
Applying Software Metrics to RNN for Early
Reliability Evaluation

Jie Zhang
School of Computer and Information

Hefei University of Technology
Hefei, China

zjzj2526@163.com

Yang Lu
School of Computer and Information

Hefei University of Technology
Hefei, China

luyang.hf@126.com

 Chong Xu
 School of Computer and Information

 Hefei University of Technology
 Hefei, China

 xuchong15@mail.hfut.edu.cn

Ke Shi
School of Computer and Information

Hefei University of Technology
Hefei, China

shike@mail.hfut.edu.cn

Abstract—Reliability engineering implemented early in the
development process has a significant impact on improving
software quality. It can assist in the design of architecture and
guide later testing, which is beyond the scope of traditional
reliability models. The structural reliability models are made
for this, but most of them remain in the simulation studies
because of lack of actual data. In this study, we use software
metrics which are collected from actual projects to evaluate the
reliability. We use the Recurrent Neural Network to process
the metric data to identify defeat-prone classes in one project.
A specific strategy is used for aggregating module reliability
with the results. Furthermore, we propose a framework which
can automatically calculate the overall reliability value by the
introduced formal tools. The experimental results of two open-
source projects show that reliability analysis at design and
development stage can be close to the validity of analysis at test
stage through the reasonable application of metric data and
related methods.

Keywords—software reliability, software metrics, software
defect, RNN

I. MOTIVATION

Software reliability engineering aims to improve software
quality and its role covers all stages of development.
Recently more research [1]~[4] believed that reliability
evaluation in the early stages has important implications for
avoiding the possible revision cost in the later development
stage, especially for a class of safety-critical software
systems. But most of recent reliability empirical studies still
use the traditional growth models (SRGMs) which focus on
failure data from test stage. For example, Luan and Huang [5]
studied the distribution of faults in large-scale open source
projects by using the Pareto distribution to obtain better
prediction curve fitting accuracy than the classic Weibull
distribution. Sukhwani [6] applied SRGMs to NASA's
SpaceFlight software to analysis of relevant experience
information in software development process and version
management. Aversano and Tortorella [7] gave a reliability
assessment framework which was applied to evaluate an
open source ERP software based on bug reports. Honda [8]
practiced in industrial software projects to discuss the
performance of popular SRGMs. Tamura and Yamada [9]
built a hierarchical Bayesian model which based on fault
detection rate around a series of open source solutions (such
as Apache HTTP server, Tomcat, etc.) for reliability

analysis.

The above empirical research belongs to the later
reliability engineering because based on the test period data.
In contrast, early reliability models can work in the design
phase to assist in engineering decisions. Typical models
include Littlewood’s SMP [10], Cheung’s DTMC [11] and
Laprie’s CTMC [12], etc.. They are commonly referred to as
structure-based methods which emphasize structural analysis
based on a specific granularity. But early models have great
difficulty in practical applications. Taking the DTMC model
as an example, the two parameters required for modeling:
component reliability and control transfer probability among
components, are given by simulated cases rather than actual
projects [13]. In this research we propose to obtain the
necessary information from software codes directly to
support the application of early reliability models. From the
perspective of improving the engineering process, we discuss
the methods of reliability modeling in design and coding
period.

In fact software metrics has been applied to the reliability
analysis and defect prediction of actual software projects.
Shibata [14] incorporated the cumulative discrete-rate risk
model with time-related measurement data, and verified that
the predictive performance of new model are better than
popular NHPP SRGMs’. Chu and Xu [15] gave a general
functional relationship between complexity metrics and
software failure rate which can be used in the exponential
SRGMs. D'Ambros [16] compared the performance of
several software defect prediction methods and explained the
factors of threat validity in practice. These methods are
generally based on static source code metrics and dynamic
evolution metrics. In [17], the author summarized the
existing defect prediction models based on software metrics
into four categories, and indicated how to aggregate them to
achieve significant effect on predictive performance.

