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Abstract—This paper deals with the problem of modelling 
and monitoring the fault-free states of an industrial process 
without a complete knowledge about the entire machine 
components. The aim thereby is to automatically detect the 
deviations in performance as fault symptoms. For that type of 
data-based modelling, the algorithms of clustering are selected 
with emphasis on the computational load and application 
complexity. Kohonen neural networks (self-organizing maps) 
are found suitable for the task due to the ability to efficiently 
operate on high dimensional data and because of their 
robustness against uncertainties. They reveal drawbacks from 
the perspective of identifying the deviating variable in the input 
space. A novel structure is designed to solve this dilemma by 
combining multi one dimensional domains and their statistical 
relationships, where Kohonen and Bayesian algorithms would 
be directly applicable. The structure is introduced and applied 
to simulate the human supervisors in the way of learning normal 
operation and hence, attempts to automatically identify the 
deviating variable in high amount of data. An example 
application is proposed for detecting the wear degradation fault 
in a real electrohydraulic drive that widely used in many 
industrial machines. The algorithm can be realized locally or 
integrated remotely in cloud architectures.   

Keywords— condition monitoring, unsupervised machine 
learning, self-organizing maps, abnormality isolator, artificial 
neural networks.  

I. INTRODUCTION 

Modern machines demand more smartness, usability and 
profitability. The application of machine learning (ML) 
algorithms in condition monitoring (CM) modules is a 
milestone towards these aims. ML is defined as “automatic 
computing based on logical and binary operations to learn 
tasks and exploit facts from examples” [1]. ML techniques can 
be categorized into supervised and unsupervised paradigms 
based on the learning form. The supervised ML is widely 
applied for tasks such as pattern recognition and time series 
predictions. The authors in [14], [4], [17] proposed the 
supervised ML to identify defects. The training data are 
typically gained through operation with injected faults, then a 
model is trained to classify the patterns assigned to each fault, 
as a class label. A popular algorithm is the feed forward 
artificial neural networks (FF-ANN). The output of the FF-
ANN is bounded by the trained cases and the drawback of this, 
is incorrect classification by fault patterns that are not included 
in the training set. Therefore, the training data must contain all 
possible fault patterns in advance as in /31/ .This is practically 
hard to realize in CM problems as many faulty scenarios are 
not known practically in advance [13]. By the unsupervised 
ML, no need to classify the training data by labels and it’s not 

necessary to include all possible faulty cases in the training 
data sets. The algorithms can automatically detect an anomaly 
based on the learned normal (i.e. fault-free) patterns. The 
abnormality is regarded in the data as a deviation or in other 
words, possible fault symptoms. The automatic recognition in 
this manner supports human supervisors for troubleshooting 
the cause and eventually adapt maintenance plans. For this 
concern, the related technique of unsupervised ML is data 
clustering which is defined as: “an unsupervised learning 
approach, directly exploiting regularities in the data to be 
analyzed, that builds a higher level representation to be used 
for reasoning or prediction.” [2]. Comparing all clustering 
algorithm is beyond the scope of the paper. In [16], a large 
number of clustering algorithms are outlined and compared. 

II. KOHONEN SELF ORGANIZING MAPS  

A. Conventional Algorithm 

Self-Organizing Maps (SOMs) are a special type of ANN 
that are suitable for clustering data and vector quantization [9]. 
Each cluster could be interpreted as a local model. In the 
concern of CM, the data are collected from various machine 
components and hence are usually multivariate. Consider an 
input vector 𝑥(𝑡) of 𝑛 variables that is gained during healthy 
operation: 

𝑥(𝑡) = [𝜀1(𝑡), 𝜀2(𝑡), 𝜀3(𝑡), … 𝜀𝑛(𝑡)] (1) 

By clustering using conventional SOMs, a model 𝑚𝑖  is 
associated with cluster 𝑖  as depicted in Fig. 1. 𝑚𝑖 . can be 
expressed as a vector of weights: 

𝑚𝑖(𝑡)

= [𝑤1,𝑖(𝑡), 𝑤2,𝑖(𝑡), 𝑤3,𝑖(𝑡), … 𝑤𝑛,𝑖(𝑡)] 
(2) 

Where 𝑤𝑘,𝑖 is the weight of the input dimension 𝑘 to the 
cluster node 𝑖. A data item will be associated into the node 
whose model is most similar to it [10].  

