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Abstract. In the present paper there are presented recent results 

concerning the behavior of the mixing flow dynamical system. From 
analytical standpoint, the feedback linearization of this dynamical 
system issue special interpretations. This technique contains two 
fundamental nonlinear controller design techniques: input-output 
linearization and state-space linearization. The approach is usually 
referred as input-output linearization or feedback linearization and is 
based on concepts from nonlinear systems theory. The resulting 
controller includes the inverse of the dynamic model of the process, 
providing that such an inverse exists. The results will be used for 
further analysis of 3D mixing flow dynamical system 
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I. INTRODUCTION. MIXING FLOW MATHEMATICAL CONTEXT 

The mixing flow theory appears in an area with far from 
complete solving problems: the flow kinematics. Its methods 
and techniques developed the significant relation between 
turbulence and chaos. The turbulence is an important feature 
of dynamic systems with few freedom degrees, the so-called 
“far from equilibrium systems”. These are widespread 
between the models of excitable media, and a recent goal is to 
find a consistent and coherent theory to stand up that a mixing 
model in excitable media leads to a far from equilibrium 
model.   

After a hundred years of stability study, the problems of 
flow kinematics are far from complete solving. Since the 
beginnings, considering the stability of laminar flows with 
infinitesimal turbulences was a fruitful investigation method. 
This context becomes more difficult if the non-linearity is in 
the sense of increasing of the growing rate of linear unstable 
modes. In fact, we are talking about strong turbulence 
problems, an area which still needs a lot of analysis.  

 Generally, the statistical idea of a flow is represented by a 
map: 

   XXXx tt 0,                                               (1) 
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We say that X is mapped in x after a time t. In the continuum 
mechanics the relation (1) is named flow, and it is a 
diffeomorphism of class Ck.  Moreover, (1) must satisfy the 
relation  
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where the derivation is with respect to the reference 
configuration, in this case X. The relation (2) implies two 
particles, X1 and X2, which occupy the same position x at a 
moment.  
With respect to X there is defined the basic measure of 
deformation, the deformation gradient, F, namely: 
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where X  denotes differentiation with respect to X. 

According to (3), F is non singular. The basic measure for the 
deformation with respect to x is the velocity gradient.  
After defining the basic deformation of a material filament and 
the corresponding relation for the area of an infinitesimal 
material surface, we can define the basic deformation 
measures: the length deformation λ and surface deformation η, 
with the relations [7]:   

      2/112/1 :det,: NNCMMC  F                                  (4) 

 
whith C (=FT·F) the Cauchy-Green deformation tensor, and 
the vectors M,N - the orientation versors in length and surface 
respectively, defined by 
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In the above context, we say that the flow x=Φt(X) has a good 
mixing if the mean values D(lnλ)/Dt and D(lnη)/Dt are not 
decreasing to zero, for any initial position P and any initial 
orientations M and N.  
From both analytical and computational standpoint, the 
following relations are basic in the flow kinematics: there is 
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defined the deformation efficiency in length, eλ= eλ (X,M,t) of 
the material element dX, as: 
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and similarly, the deformation efficiency in surface, eη= eη 
(X,N,t) of the area element dA: in the case of an isochoric flow 
(the jacobian equal 1), we have: 
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where D is the deformation tensor [7].  
 The deformation tensor F and the associated tensors C, C-1, 
form the fundamental quantities for the analysis of deformation 
of infinitesimal elements. In most cases, the flow  Xtx   

is unknown and has to be obtained by integration from the 
Eulerian velocity field. If this can be done analytically, then F 
can be obtained by differentiation of the flow with respect to 
the material coordinates X.  
The flows of interest belong to two classes: i) flows with a 
special form of v  and ii) flows with a special form of F. The 
second class is of very large interest, as it contains the so-
called Constant Stretch History Motion – CSHM flows. 
 

II. RECENT RESULTS AND METHODS 

 
Studying a mixing for a flow implies the analysis of 

successive stretching and folding phenomena for its particles, 
together with the influence of parameters and initial conditions. 
It can concern simple mixing phenomena, or the phenomena of 
a mixing of a biological material in a host fluid. 