Fiondella [18] considered that complexity measurement
data which has the characteristics of low collection cost and
various forms could be utilized in cognitive modeling.
Kushwaha and Misra [19] pointed out the importance of the
cognitive measure of complexity and uses it in a more
reliable software development process. We believe that the
cognitive information required for early reliability analysis is
already included in the code structure, code metrics, and
design documents. We will conduct empirical research on
this in order to assist decision-making in the development
process. This work is supported by National Natural Science Foundation

(61572167, 51504010) and National Key Research and Development
Program (2016YFC0801804) of China.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 13, 2019

ISSN: 1998-0140 96

The rest of this paper is organized as follows. Section II

Fig .1. A framework of this paper.

introduces the framework we used for model construction
and reliability calculation. Section III gives the experimental
methods of this paper, including object selection, metric data
processing and aggregation scheme. In Section IV, the
results of this research are presented. We evaluate the
performance of our approach against other models and
discuss the impact of parameters on the results. Conclusions
are drawn in Section V.

II. PROPOSED APPROACH

A. Framework of This Paper

First, we give our framework as shown in Fig.1 to fully
describe the methods used in this article. The actual metric
data will be divided into six categories based on their
characteristics. And a recurrent neural network (RNN) will
be trained on data from historical version in order to separate
out the defect prone classes in the current version. The next
subsection describes in detail the RNN we used. Then a
specified scheme receives class information and aggregates
them to module reliability. We also use formal tools to
facilitate the application of the DTMC model. We will
discuss these in the following sections.

B. Recurrent Neural Network

We use a simple type of RNN which has one hidden
layer. Fig.2 describes its main structure.

Fig.2. A many to one RNN model. The right is the unfolded form, where U,
V and W are the uniform weight matrices. The loss L between the only
output o(t) and the goal y(t) is used in the back-propagation for updating
model parameters.

As shown, the RNN propagates forward from initial state
s(0). The update equations for every time step from 1 to t is

 (t) (t) (t-1)= tanh + +s U x Ws b (1)

 (t) (t)=sigmoid o V s c (2)

where b, c are the bias vectors. The Hyperbolic tangent
function tanh() is the most commonly used activation
function between input and hidden layer. And the logistic
function sigmoid() is chose for output function because we
only deal with two classification problems here. The loss L is
calculated as:

2(t) (t) (t) (t) (t)
2= = log (1) log(1)

2
L L 


    y o y o (3)

where 2
22

  is the item of L2 regularization to avoid over-

fitting. We first calculate the gradient
(t) L

s
of the last state

s(t), and update the weight matrix V based on
controlled gradient descent. Then we recursively calculate
the gradient of all states from s(t-1) to s(1). The matrix U,W are
updated during the iteration. This is called Back Propagation
Trough Time (BPTT). The green arrows in Fig.2 indicate its
order of calculation.

C. Formal Tools

In this research we use the structure-based reliability
model to calculate the overall reliability of software. The
most popular one is the discrete time Markov chain (DTMC)
model [11] which uses diagram similar to workflow to
describe the control-transfer relationships between modules.
Assuming that module Ni has the reliability degree Ri and the
transfer probability Pi,j, the product RiPi,j expresses the
probability that Ni has been executed successfully and then
transferred to Nj. This is the probability of one-step transfer
in the Markov chain.

We can get the one-step probability of any pair of
modules and form a matrix Q called one-step stochastic
transfer matrix. The Neumann series of matrix Q is

0
2= + =

k
k


  S I Q Q Q… (4)

where I is the identity matrix. Let’s set the uth row of S
belongs to the starting module Nu and the vth column belongs
to the ending module Nv. So the system reliability can be
computed as:

,=sys u v vR S R (5)

which is expressed as the probability of successfully
reaching Nv and successfully executing Nv. More details are
not restated here. A predictable difficulty is that the
parameters Ri and Pi,j are not easily known in practical
applications. We will focus on this issue in the next section.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 13, 2019

ISSN: 1998-0140 97

Another problem is the expression of the DTMC model.
In fact, there are currently no tools to support the automatic
creation of such diagram. As the number of modules
increases, graphical representations and calculations based
on this will become more complex and difficult. Besides
using only directed arcs is not enough to represent all
relationships between modules in a local structure, such as
parallelism. We have proposed an easy-to-use method in our
previous studies [20] for this. The basic idea is to use an
expression NiNj instead of the arc Ni→Nj in diagram. The
operator  denotes the most basic relationship between
modules—motivating, which leads to the generation of
control transfer. The advantage of expression is that it is
precise and unambiguous, especially when dealing with more
complex and larger-scale situations.