 

Fig. 1.  Models associated to the clusters 
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The similarity measure is based on the geometrical 
Euclidean distance.The training performs an iterative adaption 
to the weights that takes the general form: 

𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + 𝛼(𝑡)ℎ𝑐𝑖(𝑡)[𝑥(𝑡)

− 𝑚𝑖(𝑡)] 
(3) 

 𝐷𝑖  = ‖𝑥(𝑡) − 𝑚𝑖(𝑡)‖, 𝑓𝑜𝑟𝑖: 1 → 𝑘 

 𝐷𝑐 = min  (𝐷𝑖) 
(4) 

As 𝛼(𝑡) is a learning rate. The subscript 𝑐  indicates the 
node that has the minimal Euclidean distance, 𝐷𝑐  to the input 
vector 𝑥(𝑡). The node 𝑚𝑐 is called the winner neuron, whose 
model will be updated to be more similar to the training input 
vector. Due to this strategy, the SOMs are called competitive 
networks [8]. SOMs are typically constructed as 2D 
topological grids. Other map nodes in the neighborhood of 𝑚𝑐 
would be updated by a function ℎ𝑐𝑖(𝑡), Eq. (3), as a kind of 
smoothing kernel [10]. A typical use of the neighborhood 
function is the Gaussian [7]. The training is performed 
unsupervised in one of the following schemes 

1) Sequential Training: Data samples are fed one per 
iteration. The weights are updated following each sample 

2) Batch Training: The algorithm loops on the whole set 
iteratively, each run is called ‘epoch’. The weights are 
updated per epoch. 

After the training is complete, the weights of all the nodes, 
are registered in a matrix called ‘the code book’ of the map. 
The map is then used to estimate the winning node, named 
then as ‘the best match unit’ (BMU). The BMU is thus the 
output of a cost function that minimizes the quantization error  
, Eq. 5 

𝑄𝑒 = || 𝑥(𝑡) − 𝑚𝑖|| = 

√(𝜀1 − 𝑤𝑖,1)2 + (𝜀2 − 𝑤𝑖,2)2 … + (𝜀𝑛 − 𝑤𝑖,𝑛)
2

 
 2

 
(5) 

The domain of BMUs describes the normal fault free 
operation of the target machine. Deviations are supposed to 
result in an increase in the training 𝑄𝑒  or produce a BMU out 
of trained normality domain. 

B. Discussion 

SOMs are generally powerful for clustering high 
dimensional data. In addition, they can be applied as a way of 
black box modelling [5]. Unlike other clustering algorithms, 
they reveal interesting characteristics for developing a 
practical methodologies for CM. Kohonen algorithm for 
clustering provides advantages that it maintains two features 
at the same time: 

1) Feature 1, Application flexibility: The training can be 
carried out in a batch or sequential paradigm that requires low 
computational cost. So it can be operate online by PLCs that 
have limited resources. Therefore, the developed functions 
would be potentially applicable in a vast variety of systems. 

2) Feature 2, Configuration simplicity: Human operators 
do not have precise knowledge in advance about the nature of 
the data or/and the number of the clusters.The SOM grid 
nodes do not necessarily have to be fully assigned to data 
points. Empty nodes are found frequently in such networks 
without claims on performance or accuracy. Therefore, the 

definition of the exact number of cluster nods is not a 
prerequisite.  

On the other hand, the conventional algorithm reveals 
drawbacks in the way of fault detections: 

 Probably incorrect monitoring. The mechanism of 
estimating the similarity of a faulty multivariate state 
may result in an equivalent 𝑄𝑒 as normal one, Eq. 5. 

 No possibility to identify, i.e. isolate, the deviating 
variable 𝜀̂ in the input vector. Therefore, no aid for 
further diagnostics. 

