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Abstract—Reliability engineering implemented early in the 
development process has a significant impact on improving 
software quality. It can assist in the design of architecture and 
guide later testing, which is beyond the scope of traditional 
reliability models. The structural reliability models are made 
for this, but most of them remain in the simulation studies 
because of lack of actual data. In this study, we use software 
metrics which are collected from actual projects to evaluate the 
reliability. We use the Recurrent Neural Network to process 
the metric data to identify defeat-prone classes in one project. 
A specific strategy is used for aggregating module reliability 
with the results. Furthermore, we propose a framework which 
can automatically calculate the overall reliability value by the 
introduced formal tools. The experimental results of two open-
source projects show that reliability analysis at design and 
development stage can be close to the validity of analysis at test 
stage through the reasonable application of metric data and 
related methods. 

Keywords—software reliability, software metrics, software 
defect, RNN 

I. MOTIVATION 

Software reliability engineering aims to improve software 
quality and its role covers all stages of development. 
Recently more research [1]~[4] believed that reliability 
evaluation in the early stages has important implications for 
avoiding the possible revision cost in the later development 
stage, especially for a class of safety-critical software 
systems. But most of recent reliability empirical studies still 
use the traditional growth models (SRGMs) which focus on 
failure data from test stage. For example, Luan and Huang [5] 
studied the distribution of faults in large-scale open source 
projects by using the Pareto distribution to obtain better 
prediction curve fitting accuracy than the classic Weibull 
distribution. Sukhwani [6] applied SRGMs to NASA's 
SpaceFlight software to analysis of relevant experience 
information in software development process and version 
management. Aversano and Tortorella [7] gave a reliability 
assessment framework which was applied to evaluate an 
open source ERP software based on bug reports. Honda [8] 
practiced in industrial software projects to discuss the 
performance of popular SRGMs. Tamura and Yamada [9] 
built a hierarchical Bayesian model which based on fault 
detection rate around a series of open source solutions (such 
as Apache HTTP server, Tomcat, etc.) for reliability 

analysis.  

The above empirical research belongs to the later 
reliability engineering because based on the test period data. 
In contrast, early reliability models can work in the design 
phase to assist in engineering decisions. Typical models 
include Littlewood’s SMP [10], Cheung’s DTMC [11] and 
Laprie’s CTMC [12], etc.. They are commonly referred to as 
structure-based methods which emphasize structural analysis 
based on a specific granularity. But early models have great 
difficulty in practical applications. Taking the DTMC model 
as an example, the two parameters required for modeling: 
component reliability and control transfer probability among 
components, are given by simulated cases rather than actual 
projects [13]. In this research we propose to obtain the 
necessary information from software codes directly to 
support the application of early reliability models. From the 
perspective of improving the engineering process, we discuss 
the methods of reliability modeling in design and coding 
period. 

In fact software metrics has been applied to the reliability 
analysis and defect prediction of actual software projects. 
Shibata [14] incorporated the cumulative discrete-rate risk 
model with time-related measurement data, and verified that 
the predictive performance of new model are better than 
popular NHPP SRGMs’. Chu and Xu [15] gave a general 
functional relationship between complexity metrics and 
software failure rate which can be used in the exponential 
SRGMs. D'Ambros [16] compared the performance of 
several software defect prediction methods and explained the 
factors of threat validity in practice. These methods are 
generally based on static source code metrics and dynamic 
evolution metrics. In [17], the author summarized the 
existing defect prediction models based on software metrics 
into four categories, and indicated how to aggregate them to 
achieve significant effect on predictive performance. 