We can introduce more operators to express more
complex relationships so that these algebraic operators can
form a complete algebraic system. It is formally equivalent
to ordinary algebraic expression, which can be automatically
parsed by a formal language automata such as LL, LR, SLR,
etc.. Using this tool we can automate the calculation of the
DTMC model. More details are confined to space and are not
described here.

III. EXPERIMENTAL SETUP

We first give our research object and explain why. Then
the detailed description of experimental data is presented.
We use some methods to process the metric data for better
performance. Finally, we propose a scheme in order to
integrate metrics into reliability degree for one module.

A. Projects and Datasets

In this paper we use two open-source projects–jEdit [21]
and Apache Ant [22] for research. Both belong to the
development tools series and have the same version length in
the PROMISE repository [23]. Table I shows the use of
PROMISE data in our approach.

TABLE I. THE TRAINING SET AND TEST SET FOR RNN

Project
Historical Version

 (for training)
Current version

(for test)
jEdit 3.2, 4.0, 4.1, 4.2 4.3

Ant 1.3, 1.4, 1.5, 1.6 1.7

TABLE II. PART OF THE STRUCTURAL INFORMATION OF JEDIT4.3

Package Description Files Classes Mark

browser File system browser. 10 10 N1

bsh Bean shell. 115 106 N2

buffer Buffer event listener. 18 18 N3

bufferio I/O request for buffering. 6 6 N4

bufferset A set of buffer. 4 4 N5

gui
GUI controls and dialog
boxes.

86 88 N6

… … … … … …

Total: 23 packages, 496 files, 492 classes

The two projects are properly sized and representative for
development technology. In addition to the metric data, we
also need to analyze the structural information. When we
carry out reliability engineering at early stage, we consider
ourselves as developers and designers. So we can get the
necessary information of structure from the design
documentation or source codes. This information includes
packages, files, and classes. Table II lists part of them in
jEdit4.3 for example.

We has also learned that there are 15 modules(packages),
785 files and 745 classes in Ant 1.7. Similarly, we need to
understand the structure of earlier versions. It takes a lot of
effort, which is why only two open source projects are used
as research objects.

Here we define the granularity of structural module
analysis at the package-level, and the corresponding level
can be found in other language environments. It needs to be
based on the previous version when we are seeking detailed
module information at the design stage. It usually works
because of the limited changes in modules between versions.
As the coding continues, we can continuously adjust the
metric data of one module.

B. Metric Data Processing

There are usually three categories–traditional metrics,
OO metrics and process metrics, to classify metrics [24].
Sometimes traditional and OO are called code metrics. The
data from PROMISE are summarized at the method-level,
class-level and file-level respectively. At the method-level,
the number of lines of code (LOC) and the cyclomatic
complexity (CC) are still suitable for code analysis inside a
class, which existed before object-oriented programming
appeared. The CK [25] set has a wide range of applications,
but there are also metrics that emphasize perspectives such as
encapsulation, coupling, etc. [26]. The eight metrics
recommended by Moser et al. [27] have typical process
characteristics, and are further improved in the MJ [28] set.

In this paper, metric data are divided into six categories:
complexity, coupling, cohesion, inheritance, size and
process. Table III lists all relevant metric elements.

TABLE III. METRIC DIVISION IN THIS PAPER

Category Metric Element Mark

complexity AMC MAX_CC AVG_CC c1

coupling CBO CA CE IC CBM c2

cohesion LCOM LCOM3 CAM c3

inheritance DIT MOA MFA c4

size WMC NOC RFC NPM LOC DAM c5

process NR NDC NML NDPV c6

We train different RNNs from the above six aspects to
identify defect-prone classes, and use TensorFlow 1.4 to
solve this two-classification problem. We first initialize U, V
and W randomly, then set b, c and s(0) to 0. We use different
data sequences when training different RNNs. As shown in
Table IV, the input series consist of four vectors–x(1)~x(4),
while the vector x(5) is treated as test data. We define the
same sequence for all classes in all modules, and use x(5) as

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 13, 2019

ISSN: 1998-0140 98

test too. So the size of the training set of jEdit is 492, and
Ant is 745. Note that the same model still needs to be trained
five more for other categories.