III. ANOMALY ISOLATION 

To maintain the unsupervised paradigm and at the same 
time isolate the abnormal variable, it is necessary to cluster 
each dimension by a SOM in a separate domain (subgrid). 
Each domain is assigned to one variable. The nodes from the 
subgrids must be related together or, in other words linked, to 
maintain the description of high dimensionality. The 
suggested linking is based on the probability of the nodes 
matching events along all dimensions. The coupling takes the 
form of an additional layer that can be used to learn the 
probability of the nodes matching events, BMU Hits, and the 
joint probability of the hit events in between the subgrids. The 
proposed training is divided into 2 stages, Fig. 2. 

 Stage1: The conventional Kohonen algorithm is used 
to train the 1D SOMs either in batch or sequential 
training with the target to lower 𝑄𝑒 below a predefined 
limit 𝑄𝑒𝑚𝑎𝑥,𝑖. The limit definition differs according to 
the physical relevance of each variable and the target 
clustering accuracy. 

 

Fig. 2. Training stages 

 Stage2: The 1D SOMs are used to emit the BMUs by 
reusing similar training data set as in stage 1. For each 
observation vector, a vector of BMUs is emitted and 
registered in a matrix Ω for the rest of the training data 
set. Ω is then used to estimate the joint and conditional 
probability. For arbitrary variable 𝑗, the hits of BMUs 
can be resolved as a random process having discrete 
events 

 (𝑆𝑂𝑀𝑗  𝐻𝑖𝑡𝑠) ∈ {𝐵𝑀𝑈𝑗,1, 𝐵𝑀𝑈𝑗,2, … 𝐵𝑀𝑈𝑗,𝑘}  

As 𝑘 is the number of the BMUs of trained 𝑆𝑂𝑀_𝑗. The 
probabilistic space of that process is therefore abstract and, 
within which, the events are mutually exclusive since only one 
outcomes and no overlapping is permitted [11]. Furthermore, 
the hits are exhaustive since their probabilities cover the whole 
probabilistic space. Let A denotes the 𝐵𝑀𝑈𝑗,𝑖 hit event from 
𝑆𝑂𝑀_𝑗 and B denotes the corresponding hit event 𝐵𝑀𝑈ℎ,𝑙 for 
an adjacent 𝑆𝑂𝑀_ℎ.The conditional probabilities of A given 
B, where 𝑃(𝐵) ≠ 0, 𝑃(𝐴) ≠ 0, is given in [11] by  
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𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
=  

𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
 

  

  

(6) 

The term 𝑃(𝐴 ∩ 𝐵) is the joint probability that both events 
are happening. If either 𝑃(𝐵) or 𝑃(𝐴) = 0, then the events are 
described to be independent [11]. If both probabilities are 
nonzero then they reveal independencies if one of the 
conditions is satisfied   

𝑃(𝐴|𝐵) = 𝑃(𝐴), or 𝑃(𝐵|𝐴) = 𝑃(𝐵) 

In this case, the following equation holds 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵) 

 

(7) 

The probability of hitting certain groups of SOM nodes, 
each in a specific domain, is dependent on the collected data 
from the operation of the physical system. Non-hit grid nodes 
would have a negligibly low hit probability, and therefore 
reveal statistical independency. We can conclude that the 
statistical relationships have physical relevance and can be 
therefore potentially used for CM. The relationships can be 
represented graphically as in Bayesian Networks (BN) or in 
abstract form, using Markov chains that can effectively 
determine the most likely sequence of numeric values, 
provided that the BMU events are introduced in sequential 
vectors of samples [3].  

 

Fig. 3. Structure of the abnormality isolator 

Fig. 3 depicts the proposed structure of the Abnormality 
Isolator (AbIso). A finite number of 1D SOMs on the right 
hand side is intended to cluster each variable. The number of 
the grids and the input dimension is therefore identical. The 
most suitable topology of the grids in this case, is straight lines 
with lattice in form of rectangles. 

𝑁𝑖 is the number of nodes (clusters) in each grid. It is not 
necessary that all subgrids have the same size. The subgrids 
can be initialized either randomly or linearly as the min and 

max limit can be estimated from the training data set or the 
operational limits. The probabilistic linkages are initialized by 
zero. Regarding the CM problem, the variables‘ values are 
physically bounded to the performance nominal and 
maximum limitations so that the usual procedure for 
determining 𝑁𝑖  heuristically can be improved.  

The parameters for the AbIso are listed as:  

𝐶  :Training length to converge 
 - Max number of training epochs for batch training. 
 - Max number of samples for sequential training. 