Fiondella [18] considered that complexity measurement 
data which has the characteristics of low collection cost and 
various forms could be utilized in cognitive modeling. 
Kushwaha and Misra [19] pointed out the importance of the 
cognitive measure of complexity and uses it in a more 
reliable software development process. We believe that the 
cognitive information required for early reliability analysis is 
already included in the code structure, code metrics, and 
design documents. We will conduct empirical research on 
this in order to assist decision-making in the development 
process. This work is supported by National Natural Science Foundation 

(61572167, 51504010) and National Key Research and Development 
Program (2016YFC0801804) of China. 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 13, 2019

ISSN: 1998-0140 96



The rest of this paper is organized as follows. Section II 

Fig .1. A framework of this paper. 

introduces the framework we used for model construction 
and reliability calculation. Section III gives the experimental 
methods of this paper, including object selection, metric data 
processing and aggregation scheme. In Section IV, the 
results of this research are presented. We evaluate the 
performance of our approach against other models and 
discuss the impact of parameters on the results. Conclusions 
are drawn in Section V. 

II. PROPOSED APPROACH 

A. Framework of This Paper 

First, we give our framework as shown in Fig.1 to fully 
describe the methods used in this article. The actual metric 
data will be divided into six categories based on their 
characteristics. And a recurrent neural network (RNN) will 
be trained on data from historical version in order to separate 
out the defect prone classes in the current version. The next 
subsection describes in detail the RNN we used. Then a 
specified scheme receives class information and aggregates 
them to module reliability. We also use formal tools to 
facilitate the application of the DTMC model. We will 
discuss these in the following sections. 

B. Recurrent Neural Network 

We use a simple type of RNN which has one hidden 
layer. Fig.2 describes its main structure. 

 
Fig.2. A many to one RNN model. The right is the unfolded form, where U, 
V and W are the uniform weight matrices. The loss L between the only 
output o(t)  and the goal y(t) is used in the back-propagation for updating 
model parameters.  

As shown, the RNN propagates forward from initial state 
s(0). The update equations for every time step from 1 to t is 

 (t) (t) (t-1)= tanh + +s U x Ws b   (1) 

 (t) (t)=sigmoid o V s c    (2) 

where b, c are the bias vectors. The Hyperbolic tangent 
function tanh() is the most commonly used activation 
function between input and hidden layer.  And the logistic 
function sigmoid() is chose for output function because we 
only deal with two classification problems here. The loss L is 
calculated  as:  

2(t) (t) (t) (t) (t)
2= = log (1 ) log(1 )

2
L L 


    y o y o  (3) 

where 2
22

   is the item of L2 regularization to avoid over-

fitting. We first calculate the gradient 
(t) L

s
of the last state 

s(t), and update the weight matrix V based on 
controlled gradient descent. Then we recursively calculate 
the gradient of all states from s(t-1) to s(1). The matrix U,W are 
updated during the iteration. This is called Back Propagation 
Trough Time (BPTT). The green arrows in Fig.2 indicate its 
order of calculation.  

C. Formal Tools 

In this research we use the structure-based reliability 
model to calculate the overall reliability of software. The 
most popular one is the discrete time Markov chain (DTMC) 
model [11] which uses diagram similar to workflow to 
describe the control-transfer relationships between modules. 
Assuming that module Ni has the reliability degree Ri and the 
transfer probability Pi,j, the product RiPi,j expresses the 
probability that Ni has been executed successfully and then 
transferred to Nj. This is the probability of one-step transfer 
in the Markov chain. 

We can get the one-step probability of any pair of 
modules and form a matrix Q called one-step stochastic 
transfer matrix. The Neumann series of matrix Q is 

0
2= + =

k
k


  S I Q Q Q…   (4) 

where I is the identity matrix. Let’s set the uth row of S 
belongs to the starting module Nu and the vth column belongs 
to the ending module Nv. So the system reliability can be 
computed as: 