C. Aggregation Scheme

While the metric data we use are only collected at the
class-level, it is necessary to propose a descriptive scheme to
aggregate them into the value of software system reliability
finally.

TABLE IV. AN INPUT DATA SERIES CONSISTING OF
 VECTORS (E.X. THE BROWSERVIEW CLASS IN JEDIT PROJECT)

Coupling
Metric

Version
v3.2
x(1)

v4.0
x(2)

v4.1
x(3)

v4.2
x(4)

v4.3
x(5)

CBO 13 18 25 24 28

CA 8 11 14 15 15

CE 10 14 20 16 21

IC 0 1 1 1 1

CBM 0 4 4 4 4

Each RNN classifies all the classes into two types:
defeat-prone or reliable. So the total number of defeat-prone
classes can be counted in one aspect. For the defeat-prone
class (DPC), we give the following definitions to mark the
training data series: (i) For a certain version, if a class has
bug commit, it is defined as DPC; (ii) If the metric of a class
is obviously abnormal, the class is defined as DPC under the
category which the metric belongs to (in Table III).

Note that the historical version is only aware of bug
reports. The class under the current version, taking the class
BrowserView in jEdit4.3 as an example, belongs to the
situation under development and does not have a bug report.
This is the difficulty of early reliability prediction. The input
vector x(5)=[28 15 21 1 4]T only works from the coupling
aspect. The BrowserView class still needs the rest from other
five aspects to aggregate. We define the reliability influence
(RI) of each category in one module, which is calculated by

%
()

() [1 ()] *100
dpc

all

i
i

N c
RI c

N
  (6)

where Ndpc(ci) is the number of defeat-prone classes in a
module, Nall is the number of classes in a module, and ci
indicates at a specified aspect (from c1-‘complexity’ to c6-
‘process’).

Aggregation strategy can significantly alter correlations
between software metrics and the defect count. Zhang [17]
pointed out that the summation strategy can often achieve the
best performance when constructing models predict defect
rank or count. In this paper, we use the summation strategy
to aggregate the reliability influence of six categories
(aspects) of metrics into the reliability of individual modules.
It is calculated as:

 
module

* ()
i ii

r RI cR   (7)

where ri is weight of the ci metric category. We think that
any category represents a different logic, so let them have the
same weight. Here is ri= 1/6 (i=1~6).

In the actual development process, reliability engineering
often needs to be carried out by architects and coders. The
module developer may calculate Rmodule by counting the
related metrics. And we suggest a formal tool to apply Rmodule
into a DTMC model in Section II. So module developers are
additionally required to submit related expressions based on
their understanding of the workflow. For example, developer
of the module browser (recorded as N1) in jEdit4.3 project
should submit: (i) R1; (ii) N1N21. The expression N1N21
replaces the directed arc to describe the control transfer flow
between N1 and N21. It indicates that further processing of
file system will go to the module utilities (N21).

Module developer can separately submit expressions that
confirm design intent, which formally start with the
developing module and link all possible next modules in the
workflow. In some cases, architects can also submit or
modify expressions based on overall understanding.
Algebraic expressions are precise and unambiguous, and it is
lightweight and easy to use for engineers..

We can collect an expression set finally which implicitly
contains two key parameters required for the DTMC model:
Ri and Pi,j. We have already discussed the calculation process
of Ri, which is reliability of the ith module in one system.
The transfer probability Pi,j indicated by NiNj, is equally
divided by all possible transfers from module Ni. The
syntactic parser can automatically parse out this information
by scanning the expressions.

IV. RESULTS AND DISCUSSION

The experimental results and corresponding discussion
are presented in this section.

A. Results

In this research we focus on the methods of early
reliability engineering in practical projects, and solve the
following two problems:

 From the perspective of early reliability analysis,
what kind of structure granularity is appropriate and
how to use software metrics?

 How to evaluate the overall system reliability in
practical engineering?

In general, software design has the characteristics of
modularization, which is advantageous to the maintenance of
projects and the deployment of resources. Early reliability
analysis can only start with the structure of software system.
The structural characteristics are represented by the
relationships between modules. This requires selecting the
appropriate module granularity. In this paper, we suggest that
Java OO projects should be analyzed at the package-level.
The corresponding granularity of other types of OO projects
can be found in the directory structure and design
documents.

