
∑

i=1

k′
∑

j=1

nij

n

[

log

(

nij

ni

)

+ log

(

nij

n′
j

)]

,

belong to the second family [4]; while Dual Symmetric

Difference, DSD(P, P′) = 1/2
(

2|P| + 2|P
′|
)

− 2|P∨P
′| and the

lattice metric, δ(P, P′) = |P|+ |P′| − 2|P ∨ P′|, fall in the first

class.

Now we focus on the main known properties that all shortest

path length metrics meet, in addition to the metric require-

ments: non-negativity, identity of indiscernibles, symmetry,

and triangle inequality. These properties encode the suitability

of these metrics to represent the basic notion of proximity

induced by the refinement relation in the lattice of partitions.

Proposition 1: Let d be an arbitrary Shortest Path Length

metric on PX . Then:

P1 For every chain P � P
′ � P

′′ in PX ,

(a) D(P, P′) ≤ D(P, P′′); the equality holds if

and only if P′ = P′′.

(b) D(P′′, P′) ≤ D(P′′, P); the equality holds if

and only if P = P′.

P2 For any partitions P and P′, either

D(P, P
′) ≥ D(P, P ∧ P

′) or D(P, P
′) ≥ D(P, P ∨ P

′).

SUP If ν is a supermodular function, then

Dν(P, P
′) = Dν(P, P ∧ P

′) +Dν(P ∧ P
′, P

′).

In particular,

Dν(P, P
′) ≥ Dν(P, P ∧ P

′).

SUB If ν is a supermodular function, then

Dν(P, P
′) = Dν(P, P ∨ P

′) +Dν(P ∨ P
′, P

′).

In particular,

Dν(P, P
′) ≥ Dν(P, P ∨ P

′).

IV. INCLUDING SUBMODULARITY

IN this section, we investigate the compatibility and inter-

relations between submodularity and the other desirable

properties such as P1. We also analyze how these properties

govern together the behavior of those distance measures that

meet all of them simultaneously.

Proposition 2: Let D : PX × PX → R be a symmetric

dissimilarity measure satisfying P1 and, for every partition P,

D(P, .) : PX → R is submodular. Then, for any partition

P′ ∈ PX , P 6= P′,

(i) D(P, P′) ≥ max{D(P, P ∧ P′), D(P, P ∨ P′)}.
(ii) D(P, P) < D(P, P′).

Proof. The submodularity of D(P, .) ensures that

D(P, P) +D(P, P
′) ≥ D(P, P ∧ P

′) +D(P, P ∨ P
′). (2)

Consider the chain P ∧ P′ � P � P ∨ P′. P1(a) assures

that D(P, P) ≤ D(P, P ∨ P′), whereas P1(b) guarantees that

D(P, P) ≤ D(P, P ∧ P′). Thus

D(P, P) ≤ min{D(P, P ∧ P
′), D(P, P ∨ P

′)}

and therefore inequality (2) forces

D(P, P
′) ≥ max{D(P, P ∧ P

′), D(P, P ∨ P
′)},

which gives (i).

In addition, notice that since P 6= P′, either P 6= P ∧ P′ or

P 6= P ∨ P′, which ensures that D(P, P) < D(P, P ∧ P′) or

D(P, P) < D(P, P ∨ P
′). Consequently,

D(P, P) ≤ min{D(P, P ∧ P
′), D(P, P ∨ P

′)}

< max{D(P, P ∧ P
′), D(P, P ∨ P

′)} ≤ D(P, P
′),

which yields (ii). �

The first of these statements basically tells us that the dis-

tance traveled from a partition P to a non-comparable partition

P′ is greater than or equal to the distance traveled from P

to either the optimal common substructure (the meet) or the

optimal common superstructure (the join). Thus, the inclusion

of submodularity restricts the behavior of the dissimilarity D
in relation to the conditions that Shortest Path Length metrics

demand, since, as shown in Proposition 1, these metrics favor

one of these structures, but not necessarily both. In turn, the

second statement establishes what is considered the most basic

fact about distance: no partition is closer to a partition P than

P itself.

