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Abstract—In this paper we propose an improvement of the stochas-
tic Picard–Runge–Kutta solvers for large autonomous systems of
ordinary differential equations. These solvers deliver best results
for systems with a sparse incidence matrix, for example in the
case of spatially discretized partial differential equations. Their basic
principle is the fact that the paths of Markov jump processes can
be used as an approximation for solutions of systems of differential
equations. The step function X̃ computed by the simulation of
the jump processes or the Picard–approximation X̄ can serve as
a predictor which is further improved by suitable correction steps.
Given the improved approximation X∗(t) at time t, we compute the
corresponding approximation at time t + h by an integral scheme

of the form X∗(t + h) = X∗(t) +

∫ t+h

t

Q(s) ds. For computing

the improved approximations X∗(·) we take for the integrand Q a
polynomial which interpolates some equidistant intermediate values
of F (X̃(·)) or F (X̄(·)) between t and t + h. By using an exact
quadrature formula in order to compute the integral above, we can
employ the principle of the Runge–Kutta method in order to compute
a better approximation. The goal of this paper is to improve the
precision of the intermediate values used by the above described
stochastic Runge–Kutta method. The improved values are computed
by a stochastic counterpart of a second-order Runge–Kutta method.
The result is a high precision scheme with several layers, which
starts from the crude approximation delivered by the standard jump
process, and based on this data it computes several steps in which
the approximations are successively refined.

I. INTRODUCTION

In this paper we will show how solutions of large au-
tonomous systems of ordinary differential equations can be
efficiently approximated by using a suitable stochastic method.
The scheme delivers the best results for systems with a
sparse incidence matrix, for example in the case of spatially
discretized partial differential equations. Its basic principle is
the fact that the dynamics of Markov jump processes can
be used as an approximation for solutions of systems of
differential equations, as shown in [1].

The motivation comes mainly from the field of chemical
kinetics, see [2], [3]. In these papers a particular form of
jump process was introduced which, instead of describing the
reactions at the molecular level, mimics rather the macroscopic
dynamics given by the limit equations Ẋ = F (X), F =
(Fi)

n
i=1. The approach is called direct simulation method and

represents a sort of ”digitization” of the corresponding differ-
ential equations. A path computed by this approach is denoted
by X̃(·), being a vector-valued step function. In contrast to the
standard deterministic solvers, here in a computational step
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only one component X̃i is changed. The selection occurs at
random, with probabilities proportional to the absolute value
of the right hand side of the equations Fi(X̃(s)), whose sign
indicates the direction of the change. The chosen component
is changed by a value of ±1/N , i.e. with the weight of a
virtual numerical particle, which can be also interpreted as
the ”resolution” of the approximation. The time is advanced by
the usual exponentially distributed waiting time related to the
underlying Markov jump process. Its length is adapted, since
the mean depends on the current state of the process, being
inverse proportional to its total rate. Considerations regarding
applications in other fields and implementations aspects are
presented in the book [4].

The paper [7] applies the direct simulation method to
discretized partial differential equations driven mainly by
diffusion and/or convection. The experiments showed that
this scheme approximates the macroscopic dynamics given
by the differential equation better than alternative modeling
approaches, which simulate the flux or even the Brownian
motion at the molecular level. Nevertheless, the performance
of the stochastic schemes based on jump processes turns out
to be far from that of standard deterministic solvers.

One possible approach for improving the direct simulation
method is the so called tau leap scheme, see [5], [6], where
one computes basically the number of jumps in a given (larger)
time- interval and then performs all transitions at once.

Improvements based on a different principle are reported in
[8] and [9]. The step function X̃(·) computed by the direct
simulation approach can serve as a predictor which is further
improved by suitable correction steps. Given the improved
approximation X∗(t) at time t, we compute the corresponding
approximation at time t+h by an integral scheme of the form

X∗(t+ h) = X∗(t) +

∫ t+h

t

Q(s) ds. (1)

One possibility is to take Q(s) = F (X̃(s)), i.e. to perform
a Picard iteration based on the predictor X̃(·) in order to
obtain a better approximation denoted in particular by X̄(·).
The integral can be computed exactly during the simulation
of the jump process, since the integrand is a step function.

A range of further possibilities for computing improved
approximations X∗(·) opens if we take for the integrand Q
a polynomial which interpolates some intermediate values of
F (X̃(·)) or F (X̄(·)). The directly simulated process X̃ or
the Picard–approximation X̄ are evaluated here at some few
equidistant points between t and t + h. By using an exact
quadrature formula in order to compute the integral in (1), we
can employ the principle of the Runge–Kutta method in order

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 13, 2019

ISSN: 1998-0140 60



to further improve our approximation. The length h of the
time interval can be taken either fixed, or adapted (controlled
by a given number of jumps of the process). Tests on stan-
dard benchmark equations show that this improved stochastic
method can be comparable or even more efficient than the
standard deterministic ODE-solver ode45 (or Dormand–Prince
Runge–Kutta method) implemented under the same conditions
as the former one.

