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Abstract—We investigate a nonconvex, nonsmooth optimiza-
tion approach based on DC (Difference of Convex functions)
programming and DCA (DC Algorithm) for the reduced-rank
multitask linear regression problem with covariance estimation.
The objective is to model the linear relationship between a
multitask response and more explanatory variables by estimating
a low-rank coefficient matrix and a covariance matrix. The
problem is formulated as minimizing the constrained negative
log-likelihood function of these two matrix variables. Then, we
consider a reformulation of this problem which takes the form
of a partial DC program i.e. it is a standard DC program for
each variable when fixing the other variable. Next, an alternative
version of DCA scheme is developed. Numerical results on
synthetic multitask linear regression datasets and benchmark real
datasets show the efficiency of our approach in comparison with
the existing alternating/joint methods.

Index Terms—multitask linear regression, reduced-rank, co-
variance estimation, DC programming, DCA, Alternative DCA

I. INTRODUCTION

In this paper, we consider the reduced-rank multitask linear
regression problem with covariance estimation (see, e.g., [1]).
Given m different tasks with the d-dimensional feature vector
denoted φi ∈ Rd, the corresponding respond denoted zi ∈ Rm
is generated using the linear model

zi = Xφi + εi, (1)

where X ∈ Rm×d is an unknown matrix whose rows represent
the coefficient vector for each task; the error εi ∈ Rm is
assumed from a centered multivariate normal distribution with
an unknown covariance matrix Cov(εi) = (Θ)−1, Θ ∈ Rm×m.

The objective is to find the matrices X and Θ from n
data points {(zi, φi)}i=1,...,n. In the high-dimensional setting,

the problem aims to minimize the constrained negative log-
likelihood function as follows.

min

[
1

n

n∑
i=1

(zi −Xφi)>Θ(zi −Xφi)

]
− log det(Θ) (2)

s.t. X ∈ X ,Θ ∈ Y,

where X = {X ∈ Rm×d : rank(X) = r} represents the low-
rank constraint set and Y = {Θ ∈ Rm×m : Θ � 0} is the set
of positive semi-definite matrices.

This problem has many real-world applications ranging
from chemometrics (see e.g. [2]) to imaging neuroscience (see
e.g. [3]), to quantitative finance and risk management (see
e.g. [4]), to bioinformatics (see e.g. [5]), to robotics (see e.g.
[6], [7]), to cite a few. For instance, in robotics, multivariate
regression analysis is applied to evaluate the impact of robotic
technique and high surgical volume on the cost of radical
prostatectomy [6]. In another robotics application [7], linear
regression analysis is performed to quantify the effect of
surgeon experience on the operating time for each surgical step
in the robotic-assisted laparoscopic prostatectomy procedure.
In bioinformatics, the multitask regression algorithms are
developed to solve the genomic selection problem in the fields
of plant/animal breeding and genetic epidemiology (see [5] for
more details).

In general, it is very hard to search globally optimal
solutions to the problem (2) due to a double difficulty: first,
the objective function of (2) is nonconvex in the variable
(X,Θ), and, second, the rank function in the constraint set
X is discontinuous and nonconvex.

There are some existing approaches for solving the problem
(2) which use an alternating optimization procedure on the
variable (X,Θ). In particular, a classic Alternating Method
(AM) will alternate between computing two variables X and
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Θ at every iteration (see e.g. [8]). It leads to solving, at each
iteration, a reduced-rank regression problem in X (see [9]) and
a convex program in Θ. Recently, Ha and Foygel Barber [1]
have proposed an Alternating method using Gradient Descent
method (AGD) for solving (2). The AGD method differs
from the AM method by the fact that the AGD performs
one iteration of the gradient descent method for solving the
reduced-rank regression problem. Another approach without
computing two variables alternatively is the joint gradient
descent (JGD) method [1] which takes one gradient descent
step in (X,Θ). All three AM, AGD, and JGD algorithms are
described completely in the Appendix.