This basic proposition enables us to prove that Mirkin met-

ric and Dual Symmetric Difference metric, among other alike

metrics, fail to satisfy submodularity. Indeed, if we consider

X = {a, b, c, d}, then for the partitions P = {{a}, {b, c, d}}
and P′ = {{a, c}, {b, d}}, whose meet and join are P ∧ P′ =
{{a}, {c}, {b, d}} and P ∨ P′ = {{a, b, c, d}}, then Mirkin
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metric satisfies M(P, P′) = 0.75 and M(P′, P ∨ P′) = 1. If

instead, we consider the partitions P = {{a, b}, {c, d}} and

P′ = {{a, c}, {b, d}}, whose meet and join are P ∧ P′ =
{{a}, {c}, {b}, {d}} and P ∨ P′ = {{a, b, c, d}}, then, for

Dual Symmetric Difference, we get DSD(P, P′) = 2 and

DSD(P, P ∧ P′) = 6. However, we have not been able to find

a counterexample for Variation of Information, for instance.

A natural question then arises: which are the characteristic

features of the metrics that are submodular in each of its

arguments? The following theorem provides an answer to this

question.

Theorem 2: Let D be a metric on PX which is submodular

in each of its arguments. Then, for all P, P′ ∈ P,

(i) D(P, P′) = D(P, P ∧ P′) +D(P, P ∨ P’).
(ii) D(P, P

′) = D(P, P ∧ P
′) +D(P

′, P ∧ P’).
(iii) D(P, P′) = D(P, P ∨ P′) +D(P′, P ∨ P’).

In addition,

(iv) For any nonmodular sublattice L of PX with five

elements, say Pa, Pb, Pc, Pe and Pf , such that Pb ≺ Pc

and

Pa∧Pb = Pa∧Pc = Pe, Pa∨Pb = Pa∨Pc = Pf , (3)

the functions D(Pa, .), D(Pe, .) and D(Pf , .) are

positive constant functions on the interval [Pb, Pc]. In

other words, there are α, β, γ ∈ R, α ·β ·γ 6= 0, such

that D(Pa, P) = α, D(Pe, P) = β and D(Pf , P) = γ,

for every partition P ∈ [Pb, Pc].
(v) β + γ = α.

(vi) D(P, P′) ≤ α, for any partitions P, P′ ∈ [Pb, Pc].
(vii) D(Pe, Pf ) ≤ α.

Proof. Let D be a metric which satisfies our hypothesis, and

let P and P′ be arbitrary partitions of X . On the one hand,

submodularity of D combined with its symmetry and the fact

that D(P, P) = D(P′, P′) = 0, yields

D(P, P
′) ≥ D(P, P ∧ P

′) +D(P, P ∨ P
′); and (4)

D(P, P
′) ≥ D(P

′, P ∧ P
′) +D(P

′, P ∨ P
′). (5)

On the other hand, triangular inequality ensures

D(P, P
′) ≤ D(P, P ∧ P

′) +D(P
′, P ∧ P

′); and (6)

D(P, P
′) ≤ D(P, P ∨ P

′) +D(P
′, P ∨ P

′). (7)

Subtracting (5) from the sum of (6) and (7), we get

D(P, P
′) ≤ D(P, P ∧ P

′) +D(P, P ∨ P
′), (8)

and by virtue of (4)

D(P, P
′) = D(P, P ∧ P

′) +D(P, P ∨ P
′), (9)

which proves (i).

Similarly, subtracting (7) from the sum of (4) and (5), we

obtain

D(P, P
′) ≥ D(P, P ∧ P

′) +D(P
′, P ∧ P

′), (10)

and by virtue of (6)

D(P, P
′) = D(P, P ∧ P

′) +D(P
′, P ∧ P

′), (11)

which yields (ii). Statement (iii) follows analogously by sub-

tracting (6) from the sum of (4) and (5) and then applying

(7).