,=sys u v vR S R    (5) 

which is expressed as the probability of successfully 
reaching Nv and successfully executing Nv. More details are 
not restated here. A predictable difficulty is that the 
parameters Ri and Pi,j are not easily known in practical 
applications. We will focus on this issue in the next section. 
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Another problem is the expression of the DTMC model. 
In fact, there are currently no tools to support the automatic 
creation of such diagram. As the number of modules 
increases, graphical representations and calculations based 
on this will become more complex and difficult. Besides 
using only directed arcs is not enough to represent all 
relationships between modules in a local structure, such as 
parallelism. We have proposed an easy-to-use method in our 
previous studies [20] for this. The basic idea is to use an 
expression NiNj instead of the arc Ni→Nj in diagram. The 
operator   denotes the most basic relationship between 
modules—motivating, which leads to the generation of 
control transfer. The advantage of expression is that it is 
precise and unambiguous, especially when dealing with more 
complex and larger-scale situations.  

We can introduce more operators to express more 
complex relationships so that these algebraic operators can 
form a complete algebraic system. It is formally equivalent 
to ordinary algebraic expression, which can be automatically 
parsed by a formal language automata such as LL, LR, SLR, 
etc.. Using this tool we can automate the calculation of the 
DTMC model. More details are confined to space and are not 
described here. 

III. EXPERIMENTAL SETUP 

We first give our research object and explain why. Then 
the detailed description of experimental data is presented. 
We use some methods to process the metric data for better 
performance. Finally, we propose a scheme in order to 
integrate metrics into reliability degree for one module. 

A. Projects and Datasets 

In this paper we use two open-source projects–jEdit [21] 
and Apache Ant [22] for research. Both belong to the 
development tools series and have the same version length in 
the PROMISE repository [23]. Table I shows the use of 
PROMISE  data in our approach. 

TABLE I.   THE TRAINING SET AND TEST SET FOR RNN 

Project 
Historical Version 

 (for training) 
Current version

(for test) 
jEdit 3.2,  4.0,  4.1,  4.2 4.3 

Ant 1.3,  1.4,  1.5,  1.6 1.7 
 

TABLE II.  PART OF THE STRUCTURAL INFORMATION OF JEDIT4.3 

Package Description Files Classes Mark 

browser File system browser. 10 10 N1 

bsh Bean shell. 115 106 N2 

buffer Buffer event listener. 18 18 N3 

bufferio I/O request for buffering. 6 6 N4 

bufferset A set of buffer. 4 4 N5 

gui 
GUI controls and dialog 
boxes. 

86 88 N6 

… … … … … … 

Total: 23 packages, 496 files, 492 classes   

The two projects are properly sized and representative for 
development technology. In addition to the metric data, we 
also need to analyze the structural information. When we 
carry out reliability engineering at early stage, we consider 
ourselves as developers and designers. So we can get the 
necessary information of structure from the design 
documentation  or source codes. This information includes 
packages, files, and classes. Table II lists part of them in 
jEdit4.3 for example. 

We has also learned that there are 15 modules(packages), 
785 files and 745 classes in Ant 1.7. Similarly, we need to 
understand the structure of earlier versions. It takes a lot of 
effort, which is why only two open source projects are used 
as research objects. 

Here we define the granularity of structural module 
analysis at the package-level, and the corresponding level 
can be found in other language environments. It needs to be 
based on the previous version when we are seeking detailed 
module information at the design stage. It usually works 
because of the limited changes in modules between versions. 
As the coding continues, we can continuously adjust the 
metric data of one module.  

B. Metric Data Processing 

There are usually three categories–traditional metrics, 
OO metrics and process metrics, to classify metrics [24]. 
Sometimes traditional and OO are called code metrics. The 
data from PROMISE are summarized at the method-level, 
class-level and file-level respectively. At the method-level, 
the number of lines of code (LOC) and the cyclomatic 
complexity (CC) are still suitable for code analysis inside a 
class, which existed before object-oriented programming 
appeared. The CK [25] set has a wide range of applications, 
but there are also metrics that emphasize perspectives such as 
encapsulation, coupling, etc. [26]. The eight metrics 
recommended by Moser et al. [27] have typical process 
characteristics, and are further improved in the MJ [28] set. 