Different packages show significant differences in
metrics due to the diversity of functionality and developer.
As shown in Fig.3, the distributions of metric data are
obviously different, and most of them are different from the
whole distribution. It denotes that the coding style of each
module is possibly different, that is, the quality of each
module in the same software is also different. Besides, the

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 13, 2019

ISSN: 1998-0140 99

life cycle and application scope of many packages (or
components) goes beyond the project itself.

Therefore, we think that for each different module, the
reliability influence from its metric data should be analyzed
separately. Table V lists the model classification results for
all classes in one package (module). Using (6) and (7), we
calculate reliability value of the browser module to be
88.33%. Similarly, the reliability values of the remaining 22
modules can be obtained. The values of 15 modules in
project Ant1.7 are also obtained. Table VI lists the

N1 N2 N6 N12 N14 N19 N21 N23 All
0

2

4

6

8

D
IT

 N1 N2 N6 N12 N14 N19 N21 N23 All

0

25

50

75

C
B

O

(a) DIT -the inheritance category (b) CBO -the coupling category

N1 N2 N6 N12 N14 N19 N21 N23 All

0

12

24

36

M
A

X
_C

C

 N1 N2 N6 N12 N14 N19 N21 N23 All

0

48

96

144

R
F

C

(c) MAX_CC -the complexity category (d) RFC -the size category

Fig.3. Boxplots of metrics from different categories. Four metrics and eight
modules are both randomly selected.

TABLE V. THE CLASSIFICATION RESULTS OF RNNS
 (E.X. THE BROWSER PACKAGE IN JEDIT4.3)

Class Name

Classification Based on
 Six Metric Categories

c1 c2 c3 c4 c5 c6

BrowserCommandsMenu 0 0 0 0 0 0

BrowserIORequest 0 0 0 0 0 0

BrowserListener 0 0 0 0 0 0

BrowserView 0 0 1 0 0 0

FileCellRenderer 0 0 0 0 0 0

VFSBrowser 1 0 1 0 0 0

VFSDirectoryEntryTable 0 1 0 0 0 1

VFSDirectoryEntryTableModel 1 0 0 0 0 0

VFSFileChooserDialog 0 0 0 0 0 1

VFSFileNameField 0 0 0 0 0 0

1: defeat-prone, 0: reliable

Then the reliability value of all modules should be
integrated with the DTMC model. From the perspective of
reliability engineering, we need module developer to provide
the relationship between this module and other modules in
addition to Rmodule, which can be described conveniently by
algebraic expressions. Finally, an expression set can be
established to complete the summary calculation instead of
the graph. The set of jEdit4.3 is shaped as follows:

12 3 12 6 12 19 12 20

1 21 2 21 3 5 4 5

20 23 21 23 22 23

23 3 23 24

, , , ,

, , , ,

,

, , ,

,

N N N N N N N N

N N N N N N N N

N N N N N N

N N N N

   

   

  

 

 
 
  
 
 
 
  

 (8)

The starting module is N12 (msg) in a workflow, which
means that the message occurs as the start of the business. In
order to facilitate model calculation, we constructed the
termination module N24 (R24=100%), and considered that the
business termination requirement is initiated only by the
module N23 (core).

We also establish the algebraic expression set for another
two versions of jEdit and three versions of Ant. Notice that
the convention of current version has been expanded here.
For jEdit when setting 4.3 to the current version to be
evaluated, the required input series is 3.24.04.14.2.
The time length is 4. It should change into 3.24.04.1
when the current version is set to 4.2, and the length is 3. In
the extreme case of the current version 4.1, its input series
length is only 2. The same situation exists in the project Ant.

We use different time series lengths for comparison. And
two traditional reliability models—classical G-O model [29]
and Huang’s model [30] will be used for performance
comparison too. They belong to the growth model, the
former is representative of the classical model, and the latter
has excellent predictive performance because of the
integration of testing effort. These two models use failure
data at period of testing, which are later than the structured
model used in this paper. That is, these models cannot be
used to guide design or development.

First, we calculated the reliability values for each module
in three different current versions. Limited to space, part of
the two-item module results are shown in Table VI.