Now, we shall proceed analogously to [23]. As PX is not

a modular lattice, there is a nonmodular sublattice with five

elements, say Pa, Pb, Pc, Pe and Pf such that Pb ≺ Pc and

Pa ∧ Pb = Pa ∧ Pc = Pe, Pa ∨ Pb = Pa ∨ Pc = Pf . (12)

Note now that, for any partition P ∈ [Pb, Pc], Pe = Pa∧Pc �
Pa∧P � Pa∧Pc = Pe and Pf = Pa∨Pc � Pa∨P � Pa∨Pc = Pe,

and hence, in view of (i), we get

D(Pa, P) = D(Pa, Pa ∧ P) +D(Pa, Pa ∨ P)

= D(Pa, Pe) +D(Pa, Pf ), (13)

which does not depend on P. Thus D(Pa, .) is constant (and

equals to some α > 0) in the interval [Pb, Pc]. Moreover, (i)

also yields

D(Pa, P) = D(P, Pa ∧ P) +D(P, Pa ∨ P)

= D(P, Pe) +D(P, Pf ). (14)

Now using (ii), it can be concluded that

D(Pa, P) = D(Pa, Pa ∧ P) +D(P, Pa ∧ P), (15)

which becomes, in view of (14),

D(P, Pe) +D(P, Pf ) = D(Pa, Pe) +D(P, Pe), (16)

and therefore D(P, Pf ) = D(Pa, Pe), which means that

D(P, Pf ) does not depend on the partition P and is equal to

some constant γ.

Condition (iii), on the other hand, allows us to see that

D(Pa, P) = D(Pa, Pa ∨ P) +D(P, Pa ∨ P), (17)

which can be transformed, by virtue of (14), into

D(P, Pe) +D(P, Pf ) = D(Pa, Pf ) +D(P, Pf ), (18)

and hence D(P, Pe) = D(Pa, Pf ). Thus, D(P, Pf ) to be equal

to some constant β. This proves (iv), and (v) follows by

replacing in (14) D(Pa, P), D(Pe, P) and D(Pf , P) by α, β
and γ, respectively.

Finally, for any P, P′ ∈ [Pb, Pc], triangle inequality ensures

D(P, P
′) ≤ D(P, Pe) +D(Pe, P

′); and (19)

D(P, P
′) ≤ D(P, Pf ) +D(Pf , P

′). (20)

Adding (19) and (20), we obtain

2D(P, P
′) ≤ D(P, Pe)+D(P, Pf )+D(Pe, P

′)+D(Pf , P
′), (21)

but the right term in (21) is equal to 2α, so D(P, P′) ≤ α.

This proves (vi).

Furthermore, triangle inequality assures that

D(Pe, Pf ) ≤ D(Pe, P) +D(P, Pf ) = α,

which completes the proof. �

Corollary 1: If D is a metric which is submodular in each

of its arguments, then D does not satisfy neither P1(a) nor

P1(b).
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Proof. Since Pe ≺ Pb ≺ Pc and, by virtue of Theorem

2, Statement 4., D(Pe, .) is constant on the interval [Pb, Pc],
D(Pe, Pb) = D(Pe, Pc), which contradicts P1(a).

Similarly, the refinements Pb ≺ Pc ≺ Pf and the fact that

D(Pe, .) is constant on the interval [Pb, Pc], also consequence

of Theorem 2, Statement 4., yield D(Pf , Pc) = D(Pf , Pb),
which contradicts P1(b). �

Corollary 2: There is no Shortest Path Length metric which

is submodular in each of its arguments. In particular, Variation

of Information and Lattice Metric fail to be submodular in each

of its arguments.

V. A NOVEL FAMILY OF MEASURES

IN contrast with the results above, in this section we prove

that there are distance measures which are “almost” metrics

and preserve the main properties of the Shortest Path Length

metrics.

Theorem 3: Let ω, ω′ : PX × PX → R be decreasing

monotonic functions such that ω is submodular and ω′ is

supermodular. Suppose in addition that, for all P, P′ ∈ PX

such that P � P′, ω(P) ≥ ω′(P′). Then, for arbitrary partitions

P, P′ and P′′ of X , the measure

Dωω′(P, P
′) = ω(P ∧ P

′)− ω′(P ∨ P
′)

satisfies:

(i) P1(a) and P1(b).