In this paper we will discuss the possibility of enhancing
the performance of the stochastic solvers presented in [8] and
[9] by improving the precision of the intermediate values used
within the Runge–Kutta principle.This is done by first applying
in this stochastic framework a Runge–Kutta step similar to the
corresponding standard deterministic second order method. In
section II is given a detailed description of the basic methods
and of their improvements, while section III presents the
results of numerical experiments. After this, we make some
comments and draw some conclusions concerning the results
obtained by using the scheme proposed in this paper.

II. DESCRIPTION OF THE METHODS

The basic stochastic direct simulation scheme for au-
tonomous systems of ODE Ẋ = F (X) which is then suc-
cessively improved delivers paths of a Markov jump process
X̃(·). Its feature is that at every jump only one component of
the process is changed with a fixed amount ±1/N , which can
be interpreted as the resolution of the method. The component
i which is chosen to be changed in the next step is selected
at random with a probability proportional to |Fi(X̃(t))|. The
steps of the direct simulation method are the following: While
t ≤ tmax do:

1) Given the state vector X̃(t) of the process at time t:
2) Select a component Xi with probability proportional to
|Fi(X̃(t))|.

3) The time step ∆t = − logU/λ with U uniformly
distributed on (0, 1) is then exponentially distributed
with parameter λ = N

∑n
i=1 |Fi(X̃(t))|.

4) Update the value of the selected component: X̃i 7→ X̃i+
1
N sign(Fi(X̃)) and set the new time as t = t+ ∆t.

5) Update the values of Fj(X̃(t)) for all j (for which
Fj(X̃(t)) depends explicitly on the changed component
X̃i in step 2).

6) GOTO 1.

Writing the ODE system on the time interval [t, t + h] in
the integral form yields:

X(t+ h) = X(t) +

∫ t+h

t

F (X(s)) ds.

Assuming that X̄(t) is an approximation for the exact solution
X(t) and that we have simulated a path X̃(s), t ≤ s ≤ t+h,
we can use these data in order to compute an approximation
for X(t+ h) which improves the crude result X̃(t+ h). This
is done by a Picard-iteration:

X̄(t+ h) = X̄(t) +

∫ t+h

t

F (X̃(s)) ds.

The integral to be computed is that of a step function and can
be computed explicitly, by updating its value after every jump
of the Markov process X̃(·).

A further improvement of the precision of the above
schemes is the employment of Runge–Kutta steps of the
general form

X∗(t+ h) = X∗(t) +

∫ t+h

t

Q(s) ds, (2)

where X∗(t) is a given approximation for the exact solution
X(t) and Q(s) is a vector of polynomials which approximates
the exact term F (X(s)). Note that in the case of Picard
iterations we have approximated it by F (X̃(s)), i.e. by using
the path of the simulated Markov jump process. The polyno-
mial Q(s) used by the Runge–Kutta steps interpolates some
equidistant intermediate values t+αih between t and t+h and
its integral can be computed by an exact quadrature formula.
We basically use three such methods, which are similar to the
standard deterministic Runge–Kutta schemes, with the only
difference that here the intermediate values are the result
of stochastic simulations. If ki are proper approximations of

F (X(t + αih)), the integral
∫ t+h

t

Q(s) ds can be therefore

computed by one of the following quadrature schemes:

h

(
1

2
k1 +

1

2
k2

)
(3)

which integrates exactly the linear interpolation for the two
nodes and is similar to the deterministic second order Heun
method. In combination with (2) we call this the (RK2)-
scheme.

The next choice is

h

(
1

6
k1 +

4

6
k2 +

1

6
k3

)
(4)

which integrates exactly the quadratic and cubic interpolation
polynomial for the three nodes, similar to the Simpson’s 1/3
(or Kepler’s) rule, corresponding to a deterministic Runge–
Kutta scheme of third order. In combination with (2) we call
this the (RK3)-scheme.

The final possibility which we discuss here is

h

(
1

8
k1 +

3

8
k2 +

3

8
k3 +

1

8
k4

)
(5)

which integrates exactly the cubic interpolation polynomial for
the four nodes and corresponds to Simpson’s 3/8 rule, similar
to the corresponding deterministic Runge–Kutta method of
fourth order. In combination with (2) we call this the (RK4)-
scheme.