TABLE VI. PART OF THE MODULE'S CALCULATION
RESULTS IN TWO OO PROJECTS

Module
jEdit

Module
Ant

v4.1 v4.2 v4.3 v1.5 v1.6 v1.7

browser 86.39 87.80 88.75 dispatch - - 96.87

bsh 88.41 91.84 94.38 filters 92.35 95.64 97.02

buffer 87.45 89.33 95.81 helper 89.12 91.08 94.14

bufferio - - 93.54 input 91.56 93.25 96.32

bufferset - - 94.11 launch - 91.39 92.61

gui 85.23 89.32 91.26 listener 96.97 88.55 92.74

… … … … … … … …

The underlined items in the table describe the special
circumstances that may be encountered during the
calculation. E.g:

a) The v4.3 value of the modules bufferio & bufferset in
jEdit. These two modules are both newly added. In fact, they
are derived from the module buffer in previous versions. The

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 13, 2019

ISSN: 1998-0140 100

simplification of one module greatly increase the reliability
value of the module buffer. This is in line with the original
design. The value of the two new modules can only be
estimated simply by not having a time series. The estimation
rules refer to the definition of dpc in Section III.C

b) The v1.7 value of the module dispatch in Ant. It
belongs to the real new function module in the last version.
Its value also need to be estimated without using the RNNs.

c) The v1.6 value of the module launch in Ant. In version
1.6, it belongs to the new functional module. But we still
want to use RNNs in version 1.7. For this case, we construct
a sequence of full length with the same value.

 Huang's Model
 G-O Model
 Propose Method (η=0.05)
 Propose Method (η=0.5)
 Propose Method (η=5)

4.1 4.2 4.3

88

90

92

94

96

R
el

ia
bi

lit
y

(%
)

Versions of jEdit

 Huang's Model
 G-O Model
 Propose Method (η=0.05)
 Propose Method (η=0.5)
 Propose Method (η=5)

1.5 1.6 1.7

88

90

92

94

96

R
e

lia
bi

lit
y

(%
)

Versions of Ant
(a) jEdit (b) Ant

Fig.4. The reliability trend curves on two projects by using different
evaluation methods. The initial learning rate η is set to 5, then adjusted to 0.5
and 0.05.

 Huang's Model
 Propose Method (λ=1)
 Propose Method (λ=0.3)
 Propose Method (λ=0.02)

4.1 4.2 4.3

88

90

92

94

96

R
e

lia
bi

lit
y

(%
)

Versions of jEdit

 Huang's Model
 Propose Method (λ=1)
 Propose Method (λ=10)
 Propose Method (λ=0.001)

1.5 1.6 1.7

88

90

92

94

96

R
el

ia
b

ili
ty

 (
%

)

Versions of Ant
(a) jEdit (b) Ant

Fig.5 The curves of different values of regularization parameter λ in two
projects when the learning rate is set to 0.05. In jEdit, we experimented λ
with a set of values—1, 0.3, 0.02. Then in Ant, we tried another values—1,
10, 0.001 which have a larger span.

Then through the algebra tool, we calculated the overall
reliability of three versions for the two OO projects. As can
be seen from Fig.4, the reliability trends from version 4.1 to
4.3 in jEdit and from 1.5 to 1.7 in Ant conform to the results
of the G-O or Huang’s model. And for the main target
jEdit4.3 and Ant1.7, the evaluation value of this paper is very
close to the tranditional reliability models. Note that it is not
possible to use actual test failure data in early evaluation of
reliability in contrast to SRGMs like G-O and Huang’s. It
means that reliability engineering could be implemented
early in the development process if the software metrics were
used properly.

We set the initial learning rate to 5 in both projects. And
we also gradually experimented with two smaller values—
0.5&0.05. It is found that the result does not converge to a
better value when the set value is 5. In contrast, smaller
learning rates have better performance in small-scale dataset,
just as the metric data used in this article. In Fig.5, we
experimented different values of another hyperparameter—λ,
and the results show that the optimal value for the
regularization parameter in this research is at 10-2 magnitude.