(ii) Submodularity in each of its arguments.

(iii) Non-negativity: for any partitions P, P′ ∈ PX ,

Dωω′(P, P
′) ≥ 0.

(iv) Identity of Indiscernibles: for any partitions P, P′ ∈
PX , Dωω′(P, P) ≤ Dωω′(P, P′), and the equality

holds if, and only if, P = P′.

(v) Symmetry: for any partitions P, P′ ∈ PX ,

Dωω′(P, P
′) = Dωω′(P

′, P).

(vi) Triangle Inequality: for any partitions P, P
′, P

′′ ∈ PX ,

Dωω′(P, P
′) ≤ Dωω′(P, P

′′) +Dωω′(P
′′, P

′).

Proof. (To simplify the notation, we shall use D instead of

Dωω′ throughout the proof.)

Let P � P′ � P′′. Then P ∧ P′ = P ∧ P′′ = P, whereas

P∨P′ = P′ and P∨P′′ = P′′. Thus, D(P, P′) = ω(P)−ω′(P′) and

D(P, P′′) = ω(P)− ω′(P′′). Since ω′ is a decreasing function,

ω′(P′) ≥ ω′(P′′) and hence D(P, P′) ≤ D(P, P′′). This shows

that D satisfies the axiom P1(a). Analogously, P′′ ∧ P = P and

P′′ ∧ P′ = P′, while P′′ ∨ P = P′′ ∨ P′ = P′′. So, D(P′′, P) =
ω(P) − ω′(P′′) and D(P′′, P′) = ω(P′) − ω′(P′′). By virtue of

the decreasing monotonicity of ω, ω(P) ≥ ω(P
′) and therefore,

D(P′, P′′) ≤ D(P, P′′). This proves that D satisfies P1(b).

Let us prove now that D(P, .) is a submodular function.

Indeed, let P, P
′ and P

′′ be arbitrary partitions in PX . Then,

D(P, P
′) +D(P, P

′′) =

ω(P ∧ P
′)− ω′(P ∨ P

′) + ω(P ∧ P
′′)− ω′(P ∨ P

′′),

or, equivalently,

D(P, P
′) +D(P, P

′′) =

ω(P ∧ P
′) + ω(P ∧ P

′′)− ω′(P ∨ P
′)− ω′(P ∨ P

′′).
(22)

Also,

D(P, P
′ ∧ P

′′) +D(P, P
′ ∨ P

′′) = ω(P ∧ (P
′ ∧ P

′′))−

ω′(P ∨ (P
′ ∧ P

′′)) + ω(P ∧ (P
′ ∨ P

′′))− ω′(P ∨ P
′ ∨ P

′′),

which can be regrouped to be

D(P, P
′ ∧ P

′′) +D(P, P
′ ∨ P

′′) = ω(P ∧ (P
′ ∧ P

′′))+

ω(P ∧ (P
′ ∨ P

′′))− ω′(P ∨ (P
′ ∧ P

′′))− ω′(P ∨ P
′ ∨ P

′′).
(23)

On the one hand, submodularity of ω forces

ω(P∧ P
′)+ω(P∧ P

′′) ≥ ω(P∧ P
′∧ P

′′)+ω((P∧ P
′)∨ (P∧ P

′′)).
(24)

On the other hand, since P ∧ P′ refines both P and P′ ∨ P′′,

we get P ∧ P′ � P ∧ (P′ ∨ P′′); and similarly we deduce that

P∧P′′ � P∧(P′∨P′′). Hence, (P∧P′)∨(P∧P′′) � P∧(P′∨P′′).
Using now the monotonicity of ω, we can conclude that

ω((P ∧ P
′) ∨ (P ∧ P

′′)) ≥ ω(P ∧ (P
′ ∨ P

′′)). (25)

Combining (24) with (25), we can assert that

ω(P ∧ P
′) + ω(P ∧ P

′′) ≥ ω(P ∧ P
′ ∧ P

′′) + ω(P ∧ (P
′ ∨ P

′′)),

and by (22)