In this work, we still use the alternating optimization
procedure on the variable (X,Θ). However since the problem
(2) is nonconvex in X , we will investigate an alternating
approach for solving (2) based on DC (Difference of Convex
functions) programming and DCA (DC Algorithm) (see e.g.
[10]–[13] and the references in [11], [14]) which are well-
known as powerful nonsmooth, nonconvex optimization tools.
DCA aims to solve a standard DC program that consists in
minimizing a DC function f = g−h (with g, h being convex
functions) over a convex set or on the whole space. Here
g − h is called a DC decomposition of f , while g and h
are DC components of f. The idea of the standard DCA is,
at each iteration k, approximating the second DC component
h by its affine minorant and then solving the resulting convex
subproblem.

Our contribution. First, we consider a reformulation of the
problem (2) which can be expressed as a partial DC program
i.e. for fixed variables, it is a standard DC program in other
variables. Second, we propose an alternative DCA scheme
for solving this problem. In particular, at each iteration, we
perform one iteration of standard DCA for the corresponding
DC program in each variable when fixing the other variable.
Finally, we evaluate our alternating approach by comparing
with three alternating/joint methods on six synthetic multitask
linear regression datasets and eight benchmark real datasets.

II. SOLUTION METHOD

A. A Brief Introduction to Partial DC Programming and
Alternative DCA

DC programming and DCA were introduced by Pham Dinh
Tao in a preliminary form in 1985 and have been extensively
developed by Le Thi Hoai An and Pham Dinh Tao since
1994. DCA is well-known as an efficient approach in the non-
convex programming framework. In recent years, numerous
DCA-based algorithms have been developed for successfully
solving large-scale nonsmooth/nonconvex programs in several
application areas (see the list of references in [11], [14]). For
a comprehensible survey on thirty years of development of
DCA, the reader is referred to the recent work [11].

The standard DCA scheme is described below. Its conver-
gence properties are given completely in [10], [12], [15].

Standard DCA scheme
Initialization: Let x0 ∈ Rp be a best guess. Set k = 0.
repeat

1. Calculate xk ∈ ∂h(xk).
2. Calculate xk+1 ∈ argmin{g(x)− 〈x, xk〉 : x ∈ Rp}.
3. k = k + 1.

until convergence of {xk}.

Next, we briefly introduce partial DC programming and
Alternative DCA [16]. A partial DC program takes the form

minF (x, y) := G(x, y)−H(x, y) s.t. (x, y) ∈ Rp×Rq, (3)

where G and H are partial convex functions in the sense
that they are convex in each variable when fixing all other
variables. Such a function F is called a partial DC function.

An alternative version of DCA for solving (3) consists in,
at the iteration k, alternatively computing xk+1 and yk+1

by performing one iteration of standard DCA for solving the
following DC programs in variable x and y, respectively:

minF (x, yk) := G(x, yk)−H(x, yk) s.t. x ∈ Rp,

and

minF (xk+1, y) := G(xk+1, y)−H(xk+1, y) s.t. y ∈ Rq.

This version, named Alternative DCA, is described as follows.

Alternative DCA scheme
Initialization: Let (x0, y0) ∈ Rp × Rq be a best guess. Set
k = 0.
repeat

1. Calculate xk ∈ ∂xH(xk, yk).
2. Calculate xk+1 ∈ argmin{G(x, yk)− 〈x, xk〉 : x ∈ Rp}.
3. Calculate yk ∈ ∂yH(xk+1, yk).
4. Calculate yk+1 ∈ argmin{G(xk+1, y)−〈y, yk〉 : y ∈ Rq}.
5. k = k + 1.

until convergence of {(xk, yk)}.

In the sequel, we present a reformulation of (2) and then
show that it takes the form of a partial DC program for which
the Alternative DCA scheme can be investigated.

B. A Reformulation of the Problem (2)
We reformulate the problem (2) by penalizing the difficult

low-rank constraint in X . In particular, for a given positive
parameter α, the problem (2) can be transformed into the
following optimization problem

min F (X,Θ) :=
1

n

n∑
i=1

(zi −Xφi)>Θ(zi −Xφi)

− log det(Θ) + αd2
X (X) + χΘ�0(Θ), (4)

s.t. X ∈ Rm×d,Θ ∈ Rm×m,

where the squared distance function d2
X is defined as

d2
X (X) := min

Y ∈X
‖Y −X‖2F ,

‖ · ‖F is a Frobenius norm, and χC is an indicator function of
C, defined as χC(x) = 0 if x ∈ C, +∞ otherwise.
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Note that if (X∗,Θ∗) is a globally optimal solution to the
problem (4) and (X∗,Θ∗) ∈ X × Y , then (X∗,Θ∗) is also a
globally optimal solution to the problem (2).