In this paper, metric data are divided into six categories: 
complexity, coupling, cohesion, inheritance, size and 
process. Table III lists all relevant metric elements. 

TABLE III.  METRIC DIVISION IN THIS PAPER 

Category Metric Element Mark 

complexity AMC  MAX_CC  AVG_CC c1 

coupling CBO  CA  CE  IC  CBM c2 

cohesion LCOM  LCOM3  CAM c3 

inheritance DIT  MOA  MFA c4 

size WMC  NOC  RFC  NPM  LOC  DAM c5 

process NR  NDC  NML  NDPV c6 
 

We train different RNNs from the above six aspects to 
identify defect-prone classes, and use TensorFlow 1.4 to 
solve this two-classification problem. We first initialize U, V 
and W randomly, then set b, c and s(0) to 0. We use different 
data sequences when training different RNNs. As shown in 
Table IV, the input series consist of four vectors–x(1)~x(4), 
while the vector x(5) is treated as test data. We define the 
same sequence for all classes in all modules, and use x(5) as 
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test too. So the size of the training set of jEdit is 492, and 
Ant is 745. Note that the same model still needs to be trained 
five more for other categories. 

C. Aggregation Scheme 

While the metric data we use are only collected at the 
class-level, it is necessary to propose a descriptive scheme to 
aggregate them into the value of software system reliability 
finally. 

TABLE IV.  AN INPUT DATA SERIES CONSISTING OF  
 VECTORS (E.X. THE BROWSERVIEW CLASS IN JEDIT PROJECT) 

Coupling 
Metric 

Version 
v3.2 
x(1) 

v4.0 
x(2) 

v4.1 
x(3) 

v4.2 
x(4) 

v4.3 
x(5) 

CBO 13 18 25 24 28 

CA 8 11 14 15 15 

CE 10 14 20 16 21 

IC 0 1 1 1 1 

CBM 0 4 4 4 4 

 

Each RNN classifies all the classes into two types: 
defeat-prone or reliable. So the total number of defeat-prone 
classes can be counted in one aspect. For the defeat-prone 
class (DPC), we give the following definitions to mark the 
training data series: (i) For a certain version, if a class has 
bug commit, it is defined as DPC; (ii) If the metric of a class 
is obviously abnormal, the class is defined as DPC under the 
category which the metric belongs to (in Table III). 

Note that the historical version is only aware of bug 
reports. The class under the current version, taking the class 
BrowserView in jEdit4.3 as an example, belongs to the 
situation under development and does not have a bug report. 
This is the difficulty of early reliability prediction. The input 
vector x(5)=[28 15 21 1 4]T only works from the coupling 
aspect. The BrowserView class still needs the rest from other 
five aspects to aggregate. We define the reliability influence 
(RI) of each category in one module, which is calculated by 

%
( )

( ) [1 ( )] *100
dpc

all

i
i

N c
RI c

N
               (6) 

where Ndpc(ci) is the number of defeat-prone classes in a 
module, Nall is the number of classes in a module, and ci 
indicates at a specified aspect (from c1-‘complexity’ to c6-
‘process’). 

Aggregation strategy can significantly alter correlations 
between software metrics and the defect count. Zhang [17] 
pointed out that the summation strategy can often achieve the 
best performance when constructing models predict defect 
rank or count. In this paper, we use the summation strategy 
to aggregate the reliability influence of six categories 
(aspects) of metrics into the reliability of individual modules. 
It is calculated as: 

 
module

* ( )
i ii

r RI cR          (7) 

where ri is weight of the ci metric category. We think that 
any category represents a different logic, so let them have the 
same weight. Here is ri= 1/6 (i=1~6). 

