
 

 

 
Abstract— Multi-step methods are secant-like techniques of the 

quasi-Newton type that, unlike the classical methods, construct 
nonlinear alternatives to the quantities 𝒔𝒊 = 𝒙𝒊+𝟏 − 𝒙𝒊 and 𝒚𝒊 =
𝒈(𝒙𝒊+𝟏) − 𝒈(𝒙𝒊) in the so-called Secant equation 𝑩𝒊+𝟏𝒔𝒊 = 𝒚𝒊, 
where 𝒙𝒊 denotes the current estimate for the minimum of the 
function being minimized (𝒇(𝒙)) and where 𝒈(𝒙) denote the gradient 
of  f and the n x n matrix 𝑩𝒊+𝟏 is the new approximation to the 
Hessian of f.  Multi-step methods instead utilize data available from 
the m most recent iterations and thus create an alternative to the 
Secant equation with the intention of creating better Hessian 
approximation that induce faster convergence to the minimizer of f. 
Such methods now satisfy a relationship of the like 𝑩𝒊+𝟏𝒓𝒊 = 𝒘𝒊, for 
𝒓𝒊 =  𝒔𝒊 − 𝝁𝒊𝒔𝒊−𝟏 and 𝒘𝒊 =  𝒚𝒊 − 𝝁𝒊𝒚𝒊−𝟏, for some carefully chosen 
𝝁𝒊. The methods, based on reported numerical results published in 
several research papers related to the subject, have introduced 
substantial savings in both iteration and function evaluation counts. 
Implicit updates were developed within the context of multi-step 
methods and have been implemented as a means to improve the 
quality of the interpolation curves in such methods. The idea that 
prior to updating the Hessian approximation at the current iteration, 
an extra update is carried out implicitly and in a cheap manner to use 
that update in the construction of the nonlinear polynomials that 
interpolate the recent m available step and gradient vectors used in 
the upcoming approximated Hessian computation so that the 
numerical performance of the multi-step methods improves further.  
In this paper, an improved implicit technique is introduced that is 
based on a variant of the Secant equation that is intended to include 
further already computed data (such as function values), that would, 
otherwise, be discarded and left unexploited, in the construction of a, 
hopefully, better Hessian approximation that yields, eventually, faster 
convergence. The implicit methods used here satisfy a relationship of 
the type 𝑩𝒊+𝟏𝒓𝒊 = 𝒓𝒊 + 𝜷𝒊𝒘𝒊. The numerical experimentations on the 
new methods are promising and open venue for further investigation 
of such techniques. 
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I. INTRODUCTION 

HIS work addresses problems of the form: 
 

𝑚𝑖𝑛𝑚𝑖𝑧𝑒 𝑓(𝑥), 𝑥 ∈ 𝑅𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝑓: 𝑅𝑛 → 𝑅. 

 Conjugate gradient methods are a class of methods for 
solving unconstrained optimization problems where they gain 
significance for large-scale problems. Their storage 
requirements are modest compared to other methods as they 
do not require the storage of any matrices. While such 
methods converge in at most n iterations on quadratic  

 
functions for exact line searches, they are also used to 
minimize non-quadratic functions under relaxed line search 
conditions. For carrying out minimization on non-quadratic 
functions, the methods need to be restarted periodically or 
when certain criteria is met (see [22]). Such methods have 
been extensively studied where variations to the original 
method of Fletcher and Reeves [9] have been introduced (see, 
for example, [2,5,13,14]).   

To minimize f, the sequence of iterates generated is given 
by   

𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑑𝑖 ,                       (1) 
where 𝛼𝑖 is a positive scalar and 𝑑𝑖 is a CG search direction. 
The search direction is computed using the following 
recurrence 

𝑑𝑖 = {
−𝑔𝑖 ,                    𝑓𝑜𝑟 𝑖 = 0,
−𝑔𝑖 + 𝛽𝑖𝑑𝑖−1,   𝑓𝑜𝑟 𝑖 ≥ 1,

          (2) 

for some scalar 𝛽𝑖  and where 𝑔𝑖  denotes the gradient of the 
function f evaluated at the point xi. The search direction 𝑑𝑖 is 
usually required to satisfy 

𝑑𝑖
𝑇𝑔𝑖 < 0, 

to ensure it is a descent one of the function f(x) at 𝑥𝑖. In order 
to guarantee global convergence, 𝑑𝑖 may be required to satisfy 
the sufficient descent condition 
 

𝑑𝑖
𝑇𝑔𝑖 ≤ −ƺ‖𝑔𝑖‖

2, 
for some constant ƺ. 