𝑄𝑒𝑖,𝑚𝑎𝑥  : Allowed clustering error (tolerance) 

𝛼 :  Learning rate 
ℎ𝑐𝑖 : Neighbourhood function, the Gaussian function is 

selected by default 
𝑅  : Neighbourhood radius in number of grid nodes (= 1 by 

default) 
Only the nodes whose hit probabilities as BMU are 

nonzero are registered in Ω , each variable occupies a column, 
and each observation, from the raw data feed, results in only 
one row. At the end of the training, the conditional probability 
cab be estimated based on Ω, Fig. 3. Each BMU from the 
subgrids possesses the properties: 

 Event hit probability for itself 

 Finite number of connections to adjacent nodes in 
other layers 

The connections are weighed by the estimated conditional 
probability for later utilization in CM modules. For isolation 
purposes, this step is established pairwise, so that the most 
likely chain combinations of BMUs are drawn and otherwise 
is assumed to be abnormal. 

The classical SOM nodes represent an integral model of 
the data [7] in contrast to the procedure followed here. An 
operational point is represented by a prototype that consists of 
a set of BMUs from subdomains and statistical weighting of 
the hits. Therefore, the AbIso enables the anomaly detections 
in 2 levels of monitoring:  

 Level 1, Values local ranges: 𝑄𝑒  exceeds the grid 
training error. Each subgrid enables “out of range” 
detections of the variable, 𝜀𝑖  that it clusters or the 
clustering node has a low hit probability of being a 
BMU as trained. 

 Level 2, Relational mismatch: The hit BMU does not 
correspond to subsequent nodes in the adjacent grids. 
This enables estimating the irregularity in operation 
even if all single variables values are drawn as normal 
(output from level 1).  

IV. CASE STUDY 

The concept is applied for the problem of detecting wear 
fault in hydrostatic pumps as result of degradation effects. 

A. Speed variable pump drives 

Speed variable pumping drives (SvPs) were recently 
developed essentially to improve the energy efficiency in 
hydraulic systems [12]. These drives operate to control the 
pressure in a closed loop control scheme, Fig. 4. The controller 
varies the speed set point of an electro servo motor that drives 
a hydrostatic pump. The pump influences the output flow rate 
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and, in turn, lower or increase the system pressure [15]. SvPs 
are used typically for pressure control tasks instead of servo 
valves. The system pressure is taken as the feedback control 
state and the speed would be the controller output variable. 
This type of drives is used in many modern industrial 
applications such as plastic injection & moulding machines 
(IMMs). The 3 main variables to define an operational point 
are system pressure 𝑝 , motor speed 𝑛  and torque 𝑀 . The 
pressure set points / traces differ according to the rest of the 
hydraulic system and the operating process. In addition, the 
conditions of the fluid varies sharply depending on the 
environmental effects such as temperature. 

 

 
Fig. 4.  Typical SvP drive 

An essential aspect for CM tasks is the natural variance in 
the state variables depending on the environmental effects 
besides the loading conditions. This issue makes the threshold 
definition hard to set and predict. Fig. 5 depicts SvP operation 
points at typical IMM cycle [15]. The graphs show data from 
healthy operation in different environmental conditions.  

 
Fig. 5.  𝑝 − 𝑛 operational points of SvP, steady states 

B. Applying the monitoring model 

The state variables reveal discontinuous domains that can 
be directly modelled by the 1D SOMs. The number of the 
nodes are defined normally in heuristic manner [9]. We 
propose to select the number of nodes in relationship to the 
nominal limits of the variables, by the equation : 

𝑆𝑂𝑀 𝑆𝑖𝑧𝑒

= 𝛾  (𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑙𝑖𝑚𝑖𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑑𝑎𝑡𝑎)

/(𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑝𝑒𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) 

(8) 

 

For this example case, the nominal values and the 
tolerances are set outgoing form the standards in [6] as follows 
in Table I. 