In the actual development process, reliability engineering 
often needs to be carried out by architects and coders. The 
module developer may calculate Rmodule by counting the 
related metrics. And we suggest a formal tool to apply Rmodule 
into a DTMC model in Section II. So module developers are 
additionally required to submit related expressions based on 
their understanding of the workflow. For example, developer 
of the module browser (recorded as N1) in jEdit4.3 project 
should submit: (i) R1; (ii) N1N21. The expression N1N21 
replaces the directed arc to describe the control transfer flow 
between N1 and N21. It indicates that further processing of 
file system will go to the module utilities (N21). 

Module developer can separately submit expressions that 
confirm design intent, which formally start with the 
developing module and link all possible next modules in the 
workflow. In some cases, architects can also submit or 
modify expressions based on overall understanding. 
Algebraic expressions are precise and unambiguous, and it is 
lightweight and easy to use for engineers.. 

We can collect an expression set finally which implicitly 
contains two key parameters required for the DTMC model: 
Ri and Pi,j. We have already discussed the calculation process 
of Ri, which is reliability of the ith module in one system. 
The transfer probability Pi,j indicated by NiNj, is equally 
divided by all possible transfers from module Ni. The 
syntactic parser can automatically parse out this information 
by scanning the expressions.  

IV. RESULTS AND DISCUSSION 

The experimental results and corresponding discussion 
are presented in this section. 

A. Results 

In this research we focus on the methods of early 
reliability engineering in practical projects, and solve the 
following two problems: 

 From the perspective of early reliability analysis, 
what kind of structure granularity is appropriate and 
how to use software metrics? 

 How to evaluate the overall system reliability in 
practical engineering? 

In general, software design has the characteristics of 
modularization, which is advantageous to the maintenance of 
projects and the deployment of resources. Early reliability 
analysis can only start with the structure of software system. 
The structural characteristics are represented by the 
relationships between modules. This requires selecting the 
appropriate module granularity. In this paper, we suggest that 
Java OO projects should be analyzed at the package-level. 
The corresponding granularity of other types of OO projects 
can be found in the directory structure and design 
documents. 

Different packages show significant differences in 
metrics due to the diversity of functionality and developer. 
As shown in Fig.3, the distributions of metric data are 
obviously different, and most of them are different from the 
whole distribution. It denotes that the coding style of each 
module is possibly different, that is, the quality of each 
module in the same software is also different. Besides, the 
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life cycle and application scope of many packages (or 
components) goes beyond the project itself. 

Therefore, we think that for each different module, the 
reliability influence from its metric data should be analyzed 
separately. Table V lists the model classification results for 
all classes in one package (module). Using (6) and (7), we 
calculate reliability value of the browser module to be 
88.33%. Similarly, the reliability values of the remaining 22 
modules can be obtained. The values of 15 modules in 
project Ant1.7 are also obtained. Table VI lists the  
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(a) DIT -the inheritance category          (b) CBO -the coupling category 
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(c) MAX_CC -the complexity category  (d) RFC -the size category 

Fig.3.  Boxplots of metrics from different categories. Four metrics and eight 
modules are both randomly selected. 

TABLE V.  THE CLASSIFICATION RESULTS OF RNNS 
 (E.X. THE BROWSER PACKAGE IN JEDIT4.3) 

Class Name 

Classification Based on 
 Six Metric Categories 

c1 c2 c3 c4 c5 c6 

BrowserCommandsMenu 0 0 0 0 0 0 

BrowserIORequest 0 0 0 0 0 0 

BrowserListener 0 0 0 0 0 0 

BrowserView 0 0 1 0 0 0 

FileCellRenderer 0 0 0 0 0 0 

VFSBrowser 1 0 1 0 0 0 

VFSDirectoryEntryTable 0 1 0 0 0 1 

VFSDirectoryEntryTableModel 1 0 0 0 0 0 

VFSFileChooserDialog 0 0 0 0 0 1 

VFSFileNameField 0 0 0 0 0 0 

1: defeat-prone, 0: reliable   

Then the reliability value of all modules should be 
integrated with the DTMC model. From the perspective of 
reliability engineering, we need module developer to provide 
the relationship between this module and other modules in 
addition to Rmodule, which can be described conveniently by 
algebraic expressions. Finally, an expression set can be 
established to complete the summary calculation instead of 
the graph. The set of jEdit4.3 is shaped as follows: 