The specific choice made for 𝛽𝑖  leads to different 
algorithms. Some well-known choices are 

𝛽𝑖
𝐹𝑅 =

‖𝑔𝑖‖2

‖𝑔𝑖−1‖2,    𝛽𝑖
𝑃𝑅𝑃 =

𝑔𝑖
𝑇(𝑔𝑖−𝑔𝑖−1)

‖𝑔𝑖−1‖2 , 

𝛽𝑖
𝐻𝑆 =

𝑔𝑖
𝑇(𝑔𝑖−𝑔𝑖−1)

𝑑𝑖−1
𝑇 (𝑔𝑖−𝑔𝑖−1)

,     𝛽𝑖
𝐿𝑆 =

𝑔𝑖
𝑇(𝑔𝑖−𝑔𝑖−1)

𝑑𝑖−1
𝑇 𝑔𝑖−1

, 

𝛽𝑖
𝐷𝑌 =

𝑔𝑖
𝑇𝑔𝑖

𝑑𝑖−1
𝑇 (𝑔𝑖 − 𝑔𝑖−1)

, in addition to many other suggestions (see, for example, 
[13,16,20,22,23]). The above methods are, respectively, due to 
Fletcher-Reeves [9], Polak–Ribiére–Polyak [21,22], Hestenes-
Stiefel [15], Liu-Storey [16] and Dai–Yuan [5].  

 
      This paper derives a new CG algorithm that uses a 

weighted multi-step update matrix in the computation of the 
search direction without having to retain the matrix in storage. 
The new method is inspired by the works of Anderi [2] and 
Ford et al. [13]. However, in this work, the derivation utilizes 
a multi-step preconditioning matrix while attempting to keep 
the computational cost to a minimum. Anderi [2] applies 
updates the identity matrix to build the conditioning matrix.  
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Ford et al. [13] develop multi-step CG methods that do not 
involve any weighting matrix. Our derivation follows rather a 
different approach which seems to be numerically more 
impactful. The next section summarizes the multi-step 
methods idea. Section 3 presents the derivation of the new 
method. Finally, the numerical results are summarized and 
conclusions presented. 

 

II. MULTI-STEP QUASI-NEWTON METHODS 

Quasi-Newton methods retain an approximation to the 
Hessian matrix that is updated at each iteration to reflect most 
recent changes in the data [3]. Given Bi, the current 
approximation to the Hessian, the new Hessian approximation, 
Bi+1 is updated to satisfy the standard secant equation: 

𝐵𝑖+1𝑠𝑖 = 𝑦𝑖 ,                  (3) 
 where 

𝑠𝑖 = 𝑥𝑖+1 − 𝑥𝑖 , 
and 

𝑦𝑖 = 𝑔𝑖+1 − 𝑔𝑖 . 
The BFGS formula [3,10,11] is the mostly used update 

formula that satisfies the Secant equation especially that, in 
most reported research, it seems to work well with inexact line 
search algorithms [3,13,14]. This rank-two update that 
approximates the actual Hessian, in its standard form, is given 
by 

𝐵𝑖+1 = 𝐵𝑖 −
𝐵𝑖𝑠𝑖𝑠𝑖

𝑇𝐵𝑖

𝑠𝑖
𝑇𝐵𝑖𝑠𝑖

+
𝑦𝑖𝑦𝑖

𝑇

𝑠𝑖
𝑇𝑦𝑖

. 