D(P, P
′) +D(P, P

′′) ≥ ω(P ∧ P
′ ∧ P

′′)

+ω(P ∧ (P
′ ∨ P

′′))− (ω′(P ∨ P
′) + ω′(P ∨ P

′′)).
(26)

Similarly as we did before with ω, we can use the supermod-

ularity of ω′ to get

ω′(P∨P
′)+ω′(P∨P

′′) ≤ ω′((P∨P
′)∧(P∨P

′′))+ω′(P∨P
′∨P

′′).
(27)

Since (P ∨ P
′)∧ (P ∨ P

′′) � P and (P ∨ P
′)∧ (P ∨ P

′′) � P
′ ∧ P

′′,

(P∨P′)∧(P∨P′′) � P∨(P′∧P′′), and view of the monotonicity

of ω′,

ω′((P ∨ P
′) ∧ (P ∨ P

′′)) ≤ ω′(P ∨ (P
′ ∧ P

′′)). (28)

Jointly using (27) and (28), we obtain

ω′(P∨P
′)+ω′(P∨P

′′) ≤ ω′(P∨(P
′∧P

′′))+ω′(P∨P
′∨P

′′), (29)

which, substituted in (26), gives

D(P, P
′) +D(P, P

′′) ≥ ω(P ∧ P
′ ∧ P

′′)

+ω(P ∧ (P
′ ∨ P

′′))− ω′(P ∨ (P
′ ∧ P

′′)) + ω′(P ∨ P
′ ∨ P

′′)).
(30)

Now comparing the right members in (23) and (30), we get

D(P, P
′) +D(P, P

′′) ≥ D(P, P
′ ∧ P

′′) +D(P, P
′ ∨ P

′′),

which proves 2..

Since P∧ P′ � P∨ P′, in view of the hypothesis, ω(P∧ P′) ≥
ω′(P ∨ P′). Hence, D(P, P′) = ω(P ∧ P′) − ω′(P ∨ P′), which

proves 3..
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Identity of indiscernibles is an immediate consequence of

Statement 2. and Proposition 2.

In turn, Symmetry is trivially derived from the fact that the

meet and join are symmetric operators, which gives 5..

Finally, let us verify triangle inequality. Let P, P′ and P′′ be

arbitrary partitions of X .

D(P, P
′′) +D(P

′′, P
′) =

ω(P ∧ P
′′) + ω(P

′′ ∧ P
′)− ω′(P ∨ P

′′)− ω′(P
′′ ∨ P

′).
(31)

Using first the submodularity of ω and then its monotonicity,

we get

ω(P ∧ P
′′) + ω(P

′′ ∧ P
′) ≥

ω(P ∧ P
′ ∧ P

′′) + ω((P ∧ P
′′) ∨ (P

′′ ∧ P
′)) ≥

ω(P ∧ P
′) + ω((P ∧ P

′′) ∨ (P
′′ ∧ P

′)).

Then, according to (31),

D(P, P
′′) +D(P

′′, P
′) ≥ ω(P ∧ P

′)+

+ω((P ∧ P
′′) ∨ (P

′′ ∧ P
′))− ω′(P ∨ P

′′)− ω′(P
′′ ∨ P

′).
(32)

Now, applying the submodularity of −ω′ and thereupon its

monotonicity, we obtain

−ω′(P ∨ P
′′)− ω′(P

′′ ∨ P
′) ≥

−ω′((P ∨ P
′′) ∧ (P

′′ ∨ P
′))− ω′(P

′′ ∨ P
′ ∨ P) ≥

−ω′((P ∨ P
′′) ∧ (P

′′ ∨ P
′))− ω′(P

′ ∨ P).