In the previous works, the mixing phenomenon produced 
when a biological material is vortexed in a host fluid was 
studied. A first aim was to study the deformation efficiency in 
length and surface for the mixing flow model. The 
mathematical model used as start point in the analysis is 
basically the widespread isochoric two-dimensional flow, 
namely [7]:  
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In the 3d case, the associated mathematical model was 

constructed according to the experiments realized for a vortex 
phenomenon. This was realized by simply adding the vortex 
velocity as third component [3]: 
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The study of the 3D non-periodic models exhibited a quite 
complicated behaviour. In agreement with experiments, there 
were involved some significant events - the so-called “rare 
events”. The variation of parameters had a great influence on 
the length and surface deformations. The experiments were 
realized with a special vortex installation, it was used a well-
known aquatic algae as biologic material, and the water as 
basic fluid [3].  

There were obtained quite complex relations for eλ and eη. 
The analysis of the mathematical model contained an analytical 
and a computational / simulation stage. There were used 
procedures of MAPLE soft for discrete time. The events 
studied were very few, about 60 both for 2d and 3d case.  
This stage of the analysis produced a panel of random events 
for the mixing flow mathematical model. Although it has a not 
very complicated mathematical form, it is going to turbulence 
for certain values of the parameters.  A very important point is 
that when adding similar terms to the model, in 2d case, the 
model turns its behaviour into a far from equilibrium one.   
 
The analysis recently has been continued with more 
computational simulations, for 2D model, both in periodic and 
non-periodic case, and for 3D model, too. A lot of comparisons 
between periodic and non-periodic case, 2D and 3D case were 
realized [4]. In the same time, the computational appliances 
were varied. If initially, the model was studied from the 
standpoint of mixing efficiency, in the works that come after, 
new appliances  of the MAPLE11 soft were tested [1], in order 
to collect more statistical data  for the turbulent mixing model 
behavior. Also, some interesting versions of the mixing 
dynamical system were analyzed, perturbing the model with a 
logistic-type term [4]. In the analysis, the same set of 
parameters values there were taken into account, for a better 
accuracy of the comparative analysis. The phase-portrait 
analysis offered new features concerning the influence on 
parameters on the model behaviour.  
 

III. FEEDBACK LINEARIZATION FOR 2D MIXING FLOW 

 
The aim of the paper is to analyze the mixing model 

dynamical system from a new analytical standpoint, the 
feedback linearization method. This approach is based on 
concepts from nonlinear systems theory and contains two 
fundamental nonlinear controller design techniques: input-
output linearization and state-space linearization. [2,5]. The 
resulting controller includes the inverse of the dynamic model 
of the process, providing that such an inverse exists.  Thus, 
the method is applicable to broad classes of nonlinear control 
problems.  

The feedback method is applied generally to differential 
systems of the form: 
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We search for a diffeomorphism , which 
defines a coordinate transformation  
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 xTz                                                                            (11) 

 
in order to find for the system (10), a state - space realization 
of the form 
 

BvA  zZ                                                                     (12) 
 
The method is presented in detail in [5]. In this approach, u has 
the role of control, and the relation with v (the new control) is 
given by the following relation: 
 
     vu   xx 1                                                         (13) 

 
where Φ and ω are scalar functions obtained by imposed 
relations on the vector functions f, g and the transformation T. 
The transformation T has to be obtained in special conditions 
for the partial derivatives of f and g [5]. Also, A and B are in 
the controllable form (n x n, n x 1 respectively):  
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Synthesizing, we can say that, given the nonlinear system (10), 
the problem of feedback linearization consists in finding, if 
possible, a coordinate transformation of the form (11), and a 
static feedback control law of the form  
  

    vu  xx                                                             (15) 

 
where v is the new control and β(x) is assumed to be non zero 
for all x, such that the composed dynamics of the new system  
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expressed in the new coordinates z, is the controllable system 
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 Taking into account that we are analyzing a far from 
equilibrium  model, we shall apply the feedback linearization 
method first for a mixing flow model perturbed with a logistic-
type term.. Thus, let us consider the following perturbed 
version for the dynamical system (8), analyzed also in [4]: 
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 We are in the case n=2, and we search for a transformation T, 

   
 








x

x
xT

2

1

T

T
, in order to transform this system.  According 

to the above statements, let us put the system (18) in the vector 
form                   
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 In this form we consider the vectors f and g by 
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The transformation   TTT 21T  is found, after calculus, as  
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Further there are found the functions ω and Φ as follows: 
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Thus, taking the controllers A=AC and B=BC as  
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the inverse system becomes, in the coordinate   21 zzz , 
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That means we get the following system: 
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 Thus, the dynamical system associated to the 2d mixing 
flow model, in a perturbed form like (18), admits an inverse 
system in a controllable form. The system (23) proves that the 
form (17) of the inverse mode can be reached. The 
transformation T does exist if certain conditions are fulfilled 
for the functions f and g of the system. In fact, the form (17) is 
the form that is reached by the feedback linearization method, 
provided that T exists. In [6] there was approached an optimal 
control for a feedback linearized form of the dynamical 
system associated to the 2d mixing flow model in the basic 
form. 
 