In the standard secant equation, a straight line L is used to 
find a new iterate xi+1, given the previous iterate xi, while in 
the multi-step methods higher order polynomials are used.  
    Let {x(τ)} or X denote a differentiable path in 𝑅𝑛, where τ 

∈ R.   The vector polynomial x(τ) satisfies  

x(τ𝑗
(𝑖−1)) = xi-m+j, for j = 0, 1,…,m, 

for some distinct values {𝜏𝑗
(𝑖−1)

}
𝑗=0

𝑚

. The corresponding 

gradient points are interpolated by a similar polynomial z(τ) 
satisfying 

z(τ𝑗
(𝑖−1)) = gi-m+j, for j = 0, 1,…,m. 

Then upon applying the Chain rule to the gradient vector 
z(x(τ))≈g(x(τ)) in order to find the derivative of the gradient g 
with respect to τ, we get 

𝑑𝑔

𝑑𝜏
= 𝐺(𝑥(𝜏))

𝑑𝑥

𝑑𝜏
     .                       (4) 

Thus, at any point on the path X, the Hessian G must 
satisfy (4) for any value of τ. More specifically for τ = τc, 
where τc ∈ℛ. This will result in the following relation 

𝑑𝑔

𝑑𝜏
|

𝜏=𝜏𝑐

= 𝐺(𝑥(𝜏))
𝑑𝑥

𝑑𝜏
|

𝜏=𝜏𝑐

 

   By analogy with the secant equation, the aim is to derive a 
relation satisfied by the Hessian at the new iterate xi+1. We 
choose a value for the parameter τ, namely τm,, that 
corresponds to the most recent iterate as follows 

𝑔′(𝜏𝑚) = 𝐵𝑖+1𝑥′(𝜏𝑚) 
or                                                                                                          

 𝑤𝑖 = 𝐵𝑖+1𝑟𝑖,                              (5) 
where the vectors ri and wi are defined in terms of the m most 
recent step vectors {𝑠𝑘}𝑘=𝑖−𝑚+1

𝑖  and the m most recent 

gradient difference vectors {𝑦𝑘}𝑘=𝑖−𝑚+1
𝑖  respectively, as 

follows 

𝑟𝑖 = ∑ 𝑠𝑖−𝑗 { ∑ 𝐿𝑘
′ (𝜏𝑚)

𝑚

𝑘=𝑚−𝑗

}

𝑚−1

𝑗=0

 

and   

𝑤𝑖 = ∑ 𝑦𝑖−𝑗 { ∑ 𝐿𝑘
′ (𝜏𝑚)

𝑚

𝑘=𝑚−𝑗

}

𝑚−1

𝑗=0

 

for 

𝐿𝑘
′ (𝜏𝑚) = (𝜏𝑘 − 𝜏𝑚)−1 [

𝜏𝑚 − 𝜏𝑗

𝜏𝑘 − 𝜏𝑗

] , 𝑘 < 𝑚 

and 

𝐿𝑚
′ (𝜏𝑚) = ∑ (𝜏𝑚 − 𝜏𝑗)−1

𝑚−1

𝑗=0

. 

are the standard Lagrange polynomials. 
    Ford and Moghrabi [10-12] examined several choices for 
the parameters {𝜏𝑘}𝑘=0 

𝑚 where such choices influence the 
structure of the interpolating curve. Of the approaches 
considered in [12, 17, 18], we elect here to use the most 
numerically successful choice. The choice is based on, what 
the authors termed as, the Accumulative Approach. 
    The choices made for the parameters{𝜏𝑘}𝑘=0 

𝑚  rely on some 
metric of the following form 

∅𝑀(𝑧1, 𝑧2) = [(𝑧1 − 𝑧2)𝑇𝑀(𝑧1 − 𝑧2)]1/2, 
where M is a symmetric positive-definite matrix. 
    The Accumulative approach chooses one of the iterates, say 
xj, as a base-point and sets the parameter τj corresponding to it 
to 0. Then, any value 𝜏𝑘, corresponding to the point xi-m+k+1 for 
any k except for k=j, is computed by distance accumulation 
(measured by the chosen metric ΦM) between each two 
consecutive pair of points in the sequence from xi-m+j+1 to xi-

m+k+1. Therefore, any value 𝜏𝑘, for k=0,1,...,m, is obtainable 
using 
𝜏𝑘 = − ∑ ∅𝑀(𝑥𝑖−𝑚+𝑝+1, 𝑥𝑖−𝑚+𝑝)