Thus, (32) ensures

D(P, P
′′) +D(P

′′, P
′) ≥ ω(P ∧ P

′) + ω((P ∧ P
′′) ∨ (P

′′ ∧ P
′))−

−ω′((P ∨ P
′′) ∧ (P

′′ ∨ P
′))− ω′(P

′ ∨ P),

and therefore,

D(P, P
′′) +D(P

′′, P
′) ≥ D(P, P

′)+

+ω((P ∧ P
′′) ∨ (P

′′ ∧ P
′))− ω′((P ∨ P

′′) ∧ (P
′′ ∨ P

′)).
(33)

Since (P ∧ P′′) ∨ (P′′ ∧ P′) � (P ∨ P′′) ∧ (P′′ ∨ P′), we can

conclude, in view of the hypothesis, that

ω((P ∧ P
′′) ∨ (P

′′ ∧ P
′))− ω′((P ∨ P

′′) ∧ (P
′′ ∨ P

′)) ≥ 0,

and hence

D(P, P
′′) +D(P

′′, P
′) ≥ D(P, P

′).

�

It is worthy to emphasize that Theorem 3 does not claim

that Dωω′ is metric (this would contradicts Theorem 2). The

impossibility lies in the fact that Dωω′(P, P), even though is

the minimum distance traveled from P to another partition

(including P), is not necessarily zero, and may vary if we

change the initial partition P, which are requirements for a

distance measure to be a metric. However, this condition does

not seem to be essential for most of the tasks where measures

to compare partitions play a crucial role. In contrast, submodu-

larity has proven to be a property that favors the performance

of the functions inserted in some mathematical frameworks

intended to model certain machine learning problems, such as

data summarization [14] and image processing [18], to only

mention a few.

An example of a dissimilarity function that satisfies the

premises of Theorem 3 is D
I

|.|
σ

: PX × PX → R, σ ≥ n,

given by

D
I

|.|
σ

(P, P
′) = I(P ∧ P

′)−
|P ∧ P′|

σ
,

where I : PX → R is Information Measure (sifted up 1

unit), given by

I(P) = 1 +
s
∑

i=1

log

(

n

ni

)

.

The values of this measure are compiled in Table I for X =
{a, b, c}. Here mX = {{a}, {b}, {c}}, Pab = {{a, b}, {c}},

Pac = {{a, c}, {b}}, Pbc = {{a}, {b, c}}, and gX =
{{a, b, c}}.

mX Pab Pac Pbc g
X

mX 1.43 1.76 1.76 1.76 2.09
Pab 0.99 2.09 2.09 1.32
Pac 0.99 2.09 1.32
Pbc 0.99 1.32
mX 0.66

TABLE I
VALUES OF D

I
|.|
σ

, σ = 3.

VI. CONCLUSIONS

IN this paper we addressed the question about the existence

of measures for quantifying the distance between partitions

that are submodular in each of their arguments and, at the

same time, are consistent with the primary notion of proximity

of which the refinement relation naturally endows the lattice

of partitions of a finite set X . In this regard, we proved in

first instance that there is no metric on the lattice of partition

which satisfy these conditions. In particular, we concluded that

no Shortest Path Length metric on the lattice of partitions

is submodular in each of its arguments. Contrasting with

this impossibility result, we introduced we proved that there

are nonnegative and symmetric distance measures that satisfy

triangle inequality; for a chain of partitions, respects the

nearness among partitions in the chain; and, in addition, are

submodular in each of their arguments.

A potential application of this work is the construction of

average-based consensus functions. Such functions would in-

herit the submodularity property from the associated measure

for quantifying the distance between partitions, which could

provide several algorithmic and computational advantages.

With the incrementally increase in the applications, interest

in effective methods to minimize submodular functions has

increased tremendously in recent years. This impetus has led

to the emergence of sophisticated and promising algorithms

to solve the problem of minimizing a submodular function,

mostly in distributive lattices. Among the most important

references are the pioneering contribution of A. Schrijver [24],

providing one of the two first strongly polynomial algorithms

intended to minimize arbitrary submodular set functions, the

subsequent relevant contributions from S. Fijishige and S.

Itawa (see, for instance,[25], [26], [27], [28]), and another

strongly polynomial algorithm, probably nowadays the fastest

one, from J. B. Orlin [29]. More recently [30] [31].
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