12 3 12 6 12 19 12 20

1 21 2 21 3 5 4 5

20 23 21 23 22 23

23 3 23 24

, , , ,

, , , ,

,

, , ,

,

N N N N N N N N

N N N N N N N N

N N N N N N

N N N N

   

   

  

 

 
 
  
 
 
 
  

  (8) 

The starting module is N12 (msg) in a workflow, which 
means that the message occurs as the start of the business. In 
order to facilitate model calculation, we constructed the 
termination module N24 (R24=100%), and considered that the 
business termination requirement is initiated only by the 
module N23 (core). 

We also establish the algebraic expression set for another 
two versions of jEdit and three versions of Ant. Notice that 
the convention of current version has been expanded here. 
For jEdit when setting 4.3 to the current version to be 
evaluated, the required input series is 3.24.04.14.2. 
The time length is 4. It should change into 3.24.04.1 
when the current version is set to 4.2, and the length is 3. In 
the extreme case of the current version 4.1, its input series 
length is only 2. The same situation exists in the project Ant. 

We use different time series lengths  for comparison. And 
two traditional reliability models—classical G-O model [29] 
and Huang’s model [30] will be used for performance 
comparison too. They belong to the growth model, the 
former is representative of the classical model, and the latter 
has excellent predictive performance because of the 
integration of testing effort. These two models use failure 
data at period of testing, which are later than the structured 
model used in this paper. That is, these models cannot be 
used to guide design or development. 

First, we calculated the reliability values for each module 
in three different current versions. Limited to space, part of 
the two-item module results are shown in Table VI. 

TABLE VI.  PART OF THE MODULE'S CALCULATION  
RESULTS IN TWO OO PROJECTS 

Module 
jEdit 

Module 
Ant 

v4.1 v4.2 v4.3 v1.5 v1.6 v1.7 

browser 86.39 87.80 88.75 dispatch - - 96.87 

bsh 88.41 91.84 94.38 filters 92.35 95.64 97.02 

buffer 87.45 89.33 95.81 helper 89.12 91.08 94.14 

bufferio - - 93.54 input 91.56 93.25 96.32 

bufferset - - 94.11 launch - 91.39 92.61 

gui 85.23 89.32 91.26 listener 96.97 88.55 92.74 

… … … … … … … … 
 

The underlined items in the table describe the special 
circumstances that may be encountered during the 
calculation. E.g: 

a) The v4.3 value of the modules bufferio & bufferset in 
jEdit. These two modules are both newly added. In fact, they 
are derived from the module buffer in previous versions. The 
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simplification of one module greatly increase the reliability 
value of the module buffer. This is in line with the original 
design. The value of the two new modules can only be 
estimated simply by not having a time series. The estimation 
rules refer to the definition of dpc in Section III.C 

b) The v1.7 value of the module dispatch in Ant. It 
belongs to the real new function module in the last version. 
Its value also need to be estimated without using the RNNs. 

c) The v1.6 value of the module launch in Ant. In version 
1.6, it belongs to the new functional module. But we still 
want to use RNNs in version 1.7. For this case, we construct 
a sequence of full length with the same value. 
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Fig.4.  The reliability trend curves on two projects by using different 
evaluation methods. The initial learning rate η is set to 5, then adjusted to 0.5 
and 0.05. 
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Fig.5  The curves of different values of regularization parameter λ in two 
projects when the learning rate is set to 0.05. In jEdit, we experimented λ 
with a set of values—1, 0.3, 0.02. Then in Ant, we tried another values—1, 
10, 0.001 which  have a larger span. 