TABLE I.  VARIABLES TOLERANCES 

Variable 
Nominal 

limits 
Tolerance 

[%] 
Tolerance 
𝑸𝒆𝒊,𝒎𝒂𝒙 

Approx. No. of 
Nodes, 𝜸 = 𝟎. 𝟐 

Pressure 315 [bar] ±1 3.15 20 

Speed 3000 [rpm] ±1 :1.5 30 20 

Torque 100 [Nm] ±1 1 20 

 

The software tool in [7] is used for training the SOMs . 
The data are collected for 3000 IMM cycles of operation and 
the training proceeds in batch form. The training parameters 
are summarized in Table II. 

 
Fig. 6. SOMs for the state variables n, p, M 

The resulted SOMs are represented graphically in Fig. 6. 
where the size of the red points signalize the hit probability. 

TABLE II.  SOMS DESIGN AND TRAINING RESULTS 

Item 𝑺𝑶𝑴_𝒑 𝑺𝑶𝑴_𝒏 𝑺𝑶𝑴_𝑴 

State Variable                               Pressure [bar] Speed [rpm] Torque [Nm] 

Input dimension                        1 1 1 

Map grid size                          20 x 1 20 x 1 20 x 1 

Lattice type (rect/ 
hexa)               

rect rect rect 

Shape 
(sheet/cyl/toroid)               

sheet sheet sheet 

Neighbourhood type                      Gaussian Gaussian Gaussian 
Mask                                   - - - 

Training status                       initialized, 
trained 15 
times 

initialized, 
trained 25 
times 

initialized, 
trained 30 
times 

Average 𝑄𝑒 0.0385 0.1589 0.2655 

 𝑄𝑒𝑚𝑎𝑥 1.3354 6.1622 1.5996 

 
In Fig. 7 the statistical interrelationships are drawn, the 

size of the squares is proportional to the joint probability that 
both indexed nodes in the SOMs are hit as BMUs. The third 
graph of the nodes of speed and torque SOMs is not included 
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in the example as it has no add-value for the target fault 
detection. 

 
 

 
Fig. 7. BMU probabilities (p-n , p-M), 20 nodes  

C. Degradation Fault Scenario 

The AbIso is trained as explained in the last sections to 
learn the normal fault-free distributions of the data of SvP. The 
most sensitive component to fluid conditions and loading is 
the pump, whose volumetric efficiency decreases as a result 
of degradation wear. The fault can be simulated on a test rig 
by inserting an external leakage. Form the systematic point of 
view, the additional leakage acts as a disturbance on the 
control loops so that the speed demand to maintain the same 
pressure levels differs correspondingly. See Fig. 8 for the 
traces of the speed at a pressure set point = 100 [bar]. 

 

 
Fig. 8. Speed traces in normal and faulty operation , 100 [bar] 

The detection is successfully done in the monitoring level 
1, 𝑄𝑒 of the BMU in 𝑆𝑂𝑀_𝑛 increases remarkably, Table III. 

TABLE III.  COMPARISON FOR FAULT DETECTION 

Item Normal Faulty 

𝑆𝑂𝑀_𝑝 , Node 6 6 

𝑆𝑂𝑀_𝑝 𝑄𝑒 1.151 1.063 

𝑆𝑂𝑀_𝑛, Node 3 3 

𝑆𝑂𝑀_𝑛 𝑄𝑒 4.278 7.873 

 
Although the detection in level 1 is sufficient for this case, 

a demonstration of the level 2 is helpful to explore the working 
principle of the whole peocedure. The statistical relationship 
can be calculated pairwise from the hits probability as outlined 
before. We construct the model flow on the basis of the 
physical dependencies of the variables. A key variable is the 
control state, system pressure p, and the speed demand is 
related to it. The motor torque is dependent on both. The 
sequence of checking the combinations starts from estimating 
the BMUs of the 3 subgrids. Assume the training output is 
𝑆𝑂𝑀_𝑝 , 𝑆𝑂𝑀_𝑛 , 𝑆𝑂𝑀_𝑀  , 𝑄𝑒𝑚𝑎𝑥  vector , the statistical 
relationships between the BMUs. The monitoring algorithm is 
outlined as follows: 

 

 

V. DISCUSSIONS AND OUTLOOK 

The paper represented a novel structure for anomaly 
isolations. The structure, AbIso, is designed on the basis of 
Kohonen algorithm and it reveals practical impacts by high 
degree of flexibility and handling simplicity. It can be 
practically used as a generalized framework for CM and 
troubleshooting in many systems. The structure combines one 
dimensional SOMs (subgrids) and relate their output 