B. Discussion

Unlike SRGMs, the early reliability model can only be
based on analysis of software structure. As we mentioned in
the first section, the modeling data is limited. Therefore, it is
meaningless to compare the predictive performance with a
class of models based on failure data. Most traditional
reliability models, such as SRGMs, are utilized to optimize
the release strategy of software, i.e. to achieve a balance
between quality and test costs. But the significance of the
early model is to optimize the structure and guide the test.

It should be explained that the calculation of each version
of this method can be performed at the design stage. And
based on the framework in Section II, the calculation process
is automatically complemented by tools. This means that the
reliability evaluation can be carried out at any time with
structural design changes. It solves the difficulty of applying
the structural reliability model to practice.

The numerical values evaluated by the proposed method
are lower than the traditional methods’. This is because
calculations based on metric data can magnify the impact of
defect-prone classes. For the calculation of defect tendency,
the method of this paper tends to be conservative.
Correspondingly, the SRGMs which are based only on test
data believe that the reliability curve increases with bugs
fixing. Their evaluations are relatively optimistic in general.

The threat to our treatment mainly arises from
applicability of our method on other OO projects. The metric
data can be obtained from public libraries , but also directly
calculated from source codes. And structural information can
be analyzed from design documents and source codes. We
believe that the applicability of proposed method is not a
problem. Furthermore, it is recommended that the non-java
projects should be tested using our approach and the results
may be slightly different.

The metrics and its classification we used are popular and
commonly investigated in defect prediction literature. In the
same kind of metrics, correlation analysis technique is used
to eliminate redundant impacts. The study on more
correlation analysis techniques is required. In addition, the
DTMC model used in this paper is the most important
structure analysis model at present. The proposed framework
uses formal techniques to solve the application of this model.
Formal techniques have been fully elaborated and verified in
our previous studies. We will provide an open-source
implementation of analytical algorithms online. Replication
studies using different early reliability model, such as
CTMC, to utilize this framework may prove fruitful.

V. CONCLUSIONS

The main work of this paper is to provide a complete
solution for early reliability evaluation used in actual
software project. We use the RNN to process metric data
from all classes to identify which is defeat-prone in the
current version. Then we propose a method for aggregating
the RNNs’ results into module reliability. We present a
framework which can automatically calculates the overall
reliability value based on the introduced formal tools.
Through using a series of technologies, our research solves
the problem of how to implement structural reliability model
in practical projects. Evaluation on two OO projects shows
that it can achieve an approximating result vs. traditional
models which are based on software failure data. This

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 13, 2019

ISSN: 1998-0140 101

research provides new ideas and methods for the empirical
research of reliability.

REFERENCES
[1] F. Febrero, C. Calero, and M. Á. MORAGA. “A Systematic Mapping

Study of Software Reliability Modeling,” Inform. Software Tech., vol.
56, no. 8, pp. 839-849, 2014.

[2] H. Mei, G, Huang, L, Zhang, and W. Zhang. “ABC：a method of
software architecture modeling in the whole lifecycle,” Science
China-Information Sciences, vol. 44, no. 5, pp. 564, 2014.

[3] A. D. Plessis, K. Frank, M. Saglimbene, and N. Ozarin. “The thirty
greatest reliability challenges,” in Proc. Reliability and
Maintainability Symposium, vol. 94, pp. 1-6, Jan. 2014.

[4] T. Dan, M. Galster, P. Avgeriou and W. Schuitema. “Past and future
of software architectural decisions – A systematic mapping study,”
Inform. Software Tech., vol. 56, no. 8, pp. 850-872, 2014.

[5] S. P. Luan, and C. Y. Huang. “An improved Pareto distribution for
modelling the fault data of open source software,” Software Testing,
Verification and Reliability, vol. 24, no. 6, pp. 416-437, 2014.

[6] H. Sukhwani, J. Alonso, K. S. Trivedi, and I. Mcginnis. “Software
reliability analysis of nasa space flight software: A practical
experience,” IEEE International Conference on Software Quality,
Reliability and Security, vol. 3, pp. 386-397, 2016.

[7] L. Aversano, and M. Tortorella. “Analysing the reliability of Open
Source software projects,” in Proc. 10th International Joint
Conference on Software Technologies, pp. 348-357, 2016.

[8] K. Honda, N. Nakamura, H. Washizaki, and Y. Fukazawa. “Case
study: Project management using cross project software reliability
growth model,” IEEE International Conference on Software Quality,
Reliability and Security Companion, pp. 41-44, 2016.