It is easy to see that the function d2
X is a DC function with

DC decomposition

d2
X (X) = min

Y ∈X
‖X−Y ‖2F = ‖X‖2F −max

Y ∈X
(2〈X,Y 〉−‖Y ‖2F ).

As a result, the problem (4) can be expressed as a partial DC
program

minF (X,Θ) := G(X,Θ)−H(X,Θ) (5)

where

G(X,Θ) :=
1

n

n∑
i=1

(zi −Xφi)>Θ(zi −Xφi)

− log det(Θ) + α‖X‖2F + χΘ�0(Θ),

H(X,Θ) := αmax
Y ∈X

(2〈X,Y 〉 − ‖Y ‖2F ).

Obviously, the functions G and H are partially convex.

C. Alternative DCA for solving the problem (5)

According to the Alternative DCA scheme in Section II-A,
we need to construct two sequences {(Xk,Θk)} and
{(Uk, V k)} such that

Uk ∈ ∂XH(Xk,Θk),

Xk+1 ∈ argmin{G(X,Θk)− 〈X,Uk〉 : X ∈ Rm×d}, (6)

and

V k ∈ ∂ΘH(Xk+1,Θk),

Θk+1 ∈ argmin{G(Xk+1,Θ)− 〈Θ, V k〉 : Θ ∈ Rm×m}.
(7)

From the definition of the function H , we compute the
partial subdifferentials of H as follows:

∂XH(X,Θ) = 2αco{ProjX (X)} and ∂ΘH(X,Θ) = {0}.

Here ProjC and co(C) denote, respectively, the projection
operator on the set C and the convex hull of C.

We can choose the subgradients Uk ∈ ∂XH(Xk,Θk) and
V k ∈ ∂ΘH(Xk+1,Θk) as follows:

Uk = 2αW k, W k ∈ ProjX (Xk), and V k = 0. (8)

Solving the convex subproblem (6) amounts to solving the
problem

min
X∈Rm×d

[
1

n

n∑
i=1

(zi −Xφi)>Θk(zi −Xφi)

]
+ α‖X‖2F − 〈Uk, X〉. (9)

By setting the derivative of the objective function of the last
problem (9) to zero, we can see that its optimal solution Xk+1

satisfies the Sylvester equation

AkX +XBk = Ck, (10)

where the matrices Ak ∈ Rm×m, Bk ∈ Rd×d, and Ck ∈
Rm×d are defined as

Ak = α(Θk)−1, Bk =
1

n

n∑
i=1

(
φiφ
>
i

)
,

Ck = α(Θk)−1W k +
1

n

n∑
i=1

(
ziφ
>
i

)
.

From (7) and the definition of G, Θk+1 is an optimal
solution to the convex program

min
Θ�0

[
1

n

n∑
i=1

(zi −Xk+1φi)
>Θ(zi −Xk+1φi)

]
− log det(Θ).

(11)
It is easy to check that the problem (11) has a closed-form
optimal solution (see, e.g., [1]) as follows.

Θk+1 =

(
1

n

n∑
i=1

(zi −Xk+1φi)(zi −Xk+1φi)
>

)−1

. (12)

Here Z−1 denotes an inverse of a matrix Z.
Finally, the Alternative DCA scheme applied to (5) can be

summarized in Algorithm 1 (ADCA).

Algorithm 1 ADCA: Alternative DCA for solving (5)
Initialization: Let ε be a sufficiently small positive number.
Let X0 ∈ Rm×d, Θ0 ∈ Rm×m, Θ0 � 0, α > 0. Set k = 0.
repeat

1. Compute W k ∈ ProjX (Xk).
2. Compute Xk+1 by solving the Sylvester equation (10).
3. Compute Θk+1 using (12).
4. k = k + 1.

until Stopping criteria are satisfied.