 

IV. GRAPHICAL COMPARATIVE ANALYSIS FOR THE INITIAL 

AND LINEARIZED MIXING MODEL  

 
In this section, the comparative analysis for the systems’ 

trajectories is realized. The focus is on the influence of the 
parameters on the trajectory trend, both for the initial and 
linearized system.  

A. Let us take into account first the system (18) of the 2d 
mixing flow, perturbed with a logistic type term.  
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For this system, the phase-portrait was realized with MAPLE 
software, in some specific conditions for the parameters. For 
the continuity of the analysis and comparisons, there were 
used the same value sets for the parameters as in previous 
works [4], namely: 
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These parameter cases are chosen in order to get a better 
influence on the trajectory, like is the negative form taken in 
the values’ sets. The system’s trajectories are realized based 
on numerical methods; the default method of integration is the 
“Forward Runge-Kutta” method, of order 4-5, abbreviated by 
rkf45 [1].  
Also, the interactive style of MAPLE procedures allow us to 
change the time units as desired. For the present graphical 
analysis, there were sufficient 50 time units in order to get a 
definite trend of the trajectory.  
Below there are presented the picture for the cases i- iii of 
simulation. Each case is labeled on the figure.  
 
 

 
Fig.1. The case i) of simulation for the system (18) 

 
 
 

 
Fig.2. The case ii) of simulation for the system (18) 
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Fig.3. The case iii) of simulation for the system (18) 

 
 

B. We take now into account the linearized system 
associated to (18). We search for a comparison between the 
behavior of the mixing system perturbed with a logistic type 
term, (18), and that of its inverse system, namely the system 
(23), in the same simulation cases. The initial conditions, 
associated to the Cauchy problem for simulation, are also the 
same as for the system (18): 

    00,10  yx  

Since the parameter distribution is very different in the inverse 
system (23), it is expected to see a difference in the trajectory 
form, too. After re-noting   

yzxz  21 ,  

in order to preserve the pictures legend, the pictures for the 
cases (24)  are as follows. 
 
 

 
Fig.4. The case i) of simulation for the system (23) 

 
 

 
Fig.5. The case ii) of simulation for the system (23) 
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Fig.6. The case iii)  of simulation for the system (23) 

 
 
 

V. REMARKS.  

The feedback linearization method presented above 
has a significant importance in the qualitative analysis of 
dynamical systems. First of all, we have to mention the special 
form of the linearized system, associated to the initial system. 
The parameters have a very different repartition in the inverse 
model. As the form (17) shows, in the inverse system, the last 
equation contains all the non-linearity of the model. This fact is 
confirmed by the inverse system (23) associated to the 2d 
mixing model perturbed with a logistic term. We can state that 
this form is similar with that of the second order non-linear 
oscillator with polynomial nonlinearities.  

It is easy to observe in fact, that the general controllable 
form (17), and the form (23) for the 2d case, is more 
convenient for some analytical standpoints. For example the 
stability properties, like the topological degree, can be easier 
evaluated in the case of an inverse model, and this is a next 
target.  

The graphical approach produces very important remarks in 
the above analysis. First, both for the system (18) and (23), we 
see that increasing the simulation time provides an important 
influence on the trajectory. We mention that in MAPLE the 
time units are dimensionless, so we can adapt the simulations, 
for the user needs.  

For the system (18) the origin is a centre, as it can be easily 
seen, and the trajectory is changing the positivity. There can be 
observed quite large values for x(t) and y(t). By contrast, for 
the system (23), although the origin is also a solution, it is no 
more a centre. It is very important to mention that the software 
detected a “possible singularity”, and there were recorded 
medium values for the trajectory.  

Thus, although the trajectory becomes linear, as it can be 
easily seen from the pictures 4,5,6, we have to take into 
account the singular points. So the figures 4-6 have a double 

interpretation: on one hand, they show a linear behaviour, 
expected from a linearized system (23), and on the other hand, 
concern with possible singular points of the inverse system 
(23). Therefore, another important conclusion is that the 
inverse system obtained by feedback linearization could have 
singular points, and a future target is to find them. 

We have also to notice that for the system (23) it was taken 
into account for the present aim, only the value u=1 for the 
scalar control. Some other values of u would produce other 
trends for the inverse system’s trajectory.  
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