𝑗
𝑝=𝑘+1 , 𝑘 < 𝑗, 

     = 0, k = j, 
      = − ∑ ∅𝑀(𝑥𝑖−𝑚+𝑝+1, 𝑥𝑖−𝑚+𝑝)𝑘

𝑝=𝑗+1 , 𝑘 > 𝑗.        (6) 
    This approach will yield values of τ that satisfy 

𝜏𝑘 < 𝜏𝑘+1, 𝑓𝑜𝑟 𝑘 = 0, 1, … , 𝑚 − 1. 
 under the assumption that no consecutive points overlap. 
    Those values of the parameters {τk} are the ones used in 
computing the vectors x′(τm)  and  g′(τm)  in (5) (or vectors ri 
and wi, respectively). The two vectors ri and wi are then used 
to compute the new Hessian approximation Bi+1 satisfying (5). 
    It should be noted that different choices of the metric matrix 
M in ΦM will result in different methods. Ford and Moghrabi 
[11,12] indicate that values of m > 2 do not seem to result in 
substantial numerical gains in performance due to the non-
smoothness of the interpolant. Thus, m = 2 is chosen here and 
such methods are termed two-step methods as they utilize data 
from the two most recent iterations to update the Hessian 
approximation.   

Choices investigated for the matrix M (see [12, 17,18]), 
include M = I, M = Bi , and M = Bi+1.  The inverse Hessian 
approximation update generally satisfies: 

𝐻𝑖+1(𝑦𝑖 − 𝜇𝑖−1𝑦𝑖−1) = 𝑠𝑖 − 𝜇𝑖−1𝑠𝑖−1    (7) 
or 
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𝑤𝑖 = 𝐵𝑖+1𝑟𝑖  
where 

𝜇𝑖−1 =
𝛿𝑖−1

2

2𝛿𝑖−1 + 1
. 

and 

𝛿𝑖−1 =
𝜏2

(𝑖−1)
− 𝜏1

(𝑖−1)

𝜏1
(𝑖−1)

− 𝜏0
(𝑖−1)

. 

For our numerical tests, the particular choices used for the 
τ values are (corresponding to choosing M = I in (6)) 

𝜏0 = −(‖𝑠𝑖‖2 + ‖𝑠𝑖−1‖2), 𝜏2 = 0, and 𝜏1 = −‖𝑠𝑖‖2 . 
This, hence, gives 

𝛿 =
‖𝑠𝑖‖

‖𝑠𝑖−1‖
.             (8) 

Equation (8) may be generalized by introducing a scaling 
factor, 𝛾 ≥ 0 (see [13]) that provides more control in this 
context since by setting the scalar to zero convenient 
switching to the standard secant equation one-step update 
method is easy. Therefore, 

𝛿 = 𝛾
‖𝑠𝑖‖

‖𝑠𝑖−1‖
.                  (9) 

The multi-step B-version BFGS formula is given by  

 𝐵𝑖+1
𝑀𝑆 = 𝐵𝑖 +

𝑤𝑖𝑤𝑖
𝑇

𝑤𝑖
𝑇𝑟𝑖

−
𝐵𝑖𝑟𝑖

𝑟𝑖
𝑇𝐵𝑖

𝑟𝑖
𝑇𝐵𝑖𝑟𝑖

.    (10) 

 

III. A NEW MULTI-STEP PRECONDITIONED CG METHOD 

(MSPCG) 

The search direction considered in this paper takes the form 
 

𝑑𝑖 = −𝜎𝑖𝑔𝑖 + 𝛽𝑖𝑠𝑖−1,            (11) 
(see [2]) where 𝜎𝑖  can be chosen to be a scalar or some 
positive definite matrix. For example, if 𝜎𝑖 = 1, then (11) is 
equivalent to (2). If, however, 𝜎𝑖 is chosen to be some 
approximation to the inverse of the Hessian matrix, then 𝑑𝑖 
becomes a combination of the quasi-Newton and the conjugate 
gradient directions. In this work, we consider the latter case. 