Remark 1: In numerical experiments, X∗ obtained by
ADCA does often not belong to X . Thus, after stopping
ADCA, we propose performing one projection step: projecting
X∗ into the set X and then updating Θ∗ by (12).

III. NUMERICAL EXPERIMENTS

Our experiments aim to compare the proposed alternative
algorithm ADCA with other alternating/joint algorithms for
the multitask linear regression problem (2).

Comparative algorithms. As listed in Section I, we consider
three alternating/joint algorithms for solving the problem (2):
classic alternating method (AM), alternating method using
gradient descent method (AGD) [1], and joint gradient method
(JGD) [1] (see the Appendix for more details).

Datasets. We test the four algorithms ADCA, AGD, JGD, and
AM on six synthetic datasets and eight real datasets.

We generate synthetic datasets using the linear model
(1) similarly to the works, e.g., [1], [17]–[19]. Specifically,
the feature vector φi is drawn independently from a mul-
tivariate normal distribution N (0,Σφ) where each element
Σφ(i, j) = 0.5|i−j|. Similarly, the error εi is also generated
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from N (0, σ2Σε) where σ2 is chosen such that the corre-
sponding signal-to-noise is equal to 1 (see, e.g., [1], [17]) and
Σε is defined by the following type: AR(1), denoted ar(ρε),
with Σφ(i, j) = (ρε)

|i−j|. Here, ρε represents a correlation
parameter; the larger its value is, the more the degree of
dependence of errors would be. The coefficient matrix X
is computed as X = AB where the orthonormal matrices
A ∈ Rm×r and B ∈ Rr×d are generated form N (0, 1).
Finally, the respond vector zi ∈ Rm is computed using (1).
By setting r = 3, m ∈ {10, 20, 60}, d ∈ {10, 20, 40},
ρε ∈ {0, 0.5}, we have six synthetic datasets which are
summarized in Table I. For each synthetic dataset, we generate
50 training samples and 1000 test samples in each run time,
and we repeat the whole process 30 times.

As for real datasets, we test on eight benchmark multitask
regression datasets1. These datasets are collected from various
interesting applications and can be found in the recent work
[20] (see the references therein). The parameters of these
datasets and the given values of r are provided in Table III.
We split each real dataset into a training set containing the first
75% of dataset and a test set containing the rest of dataset.
Comparison criteria and stopping criteria. We are interested
in the following aspects: prediction error and CPU time (in
seconds) for training the solution (X∗,Θ∗). As for synthetic
datasets, the prediction error is defined by the mean squared
error (MSE) [17]

MSE =

∑n
i=1 ‖Xφi −ABφi‖22

nm
, (13)

while the relative root mean squared error (RRMSE) on
real datasets is used to measure the prediction error of the
algorithm on each task and defined as [20]

RRMSE =

√∑n
i=1 ‖ẑi − zi‖22∑n
i=1 ‖zi − zi‖22

, (14)

where ẑi is a respond vector estimated by the algorithm and
zi is the mean value of the respond vectors on the training set.
We stop the algorithms if the relative difference between two
consecutive points (Xk−1,Θk−1) and (Xk,Θk) or between
two corresponding objective function values is less than or
equal to ε.
Set up parameters. Our experiment is performed in MATLAB
R2016b on a PC Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz
of 8GB RAM. The MATLAB’s sylvester function is used
for solving Sylvester equation (10). All algorithms start with
the same point (X0,Θ0). The starting point X0 is set to a zero
matrix in Rm×d, and the matrix Θ0 is computed using (12). To
validate the performance of the algorithms on all synthetic/real
datasets, we consider the following validation procedure: first
we run the algorithm with the different parameters on the
training set, then choose the solution (X∗,Θ∗) that furnishes
the best objective function value F (X∗,Θ∗), and finally
evaluate the obtained model using MSE (13) or RRMSE (14)

1For the detailed descriptions of all datasets, the reader is referred to [20]
and the website http://mulan.sourceforge.net/datasets-mtr.html.