[9] Y. Tamura, and S. Yamada. “Reliability analysis considering the
component collision behavior for a large-scale Open Source
solution,” Qual. Reliab. Eng. Int., vol. 30, no. 5, pp. 669-680, 2014.

[10] B. Littlewood. “Software reliability model for modular program
structure,” IEEE Transactions on Reliability, vol. R-28, no. 3, pp.
241-246, 1979.

[11] R. C. Cheung. “A user-oriented software reliability model,” IEEE
Transactions on Software Engineering, vol. SE-6, no. 2, pp. 118-125,
1980.

[12] J. C. Laprie. “Dependability evaluation of software systems in
operation,” IEEE Transactions on Software Engineering, vol. SE-10,
no. 6, pp. 701-714, 1984.

[13] S. S. Gokhale. “Architecture-based software reliability analysis:
overview and limitations,” IEEE Transactions on Dependable and
Secure Computing, vol. 4, no. 1, pp. 32-40, 2007.

[14] K. Shibata, K. Rinsaka, and T. Dohi. “Metrics-based software
reliability models using non-homogeneous poisson processes,”

International Symposium on Software Reliability Engineering, IEEE
Computer Society, pp. 52-61, 2006.

[15] Y. M. Chu, and S. Y. Xu. “Exploration of complexity in software
reliability,” Tsinghua Science & Technology, vol. 12, no. S1, pp. 266-
269, 2007.

[16] M. D'Ambros, M. Lanza, and R. Robbes. “Evaluating defect
prediction approaches: a benchmark and an extensive comparison,”
Empirical Software Engineering, vol. 17, no. 4-5, pp. 531-577, 2012.

[17] F. Zhang, A. E. Hassan, S. Mcintosh, and Y. Zou. “The use of
summation to aggregate software metrics hinders the performance of
defect prediction models,” IEEE Transactions on Software
Engineering, vol. 43, no. 5, pp. 476-491, 2017.

[18] L. Fiondella, A. Nikora, and T. Wandji. “Software reliability and
security: challenges and crosscutting themes,” IEEE International
Symposium on Software Reliability Engineering Workshops, pp. 55-
56, 2016.

[19] D. S. Kushwaha, and A. K. Misra. “Cognitive complexity metrics and
its impact on software reliability based on cognitive software
development model,” ACM SIGSOFT Software Engineering Notes,
vol. 31, no. 2, pp. 1-6, 2006.

[20] J. Zhang, Y. Lu, and G. L. Liu. “Algebraic approach of software
reliability estimation based on architecture analysis,” Systems
Engineering and Electronics, vol. 37, no. 11, pp. 2654-2662, 2015.

[21] http://www.jedit.org

[22] http://ant.apache.org

[23] http://openscience.us/repo/index.html

[24] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič. “Software
fault prediction metrics: A systematic literature review,” Information
& Software Technology, vol. 55, no. 8, pp. 1397-1418, 2013.

[25] S. R. Chidamber, and C. F. Kemerer. “A metrics suite for object
oriented design,” IEEE Transactions on Software Engineering, vol.
20, no. 11, pp. 197-211, 1994.

[26] D. P. Darcy, and C. F. Kemerer. “OO metrics in practice,” IEEE
Software, vol. 22, no. 6, pp. 17-19, 2005.

[27] R. Moser, W. Pedrycz, and G. Succi. “A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction,” ACM/IEEE, International Conference on Software
Engineering, pp. 181-190, 2008.

[28] L. Madeyski, and M. Jureczko. “Which process metrics can
significantly improve defect prediction models? An empirical study,”
Software Quality Journal, vol. 23, no. 3, pp. 393-422, 2015.

[29] A. L. Goel, and K. Okumoto. “Time-dependent error-detection rate
model for software reliability and other performance measures,” IEEE
Transactions on Reliability, vol. R-28, no. 3, pp. 206-211, 1979.

[30] C. Y. Huang, S. Y. Kuo, and M. R. Lyu. “An assessment of testing-
effort dependent software reliability growth models,” IEEE Trans. on
Reliability, vol. 56, no. 2, pp. 198-211, 2007.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 13, 2019

ISSN: 1998-0140 102