When applied to the minimization of a quadratic function, 
the search directions generated by the linear CG methods 
satisfy the conjugacy condition 

𝑑𝑖
𝑇𝐴𝑑𝑗 = 0, ∀𝑖 ≠ 𝑗,                               (12) 

where A is the positive definite matrix Hessian matrix of the 
function. As for non-quadratic functions, relation (12) may be 
replaced by (see [13]) 

𝑑𝑖
𝑇𝑦𝑖−1 = 0.               (13) 

Now, using the mean value theorem, there exists some 
𝜔 ∈ (0,1] such that 

𝑑𝑖
𝑇𝑦𝑖−1 = 𝛼𝑖−1𝑑𝑖−1∇2𝑓(𝑥𝑖−1 + 𝜔𝛼𝑖−1𝑑𝑖−1)𝑑𝑖−1. 

Perry [20] studied acceleration options to the CG methods 
which exploit the advantages of the quasi-Newton methods. 
His approach uses the secant equation (3) and given that the 
quasi-Newton search direction is given by 𝑑𝑖 = −𝐻𝑖𝑔𝑖 , then 
Perry replaced (13) with 

𝑑𝑖
𝑇𝑦𝑖−1 = −𝑔𝑖

𝑇𝑠𝑖−1.                   (14) 
Using (14), we obtain 

𝑑𝑖
𝑇𝑦𝑖−1 = −𝑔𝑖

𝑇(𝐻𝑖𝑦𝑖−1), 
or (from (7)) 

𝑑𝑖
𝑇𝑦𝑖−1 = −𝑔𝑖

𝑇𝑟𝑖−1 − 𝜇𝑖−1𝑔𝑖
𝑇𝐻𝑖𝑦𝑖−2. 

This yields 

𝑑𝑖
𝑇𝑤𝑖−1 = −𝜖𝑔𝑖

𝑇𝑟𝑖−1,                    (15) 
for some 𝜀 ≥ 0 that serves as a scaling factor to impose 
conjugacy.                                                 

Upon substituting (compare to (11)) 
𝑑𝑖 = −𝜎𝑖𝑔𝑖 + 𝛽𝑖𝑠𝑖−1                  (16) 

in (15), we obtain 
−𝜎𝑖𝑤𝑖−1

𝑇 𝑔𝑖 + 𝛽𝑖𝑤𝑖−1
𝑇 𝑠𝑖−1 = − 𝑔𝑖

𝑇𝑟𝑖−1, 
thus yielding an expression for 𝛽𝑖  as follows  

𝛽𝑖 =
𝑔𝑖

𝑇[𝜎𝑖𝑤𝑖−1−𝜀𝑟𝑖−1]

𝑠𝑖−1
𝑇 𝑤𝑖−1

.              (17) 

If 𝜀 = 0, then (17) reduces to the choice of 𝛽𝑖 obtained in [13]. 
We proceed with our derivation first with the choice 

𝜎𝑖 = 𝐻𝑖 (for 𝜀 = 1).  To complete the implementation details 
of the algorithm, the quantity (see (11)) 

𝑑𝑖+1 = −𝐻𝑖+1𝑔𝑖+1, 
need to be computed efficiently. In specific, 

𝑧𝑖+1 = 𝐻𝑖+1𝑔𝑖+1             (18) 
need to be computed without having to store the matrix 𝐻𝑖+1 
or having to carry out any matrix-vector multiplication, thus 
maintaining the spirit of the CG methods. 

From the H-multi-step version of the BFGS formula, given 
by 

𝐻𝑖+1 = 𝐻𝑖 −
𝑟𝑖𝑤𝑖

𝑇𝐻𝑖+𝐻𝑖𝑤𝑖𝑟𝑖
𝑇

𝑤𝑖
𝑇𝑟𝑖

+ (1 +
𝑤𝑖

𝑇𝐻𝑖𝑤𝑖

𝑤𝑖
𝑇𝑟𝑖

)
𝑟𝑖𝑟𝑖

𝑇

𝑤𝑖
𝑇𝑟𝑖

,   (19) 

it follows that 

𝐻𝑖+1𝑔𝑖+1 = 𝐻𝑖𝑔𝑖+1 −
𝑟𝑖

𝑇𝑔𝑖+1

𝑤𝑖
𝑇𝑟𝑖

𝑣𝑖 + [(1 +
𝑤𝑖

𝑇𝑣𝑖

𝑤𝑖
𝑇𝑟𝑖

)
(𝑟𝑖

𝑇𝑔𝑖+1)