In all the above schemes, ki are stochastic approximations
of F (X(t+αih)), i.e. of values at some equidistant time steps
t+αih between t and t+h, which are computed by the direct
simulation method possibly followed by a Picard iteration.
Additionally, k1 is a further improved approximation at the
end of the previous small time interval of length h by one of
the Runge–Kutta steps described above. The length h of these
time intervals can be either fixed or automatically adapted, by
prescribing a given number of jumps of the Markov process
X̃(·).
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The methods based on the previously described steps were
introduced in [8] and [9] and showed good results when
applied to large ODE systems arising from parabolic PDE’s
by finite difference spatial discretization.

However, there is still room for improvement. In order to
compute the terms ki used in the Runge–Kutta steps, their
precision can be enhanced by using a Picard iteration and/or a
Runge–Kutta step of order two, both on the last small (partial)
time interval. We illustrate this feature by describing in detail
the steps involved in the scheme (4) with a fixed time step h.

1) Start with the state vector X∗(t) at time t.
2) Compute k1 = F (X∗(t)) as an approximation for

F (X(t)).
3) Compute a path X̃(s) of the Markov jump process

by the above direct simulation method, until the time
variable exceeds h/2, i.e. the half of the length of the
time interval on which the Runge–Kutta scheme (4) is
applied.

4) Compute optionally an improved approximation X̄(t+
h/2) by a Picard iteration on [t, t + h/2] and then a
further improved value X∗(t+h/2) by using a Runge–
Kutta step of type (3) on [t, t+ h/2] for the integral in
(2). With this value compute the approximation k2 =
F (X∗(t+ h/2)) for F (X(t+ h/2)).

5) The final time step where we stop the direct simulation
of X̃(·) is when the time variable exceeds t + h. By
similar steps as above in 4) compute the approximation
k3 = F (X∗(t+ h)) for F (X(t+ h)).

6) Compute the approximation X∗(t+h) by using formula
(4) in order to compute exactly the integral in (2).

If one uses the method (5) the steps are similar. The length
of the time subintervals will be then taken to be h/3. We
need then three intermediate steps as above, at the moments
t+ h/3, t+ 2h/3 and t+ h in which we may employ Picard
iterations followed by Runge–Kutta steps (3). As in the scheme
described above, we compute the values k1, k2, k3, k4 and use
the quadrature formula (5) for the integral in (2), which finally
leads to the improved approximation for X(t+ h).

At this point a remark is needed. The jump process X̃ stays
a random time interval of length ∆t in its current state and
will change only after this time. Since we need values at
intermediate time points, for example t + h/2, we take the
value of the process at this time, i.e. before the jump. In this
case the jump is not performed and the value is that one given
after the previous jump, where it has been effectively changed.
The same remark also applies if we use Picard iterations.
Here we take again the values before the jump, since the
terms which are involved are integrals of right continuous step
functions, which change only after ∆t, but this new value has
no effect if integrating over a past time interval.

The adaptive version of these methods use variable lengths h
of time intervals which are determined implicitly by prescrib-
ing a given number M of jumps (typically of a magnitude
order equal to the number of equations). In the adaptive RK2-
scheme the value h is given by adding the corresponding
random waiting times, for the RK3 (RK4) scheme we take
this value as h/2 (h/3) and perform the intermediate steps
on intervals of this length, which can be computed after

the prescribed number of jumps has occurred. That is, after
automatically determining the length of the first half (third)
of the time interval of size h, we can compute the other time
moments of the current step where the intermediate values ki
are evaluated.

We note that the structure of the scheme used for computing
the approximation X∗(t + h) for the exact solution vector
X(t+h) (with fixed or variable time step h) consists in several
layers of successive improvements.

At the first level we have a path X̃ of a Markov jump
process, which in general is a very crude approximation.
However, we can take advantage of the fact that we have
computed a full path of it, which also reflects the exact
dynamics which it approximates.

Optionally we can compute improved approximations at the
intermediate time steps by Picard iterations.

Starting either from these values, or directly from the path
of the jump process, we compute a next level of improved
approximations of these intermediate values by the (RK2)
scheme. Finally, we compute the best approximation for
X(t+ h) by using these values within the schemes (RK3) or
(RK4), calling them respectively (RK23) and (RK24) methods,
additionally specifying by ’-pic’ if also the Picard iteration has
been used or ’-adap’ if the times steps h are not fixed, but
adaptively computed.

III. NUMERICAL SIMULATIONS

We illustrate the application of the described methods at the
standard test equation

∂u

∂t
= ∆u+

5eδ

δ
(2− u) exp

(
− δ
u

)
(6)

with initial condition u0 ≡ 1, on (0, 1) with boundary
conditions ∂νu(0) = 0 and u(1) = 1.

