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Abstract— In work are investigated asymptotic stability by 
Lyapunov and assessment of area of an attraction on the basis 
of the second method of Lyapunov by means of new 
Lyapunov's function. On the basis of theoretical results 
received in work computing experiments on concrete examples 
of electrical power systems, which have shown sufficient 
efficiency of the offered method for the studied electrical 
power system are made. 
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I. INTRODUCTION 

Mathematical model of a modern electrical power 
complex, consisting of turbogenerators and complex multiply 
connected energy blocks, is a system of nonlinear ordinary 
differential equations. The task of optimizing the functioning 
of these complexes, and also creation of algorithms of stability 
of the movement for such systems and until now draw 
attention of many researchers and are relevant. 

Industrial development of modern society leads to the 
constant growth of electricity consumption. To satisfy these 
constantly growing requirements, difficult electrical power 
complexes are created. At mathematical modeling of such 
complexes it is required to resolve a number of theoretical and 
practical issues. Ensuring stability of the movement is the 
major problem at a design stage and operation of the studied 
systems. 

II. FORMULATION 

Consider a system of the look 
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Owing to frequency of a phase portrait of system on  

coordinates it is enough to study of him, for example, in a strip 
of  set by inequalities 

 

 
 
The set of the special points of system (1) which are in 

iG0 strip is defined by a set 
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Notice, that point  ,1,0,00  iST ii  is 

also an element of a stationary set . Forming the 
characteristic equation of first approximation system, it is 
possible to establish the nature of stability of special points 
(2). As is well-known, in order that special point system was 
unstable, negativity suffices, at least, one coefficient of the 
characteristic equation of systems of the first approach in the 
neighborhood of this special point. 
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 defined in band iG0 . 

Theorem 1. Let there are scalars such that  

1) Phase system of second order 
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globally asymptotically stable (that is ), 

2) Matrix   of Hurwitz, 

3) ( ) – completely observed pair, 

4) ( )– completely controlled pair, 
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provides global asymptotic stability of system 
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Theorem 2. Let the following conditions be satisfied: 

1) function  iif   meets a condition  
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2) function  ijP  meets a condition 
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3) constants 0, ii D  such that 
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D
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i
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b)     ,1,10 2  iDf iiii  . 

Then zero position of balance of 0T asymptotically is 

steady across Lyapunov, and internal assessment of area of an 

attraction of a special point of 0T  is defined by area, limited 

surface   TSV , , where  i
Ni

TVT
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NiTi ,1,   unstable special points of system (1). 

Proof. On condition 3 b) theorems and, by Theorem 1, 

functions   ,1,,0 iSv iii   definitely - positive in band 

iG0 , and a full derivative on time t owing to system (4), - sign 

negative and set 00 iv  doesn't contain the whole 

trajectories of system (4), except a special point 0T . Function 

 SV ,  in band iG0  is also definitely - positive, owing to a 

condition (5). 
On condition (5) and 3 а) theorems following equalities 

are fair 
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Full derivative of function  SV ,  (3) on time в 

owing to system (1), taking into account (6) will take a form 
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Expression (7) of the sign negative and set 

  0, SV   doesn't contain the whole trajectories of system 

(1), except a special point 0T . Then areas of an attraction of a 

special point 0T  it is possible to define by a limited surface 
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min , if iT - unstable special 

points of system (1). The theorem is proved. 

Notice, that areas of an attraction of a special point 0T  

can be found by the method of work [2]. 
Consider function now 

  (8) and function  SV ,  (3). 

 Theorem 3. Let there are scalars 
 such that  

1) Matrix    of Hurwitz, 

2) ( ) – completely observed pair, 

3) ( )– completely controlled pair, 
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 Theorem 4. Let exist a vector , scalars, 
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such that 

1) matrix  of Hurwitz, 

2) pair  it is completely controllable, 

3) пара  it is completely observable, 
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5) . 
 
Then, under control 
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negative, and set 00 i  doesn't contain the whole 

trajectories, except a special point 0T . Derivative on time 

from function ),( SV   owing to system (1) taking into 

account equalities (6), will take a form 
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where right part of equality of the sign negative and set 

0),( iii SV   doesn't contain the whole trajectories, except 

a special point 0T . From here as well as in theorem 2 it is 

easily possible to receive approvals of theorem. The theorem is 
proved. 

).2  Consider system now 

,

   (11) 

                           (12) 

where function 

           (13) 

Owing to frequency of a phase portrait of system on 

coordinates i  - it is enough to study of him in band iG0 , set 

by inequalities  

iii 01        liRxRS in
iiii ,1,,1   

 Will consider a set of the special points of system (11), 

(12) which are in band iG0 , i.e. introduce the set of stationary 

points: 

 ,,...,,

,1,),,(,0

,0)()(,0),,(

10

0

,1

N

iiiii

ik

l

ikk
ikiii

TTT

liGxSx

PfSxS
































 

where    lixST iii ,1,0,0,00   
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where function ),,(~
0 iiii xS (9) defined in band 

iG0 . Then combining the results of theorems 4 and 2, it is not 

difficult to prove the following theorem. 
Theorem 6. Let the parameters   such that 

 
 

, 

 
 
Then area of an attraction of steady equilibrium state 

O(0,0) of system (4) in band  , which can be estimated by 
means of Lyapunov (9) function, it is set by inequality of a 
look , where the criteria value and 
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It is supposed that for the chosen  conditions are 
satisfied  

,

, otherwise it 

is possible to take other value . 

Theorem 7. Let exist a vector , 

scalars , ,  such 
that 

1) matrix  of Hurwitz, 

2) pair  it is completely controllable, 

3) пара  it is completely observable, 

4) , 

5) conditions of the theorem 6 are satisfied. 
 
Then at control  

  
area of an attraction of the beginning of coordinates in band 
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III. NUMERICAL EXAMPLE 

Consider the system of the following look 
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defines communication between subsystems and  – the 
set continuously differentiable periodic function. 
For l=2 (15) the system has the following appearance: 
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To study stability, consider the function 
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where 

 defined in band iG0 . 

For the numerical solution of the considered task the 
program module the using interface of application creation 
Windows Forms written in the C# programming language has 
been created. In the program for numerical integration of 
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system (16) are used a two-step method of Adams-Bashfort. 
The formula of this method has following appearance: 
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Using a formula (18) rewrite system (16) in a look: 
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Results of numerical differentiation of system (17) are given 
below: 

 

Pic. 1 Graph of parameter . 

 

  

Рic. 2 Graph of parameter . 

 

 

Рic. 3 Graph of parameter . 

 

Рic. 4 Graph of parameter . 

 

Рic. 5 Graph of Lyapunov function  

IV. CONCLUSION 

In work are investigated asymptotic stability by Lyapunov 
and assessment of area of an attraction on the basis of the 
second method of Lyapunov by means of new function of 
Lyapunov. On the basis of theoretical results received in work 
computing experiments on concrete examples of electrical 
power systems, which have shown sufficient efficiency of the 
offered method for the studied electrical power system are 
made.  
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