𝑤𝑖
𝑇𝑟𝑖

−
(𝑣𝑖

𝑇𝑔𝑖+1)

𝑤𝑖
𝑇𝑟𝑖

] 𝑟𝑖 ,

           (20) 
where 

𝑣𝑖 ≅ 𝐻𝑖𝑤𝑖 . 
Using (19), we obtain an expression for 𝑣𝑖 in (20) as follows 
𝑣𝑖 =

𝑤𝑖 −
𝑟𝑖−1(𝑤𝑖−1

𝑇 𝑤𝑖)+𝑤𝑖−1(𝑟𝑖−1
𝑇 𝑤𝑖)

𝑤𝑖−1
𝑇 𝑟𝑖−1

+ (1 +
𝑤𝑖−1

𝑇 𝑤𝑖−1

𝑤𝑖−1
𝑇 𝑟𝑖−1

)
𝑟𝑖−1(𝑟𝑖−1

𝑇 𝑤𝑖)

𝑤𝑖−1
𝑇 𝑟𝑖−1

,    

                         (21) 
and  

𝐻𝑖𝑔𝑖+1 = 𝑣𝑖 + 𝛽𝑖𝑠𝑖−1 − 𝑑𝑖 + 𝜇𝑖−1𝐻𝑖𝑦𝑖−1, 
where 𝜇𝑖−1 is as in (7).We need now to be able to compute 
𝐻𝑖𝑦𝑖−1. 

Now,  
𝐻𝑖𝑦𝑖−1 = 𝐻𝑖𝑔𝑖 − 𝐻𝑖𝑔𝑖−1 = 𝑧𝑖 − 𝐻𝑖𝑔𝑖−1, 

for 𝑧𝑖  as in (18). From (19), we have 

𝐻𝑖𝑔𝑖−1 = 𝑧𝑖−1 −
𝑟𝑖−1(𝑤𝑖−1

𝑇 𝑧𝑖−1) + 𝑣𝑖−1(𝑟𝑖−1
𝑇 𝑔𝑖−1)

𝑤𝑖−1
𝑇 𝑟𝑖−1

 

+ (1 +
𝑤𝑖−1

𝑇 𝑣𝑖−1

𝑤𝑖−1
𝑇 𝑟𝑖−1

)
𝑟𝑖−1(𝑟𝑖−1

𝑇 𝑔𝑖−1)

𝑤𝑖−1
𝑇 𝑟𝑖−1

.             (22) 

This completes the details of the computation. 
As for the case  𝜎𝑖 = 1 in (11), the search direction is 

expressed simply as  
𝑑𝑖+1 = −𝑔𝑖+1 + 𝛽𝑖+1𝑠𝑖 , 

with 𝛽𝑖+1 given by (17). 
 

Al-Baali [1] proved the global convergence of the 
Fletcher-Reeves method on general functions with inexact line 
search. Dai and Yuan [5]  developed a CG method that is 
based on the secant condition and proved global convergence 
of their method.  In order to guarantee the convergence of his 
algorithm, requires that the step size 𝛼𝑖 in (1) is accepted if it 
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satisfies the Wolfe conditions [28] (see [1,2,5,13, 
14,25,26,27]): 

 
𝑓(𝑥𝑖 + 𝛼𝑖𝑑𝑖) −  𝑓(𝑥𝑖) ≤ 𝜌1𝛼𝑖𝑑𝑖

𝑇𝑔𝑖 ,           (23) 
𝑔(𝑥𝑖 + 𝛼𝑖𝑑𝑖)

𝑇 𝑑𝑖 ≥ 𝜌2𝑑𝑖
𝑇𝑔𝑖 ,            (24) 

 
where 0 < 𝜌1 ≤ 𝜌2 < 1.  
 
We now present the following theorem that highlights the 
conditions that ensure the search direction is downhill. 
 