 

Then through the algebra tool, we calculated the overall 
reliability of three versions for the two OO projects. As can 
be seen from Fig.4, the reliability trends from version 4.1 to 
4.3 in jEdit and from 1.5 to 1.7 in Ant conform to the results 
of the G-O or Huang’s model. And for the main target 
jEdit4.3 and Ant1.7, the evaluation value of this paper is very 
close to the tranditional reliability models. Note that it is not 
possible to use actual test failure data in early evaluation of 
reliability in contrast to SRGMs like G-O and Huang’s. It 
means that reliability engineering could be implemented 
early in the development process if the software metrics were 
used properly. 

We set the initial learning rate to 5 in both projects. And 
we also gradually experimented with two smaller values—
0.5&0.05. It is found that the result does not converge to a 
better value when the set value is 5. In contrast, smaller 
learning rates have better performance in small-scale dataset, 
just as the metric data used in this article. In Fig.5, we 
experimented different values of another hyperparameter—λ, 
and the results show that the optimal value for the 
regularization parameter in this research is at 10-2 magnitude. 

B. Discussion 

Unlike SRGMs, the early reliability model can only be 
based on analysis of software structure. As we mentioned in 
the first section, the modeling data is limited. Therefore, it is 
meaningless to compare the predictive performance with a 
class of models based on failure data. Most traditional 
reliability models, such as SRGMs, are utilized to optimize 
the release strategy of software, i.e. to achieve a balance 
between quality and test costs. But the significance of the 
early model is to optimize the structure and guide the test. 

It should be explained that the calculation of each version 
of this method can be performed at the design stage. And 
based on the framework in Section II, the calculation process 
is automatically complemented by tools. This means that the 
reliability evaluation can be carried out at any time with 
structural design changes. It solves the difficulty of applying 
the structural reliability model to practice. 

The numerical values evaluated by the proposed method 
are lower than the traditional methods’. This is because 
calculations based on metric data can magnify the impact of 
defect-prone classes. For the calculation of defect tendency, 
the method of this paper tends to be conservative. 
Correspondingly, the SRGMs which are based only on test 
data believe that the reliability curve increases with bugs 
fixing. Their evaluations are relatively optimistic in general. 

The threat to our treatment mainly arises from 
applicability of our method on other OO projects. The metric 
data can be obtained from public libraries , but also directly 
calculated from source codes. And structural information can 
be analyzed from design documents and source codes. We 
believe that the applicability of proposed method is not a 
problem. Furthermore, it is recommended that the non-java 
projects should be tested using our approach and the results 
may be slightly different. 

The metrics and its classification we used are popular and 
commonly investigated in defect prediction literature. In the 
same kind of metrics, correlation analysis technique is used 
to eliminate redundant impacts. The study on more 
correlation analysis techniques is required. In addition, the 
DTMC model used in this paper is the most important 
structure analysis model at present. The proposed framework 
uses formal techniques to solve the application of this model. 
Formal techniques have been fully elaborated and verified in 
our previous studies. We will provide an open-source 
implementation of analytical algorithms online. Replication 
studies using different early reliability model, such as 
CTMC, to utilize this framework may prove fruitful. 

V. CONCLUSIONS 

The main work of this paper is to provide a complete 
solution for early reliability evaluation used in actual 
software project. We use the RNN to process metric data 
from all classes to identify which is defeat-prone in the 
current version. Then we propose a method for aggregating 
the RNNs’ results into module reliability. We present a 
framework which can automatically calculates the overall 
reliability value based on the introduced formal tools. 
Through using a series of technologies, our research solves 
the problem of how to implement structural reliability model 
in practical projects. Evaluation on two OO projects shows 
that it can achieve an approximating result vs. traditional 
models which are based on software failure data. This 
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research provides new ideas and methods for the empirical 
research of reliability. 
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