- Input vector : 𝑥(𝑝, 𝑛, 𝑀)  
- Calculate the array of BMUs, 𝐴 =  [𝑆_𝑝, 𝑆_𝑛, 𝑆_𝑀] in 

𝑆𝑂𝑀_𝑝, 𝑆𝑂𝑀_𝑛, 𝑆𝑂𝑀_𝑀  
- Register the respective 𝑄𝑒1𝑥3 array 

_________Level 1 Monitoring __________ 
- For i = 1: 3 do  

If 𝑄𝑒(𝑖) > 𝑄𝑒𝑚𝑎𝑥(𝑖)  then 
 Abnormality detected in domain 𝑖 
  {pressure, speed, torque} 

End_if  
    End_for  

_________ Level 2 Monitoring __________ 
- If 𝑆_𝑝 ∉  𝑆𝑂𝑀_𝑃𝐵𝑀𝑈𝑠 then  

Abnormal pressure level  
Else 

Extract 𝑘 𝑆𝑂𝑀_𝑛𝐵𝑀𝑈𝑠 where 𝑃(𝑘|𝑆_𝑝) > 0 
If 𝑘 =  𝑒𝑚𝑝𝑡𝑦 then  

No match  Abnormal speed point 
Else 

Extract 𝑀1 𝑆𝑂𝑀_𝑀𝐵𝑀𝑈𝑠 where 𝑃(𝑀1|𝑆_𝑝) > 0 
Extract 𝑀2 𝑆𝑂𝑀_𝑀𝐵𝑀𝑈𝑠 where 𝑃(𝑀2|𝑆_𝑛) > 0 

If 𝑀1 ⋂ 𝑀2 =  𝑒𝑚𝑝𝑡𝑦 (no common elements) 
   No match  Abnormal torque demand 

End_if  
End_ if 

End_if  
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statistically. For linking the BMU hit events from each 
subgrid, the fundamental rules of probability were sufficient 
as there is no current requirements to infer facts or causalities.  

 The traditional application of SOMs is to cluster multi-
dimensional data into 2D gird and not 1D as the contribution 
here. There are many other algorithms for 1D clustering. 
Gaussian mixture models and the radial basis ANNs can be 
used to learn continuous 1D data distributions. In the case of 
1D discrete clustering, histogram algorithms are popular and 
efficient. SOM algorithm is chosen as it is suitable for discrete 
distributions and it doesn’t require an exact predefinition of 
the number of clusters, besides the capability to perform 
sequential training. The sequential way of learning saves 
resources and computational load. Furthermore, the common 
task of normalizing each variable in the input space is no 
longer required. For multi-dimensional SOMs, normalization 
should not be omitted, otherwise, input variables with high 
value ranges would dominate the clustering nodes so that other 
low valued variables may have no influence on the clustering 
results. 

The AbIso detects the anomaly in 2 levels by first 
comparing the quantization error to the normal ranges in each 
subgrid, and then checks the BMU combination plausibility in 
level 2. There is no expected restriction on the number of input 
variables other than the increasing computational complexity, 
especially in the side of the statistical model.  

An example case of degradation fault in speed variable 
hydrostatic pumps is demonstrated. The task used only 3 
variables for CM and aimed to automatically recognize the 
anomaly. The isolated anomaly can be generally combined 
with expert knowledge so that a meaningful diagnosis is 
gained at the end. In this example, an excessive speed demand 
is detected because of degradation wear in the hydraulic 
pump. Other cases and applications in different fields and 
scales are left for future work. 

Bayesian Networks (BNs) are a known technique for 
visualizing complex statistical structures of random variables 
and extract causality for reasoning purposes. This 
methodology is widely applied in the field of reliability and 
diagnosis [18] as the BNs permit the integration of human 
knowledge in addition to the dependencies extracted from the 
observations in the datasets [3]. A suggestion for future works 
is to model the anomaly occurrences in temporal sequence and 
study their relationships to machine component failures in a 
global Bayesian diagnostics approach. The benefit beyond this 
is to gain a basis for fault predictions and therefore a ML 
model for the aim of adapting maintenance plans.  
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