Theorem 1. Suppose that 𝛼𝑖 in (1) satisfies the Wolfe 
conditions (23) and (24); If 𝑤𝑖

𝑇𝑟𝑖 > 0, then −𝐻𝑖+1𝑔𝑖+1 given 
by (20) is a descent direction.  
 
Proof. Given that 𝑑0 = −𝑔0, it follows that 𝑔0

𝑇𝑑0 =
−‖𝑔0‖2 ≤ 0.  

𝐻𝑖+1𝑔𝑖+1 = 𝐻𝑖𝑔𝑖+1 −
𝑟𝑖

𝑇𝑔𝑖+1

𝑤𝑖
𝑇𝑟𝑖

𝑣𝑖

+ [(1 +
𝑤𝑖

𝑇𝑣𝑖

𝑤𝑖
𝑇𝑟𝑖

)
(𝑟𝑖

𝑇𝑔𝑖+1)

𝑤𝑖
𝑇𝑟𝑖

−
(𝑣𝑖

𝑇𝑔𝑖+1)

𝑤𝑖
𝑇𝑟𝑖

] 𝑟𝑖 . 

As for subsequent iterations, pre-multiplying (20) by −𝑔𝑖+1
𝑇  

gives 
−𝑔𝑖+1

𝑇 𝐻𝑖+1𝑔𝑖+1

=
1

(𝑤𝑖
𝑇𝑟𝑖)2

[
−𝑔𝑖+1

𝑇 𝐻𝑖𝑔𝑖+1(𝑤𝑖
𝑇𝑟𝑖)2 + 2(𝑟𝑖

𝑇𝑔𝑖+1)(𝑤𝑖
𝑇𝑟𝑖)(𝑔𝑖+1

𝑇 𝑣𝑖)

−(𝑔𝑖+1
𝑇 𝑟𝑖)

2
(𝑤𝑖

𝑇𝑟𝑖) − (𝑟𝑖
𝑇𝑔𝑖+1)

2
(𝑤𝑖

𝑇𝑣𝑖)
]. 

If the inequality 𝑢𝑇𝑞 ≤
1

2
(‖𝑢‖2 + ‖𝑞‖2) is applied to the 

second term above with 𝑢 = (𝑤𝑖
𝑇𝑟𝑖)𝑔𝑖+1 and 𝑞 = (𝑟𝑖

𝑇𝑔𝑖+1) 𝑣𝑖 , 
we obtain 

𝑔𝑖+1
𝑇 𝐻𝑖+1𝑔𝑖+1 ≥ −

(𝑟𝑖
𝑇𝑔𝑖+1)2

𝑤𝑖
𝑇𝑟𝑖

. 

If 𝑤𝑖
𝑇𝑟𝑖 > 0, it follows that −𝑔𝑖+1

𝑇 𝐻𝑖+1𝑔𝑖+1 is negative.  
 

IV. NUMERICAL COMPUTATIONS  

Our numerical results are benchmarked against Anderi’s [2] 
SCALCG. Our computational experiments do not include a 
comparison with the methods in [13] since those methods do 
not use a weighting matrix in the computation of the CG 
direction vector, contrary to what we are doing here. The 
results reported in Table 2 are for different choices of the 
parameter 𝛾 in (9) in order to determine its effect on the 
numerical performance of the method. The values that appear 
in Table 2 for 𝛾 correspond to 0, 0.5 and 1, respectively. Other 
values have been considered but are not reported here as they 
bear no significant changes. The numbers reported indicate 
iteration/function and gradient evaluations counts, 
respectively. The coding was done using C++ on a 64-bit 
machine with i7-3770, 3.4 GHZ CPU. Table 1 contains the 
problem set used in testing the derived method against 
SCALCG. The problems are primarily those found in [20]. 

 
 
 

TABLE I 
TEST PROBLEMS 

 
P 

 
Function 

 
Dimension 

Name  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 

Extended 
Rosenbrock  
Extended 
Powell Singular  
Trigonometric 
Function 
Oren Function 
Cube Function 
Wood Function 
Beale Function 
Helical Valley  
Penalty I 
Function 

 

n = 100000 
n = 100000 
n = 100000 
n = 10000 
n = 2 
n = 4 
n = 2 
n = 3 
n =2 
n = 2 
n = 1000 
n = 1000 
 

   
   

 
TABLE II 

ITERATION AND FUNCTION  EVALUATIONS  COUNT  
 

 
problem 𝛾 MSPCG Anderi’s 

 
Ford et al. 