TABLE I
COMPARATIVE RESULTS OF ADCA, AGD, JGD, AND AM IN TERMS OF

THE AVERAGE OF MEAN-SQUARED-ERROR MSE DEFINED BY (13) (UPPER
ROW) AND ITS STANDARD DEVIATION (LOWER ROW) ON SIX SYNTHETIC

DATASETS OVER 30 RUN TIMES. BOLD VALUES INDICATE THE BEST
RESULT.

d m Σε ADCA AGD JGD AM
10 60 ar(0.0) 2.44e-02 2.65e-02 2.64e-02 5.73e-01

6.47e-03 5.78e-03 5.71e-03 8.94e-01
ar(0.5) 2.00e-02 2.42e-02 2.40e-02 4.34e-01

6.15e-03 4.64e-03 4.81e-03 6.04e-01

20 10 ar(0.0) 4.79e-02 5.83e-02 1.37e-01 5.04e-02
1.67e-02 2.39e-02 2.24e-02 1.65e-02

ar(0.5) 3.30e-02 5.47e-02 1.33e-01 3.56e-02
1.24e-02 2.87e-02 2.01e-02 1.10e-02

40 20 ar(0.0) 6.13e-02 6.15e-02 6.23e-02 2.34e+00
8.01e-03 8.07e-03 8.28e-03 9.66e+00

ar(0.5) 6.35e-02 6.27e-02 6.31e-02 5.72e-01
8.76e-03 8.54e-03 8.42e-03 5.96e-01

on the test set. The ranges of parameters ηX , ηΘ, and α are
defined as: α ∈ {5, 10, 100}, ηX ∈ {10−5, 10−4, . . . , 102},
ηΘ belongs in a geometric sequence from 5 to 400 [1]. The
default tolerance is ε = 10−3.

Descriptions of result tables. The average MSE and its
standard deviation obtained by all comparative algorithms on
six synthetic datasets over 30 run times are reported in Table I.
The average results of training time of the algorithms on
synthetic datasets are given in Table II. Table III shows the
experimental results on real datasets in terms of RRMSE and
training time.

TABLE II
COMPARATIVE RESULTS OF ADCA, AGD, JGD, AND AM IN TERMS OF

THE AVERAGE OF TRAINING TIME IN SECONDS (UPPER ROW) AND ITS
STANDARD DEVIATION (LOWER ROW) ON SIX SYNTHETIC DATASETS OVER

30 RUN TIMES. BOLD VALUES INDICATE THE BEST RESULT.

d m Σε ADCA AGD JGD AM
10 60 ar(0.0) 1.52e-02 4.08e-03 4.79e-03 5.81e-03

9.29e-03 1.60e-03 1.62e-03 2.88e-03
ar(0.5) 1.44e-02 3.92e-03 9.79e-03 4.81e-03

5.35e-03 2.00e-03 3.78e-03 1.34e-03

20 10 ar(0.0) 3.14e-02 4.25e-02 8.82e-04 2.32e-03
1.98e-02 1.65e-02 2.30e-04 1.04e-03

ar(0.5) 2.06e-02 3.50e-02 9.33e-04 1.97e-03
5.48e-03 1.75e-02 8.11e-05 3.48e-04

40 20 ar(0.0) 1.20e-01 7.35e-02 1.40e-03 4.87e-03
2.60e-02 7.10e-02 6.87e-04 7.55e-04

ar(0.5) 9.77e-02 6.10e-02 8.92e-04 4.64e-03
1.96e-02 4.54e-02 1.63e-04 2.04e-04

Comments on numerical results
Synthetic datasets. We observe from Table I that, in terms
of MSE, ADCA is more efficient than AGD, JGD, and AM.
To be specific, ADCA is the best on 5/6 datasets – the ratio
of gain of ADCA versus AGD, JGD, and AM varies from
0.32% to 39.6%, from 1.60% to 75.1% and from 4.96% to
97.3%, respectively. Moreover, ADCA well performs for two
model errors (independent, moderately correlated). In terms of
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training time, all four algorithms run very fast (less than 0.1
seconds).
Real datasets. The error RRMSE obtained by ADCA is the
best on 6/8 datasets, especially the rf2 dataset with more than
7000 samples. In particular, as for the rf2 dataset, ADCA
significantly outperforms AGD, JGD and AM with the ratio
of gain of 92.6%, 92.6% and 85.8%, respectively. On other
datasets, the ratio of gain varies from 1.18% to 77.5%, from
4.07% to 77.5% and from 22.5% to 99.9%. Comparing with
AM, ADCA is worse on 2/8 datasets with the ratio from
5.36% to 9.19%. In Table III, training times of ADCA are
reasonable (less than 1 seconds on 6/8 datasets and 25 seconds
on the atp7d and rf2 datasets).