The variable u denotes a temperature which increases up to
a critical value when ignition occurs (for example for δ = 30
at time t = 0.240) resulting in a fast propagation of a reaction
front towards the right end of the interval (in the mentioned
case t = 0.244). Due to the very high speed and the steepness
of the front, a very precise time resolution is very important
in any numerical approximation of this problem.

The ODE system considered for our numerical tests is a
finite difference discretization over n = 500 gridpoints of the
PDE (6).

We first consider a fixed time discretization step h = 10−7

and N denotes the factor which is multiplied with the number
n of equations, that is after a jump of the Markov process, the
corresponding component is changed by ±1/(Nn).

The CPU-times (in seconds) and the corresponding errors
(in the max-norm), based on a reference solution computed
with the maximal possible precision of the MATLAB solver
ode113, are plotted in the following tables.

Results for the RK3-type methods:

N = 102 N = 103 N = 104

RK3 285, 8.36e-6 371, 1.03e-5 1216, 1.69e-5
RK3-pic 678, 6.01e-7 789, 1.31e-7 1823, 9.47e-8

RK23 440, 1.80e-7 523, 1.94e-7 1375, 1.41e-7
RK23-pic 808, 8.18e-8 921, 7.94e-8 2062, 3.79e-8
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Results for the RK4-type methods:

N = 102 N = 103 N = 104

RK4 359, 3.43e-5 446, 5.50 e-6 1295, 2.13e-5
RK4-pic 917, 2.87e-7 1030, 7.30e-7 2184, 2.35e-7

RK24 560, 2.20e-7 652, 4.48e-8 1515, 9.84e-8
RK24-pic 1139, 7.74e-8 1257, 7.35e-8 2331, 6.49e-8

First some general remarks. We note that all solvers tested
here deliver high precision computations, which are limited
only by the value taken for the time discretization step h and
by the structure of quadrature scheme which was used. In the
direct simulation method, by increasing N , we may note a
steady (however very slow) improvement of the convergence
behaviour. Within this family of schemes, this is possible only
if we at the same time decrease the time resolution step h.
For our purposes it was sufficient to take a proper value, for
example h = 10−7, which leads to high precision results, but
which cannot be improved only by increasing N , as the above
results show us. Basically in practice we can use the smallest
value of N = 102. By further increasing N , the precision
does not improve anymore (the differences which arise here
are mostly due to stochastic fluctuations). By taking a smaller
N , for example N = 10, the CPU time is only slightly below
that corresponding to N = 102, while the error is slightly
larger. This phenomenon of non-linear behaviour of the CPU-
time in dependence of N is explained in section 3.3 of [8].
Within this family of schemes a fast computation with low
precision is not possible. Due to their inherent structure, even
if we take coarse values of N and h, while the precision can be
of course decreased, not so the computing time, which cannot
be pushed below a certain level.

Having said this, let us now discuss the above results. The
goal of this paper was to introduce the new methods RK23
and RK24 (without or with Picard iterations) and to compare
them with the corresponding method RK3 respectively RK4
(again without or with Picard iterations) which use the usual
intermediate values. In all cases we note a decrease of the
error by a factor of about 10, while the CPU-time increases
only by the factor of at most 1.5. The schemes which deliver
the best precision (but also need the longest computation
time) are RK23-pic and RK24-pic which involve all possible
ingredients, structured in several layers. At the first level
we have the values given by the jump process X̃ . Better
intermediate values for the Runge–Kutta type schemes are
obtained by applying first a Picard iteration followed by a
RK2-step. Such high precision solvers might be therefore
useful for example in computing reference solutions for certain
problems.

We will perform next a comparison of several variants of the
methods discussed in this paper, either with adaptive or fixed
time discretization steps. Figure 1 depicts the efficiency of
the schemes. We note that the RK23 and RK24 methods with
fixed time step h = 10−7 have basically the same efficiency,
but the use of adaptive time steps in conjunction with the
improvements such as Picard iterations and/or intermediate
RK2-steps, the efficiency is significantly increased. At about
the same CPU-time, the error is smaller by a factor of 10.

Fig. 1. Efficiency comparison of different methods

IV. CONCLUSION

In this paper we have introduced a new possibility to
improve the stochastic schemes of Runge–Kutta type based
on Markov jump processes. The main idea is to enhance the
precision of the intermediate values used by these schemes by
using a simpler method from the same family, which doesn’t
involve intermediate time steps. The increase in precision
is notable and this fact shows once more that this family
of solvers can be successfully applied at large systems of
ordinary differential equations, especially if they arise as
spatial discretization of certain partial differential equations.
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