 
1 

 
0 

 
22/70 

 
21/69* 

 
25/71 

½ 24/75  
1 28/101  

2 0 25/73 21/69* 22/69 
½ 31/78  
1 30/76  

3 0 61/151* 70/201 66/168 
½ failed  
1 77/163  

4 0 390/1701* 390/1770 379/1709 
½ 392/1707  
1 373/1696*  

5 0 21/41 31/51 24/40* 
1/2 25/69  
1 49/91  

6 0 71/129* 68/141 69/134 
1/2 72/147  
1 failed  

7 0 4/11 4/12 4/10* 
1/2 4/10  
1 4/10*  

8 0 11/201 12/193* 14/199 
1/2 12/202  
1 14/210  

9 0 7/23 8/21 8/20 
1/2 6/19*  
1 7/20  

10 0 8/21 7/22 7/19* 
1/2 4/11  
1 7/19*  

11 0 401/991 368/909 361/906* 
1/2 failed  
1 338/812  

12 0 17/77 17/78 15/71 
1/2 15/70*  
1 16/78  

totals  951/3273 1017/3536 994/3416 
scores 7 3 3 

The numerical evidence, reported in Table 2, reveals that the 
new method MSPCG shows some improvements over 
Anderi’s [2] on several problems. The star appearing next to a 
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score indicates a win on that problem. The last row of Table 2 
reports the total score count for each method.  

Both methods use exactly the same line search 
implementation with choices 𝜌1 = 0.0001 and 𝜌1 = 0.88 in 
(23) and (24). The termination condition used for both 
methods is  

‖𝑔(𝑥𝑖)‖ ≤ 10−5. 
Although execution times are not included in our reported 

results but, generally speaking, for most cases for which the 
function/gradient evaluations are less for a given algorithm, 
the time taken by the CPU is less for that algorithm. However, 
when the evaluation counts almost form a tie, SCALCG 
execution time turns out to be faster by about 3.61%.  

While experimenting on the methods, especially for large 
problems, both methods were restarted periodically using 
Powell’s [22] test to measure the degree of orthogonality 

‖𝑔𝑖+1
𝑇 𝑔𝑘‖ ≥ 0.2‖𝑔𝑖+1‖2.      (25) 

Whenever (25) is satisfied at step i, the restart is applied. 
We used Anderi’s [2] restart search direction for SCALCG. 

For our algorithm, we restarted with 𝛽𝑖 = 0 and 𝐻𝑖 = 𝜎𝑖𝐼 in 

(16), for 𝜎𝑖 =
𝑠𝑖

𝑇𝑠𝑖

𝑠𝑖
𝑇𝑦𝑖

 (see [2]). This situation has not been 

encountered very frequently in our numerical tests. Wolfe 
conditions (23) and (24) ensure that 𝑠𝑖

𝑇𝑦𝑖 > 0 Anderi’s 

SCALCG [2] search direction is downhill. In our case, if 
𝑟𝑖

𝑇𝑤𝑖 > 0, then the search direction is a descent one. 
Nevertheless, due to the approximation used in (20), 
numerical safeguarding remains a must. 

V. CONCLUSION 

In this paper, a new weighted Conjugate Gradient method is 
developed. The method generates search directions that are a 
combination of the multi-step quasi-Newton and CG vectors. 
It attempts to utilize the advantages of both methods to 
accelerate convergence of the CG algorithms. The method 
requires a few additional vectors than SCALCG [2] and other 
similar CG methods. This extra cost seems to incur reasonable 
savings in computational costs, especially on large problems.  

We are currently investigating other choices for the 
weighting matrix to determine whether the numerical 
performance of similar methods can be improved further. 
There also remains the issue of developing automatic restart 
criteria that provides appropriate switching among several 
options similar to what was done in [1]. The global 
convergence properties of such methods are under 
consideration. 
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