IV. CONCLUSIONS

We have investigated a new approach based on DC pro-
gramming and DCA for solving the reduced-rank multitask
linear regression problem with covariance estimation. An
Alternative version of DCA, ADCA, has been developed.
Numerical results on synthetic/real datasets have turned out
that the ADCA is more efficient than exiting alternating/joint
methods in terms of the prediction error and runs within a
reasonable consuming time. In the future, we plan to extend
this work in the future to study the convergence properties
of ADCA and show the efficiency of ADCA on many other
synthetic/real datasets with different model errors as well as
various applications.

APPENDIX
COMPARATIVE ALGORITHMS FOR SOLVING THE

PROBLEM (2)

The AM method alternates between computing the variable
X and Θ at every iteration. In particular, at iteration k, for
fixed Θ, we need to compute Xk+1, an optimal solution to
the following problem (see, e.g., [9])

min
1

n

n∑
i=1

(zi−Xφi)>Θk(zi−Xφi) s.t. rank(X) = r. (15)

Let us denote by Z (resp. Φ) a matrix in Rm×n (resp.
Rd×n) whose each column is a vector zi (resp. φi); and
define Dk := (ΦΦ>)(−1/2)(ΦZ>)(Θk)(1/2). A reduced-rank
regression estimate Xk+1 of (15) is given by

Xk+1 =
r∑
t=1

λt
[
(1/n)ΦΦ>

](−1/2)
utv
>
t (Θk)(−1/2), (16)

where the sequence {λt} is the singular values of matrix Dk;
{ut} and {vt} are the left-hand and right-hand singular vectors
of Dk. For fixed X , the AM computes the point Θk+1 using
(12) at Xk+1. Note that the AM method does not have any
parameters.

AM: classic Alternating Method for solving (2)
Initialization: Let ε be a sufficiently small positive number.
Let X0 ∈ Rm×d, Θ0 ∈ Rm×m, Θ0 � 0. Set k = 0.
repeat

1. Compute Xk+1 using (16).
2. Compute Θk+1 using (12).
3. k = k + 1.

until Stopping criteria are satisfied.

The AGD method differs from the AM method by the
fact that the AGD performs one iteration of gradient descent
method for solving the convex problem (15). In particular,
Xk+1 is computed as follows [1]:

Xk+1 = ProjX

(
Xk +

2ηX
n

Θk
n∑
i=1

(zi −Xkφi)φ
>
i

)
, (17)

where the step size ηX is a tuning parameter. It is similar for
the AM to update the point Θk+1 using (12) at Xk+1.

AGD: Alternating method using Gradient Descent
method for solving (2)

Initialization: Let ε be a sufficiently small positive number.
Let X0 ∈ Rm×d, Θ0 ∈ Rm×m, Θ0 � 0. Set k = 0.
repeat

1. Compute Xk+1 using (17).
2. Compute Θk+1 using (12).
3. k = k + 1.

until Stopping criteria are satisfied.

The JGD method does not compute two variables alterna-
tively, but takes one gradient descent step in the joint variable
(X,Θ). For estimating Xk+1, it is the same as (17), while the
point Θk+1 is computed by using gradient descent method for
(11) at the point (Xk,Θk) as follows [1]:

Θk+1 = ProjY
(
Θk + ηΘ∆k

)
, (18)

where the step size ηΘ is a tuning parameter and

∆k = (Θk)(−1) −

[
1

n
Θk

n∑
i=1

(zi −Xkφi)(zi −Xkφi)
>

]
.

JGD: Joint Gradient Descent method for solving (2)
Initialization: Let ε be a sufficiently small positive number.
Let X0 ∈ Rm×d, Θ0 ∈ Rm×m, Θ0 � 0. Set k = 0.
repeat

1. Compute Xk+1 using (17).
2. Compute Θk+1 using (18).
3. k = k + 1.

until Stopping criteria are satisfied.
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