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Abstract—In this work an analytical design procedure is 
proposed for a class of two-dimensional recursive filters, having a 
frequency response of elliptical or circular shape. The design method 
relies on efficient digital filter prototypes, to which a specific 
complex frequency mapping is applied. This allows obtaining 
directly the transfer function of the desired 2D filter, in a factored 
form. In the proposed design some accurate approximations are used, 
like Chebyshev-Padé method, but no global optimization algorithm. 
Finally the 2D filter matrices are derived, as a convolution of smaller 
size matrices, an advantage in implementation. The filter results 
adjustable, its coefficients depending explicitly on the specified 
orientation and bandwidth. As the design examples show, the 
obtained 2D filters have an accurate shape, with very low distortions 
even near the margins of frequency plane and are efficient, of good 
selectivity and relatively low complexity.   

Keywords—2D filters; elliptical, circular frequency response; 
approximations; frequency transformations  

I.  INTRODUCTION 

Two-dimensional filters, both in FIR and IIR version, and 
their design methods have been an essential field of research 
since the advent of digital signal processing era, for their 
important applications in the image processing domain [1]. 
Apart from the classical numerical optimization methods, 
many analytical design techniques have been elaborated, 
which use 1D prototype filters and spectral transformations to 
derive 2D filters with a desired frequency response [2]. A 
convenient and largely used tool for 2D FIR filter design is the 
well-known McClellan transform [3], [4]. Anisotropic filters 
were studied extensively and used in interesting applications, 
like remote sensing for directional smoothing applied to 
weather images, texture segmentation and pattern recognition 
[5], [6]. In particular, filters with elliptically-shaped frequency 
response are useful in image processing and various design 
methods were developed in early papers like [7]-[9]. A fast 
space-variant filtering using Gaussian elliptic window is 
proposed in [10]. Elliptical filters also found applications in 
biometrics, like pose robust human detection [11], palm print 
identification [12], iris recognition [13], fingerprint 
enhancement [14]. Relevant papers proposing various design 
methods for circular filters are [15]-[17]. Other analytical 
design methods for directional filters, in particular elliptically 

shaped, were proposed by the author in [18]-[21]. Stability of 
2D filters and stabilization methods are important and rather 
difficult issues, studied in papers like [22], [23].  

We approach here the design of a class of 2D filters, 
having an elliptically-shaped support of frequency response in 
the frequency plane. The design method is mainly analytical 
and uses approximations, but not any numerical optimization 
algorithms. It is based on 1D low-pass prototype filters and 
frequency mappings. Design examples using proposed method 
are given, both for elliptically and circularly shaped filters. 

II. LOW-PASS FILTER PROTOTYPES 

As a starting point in the design of an elliptically-shaped 
2D filter we will use an efficient recursive filter prototype. 
The most efficient filter for a specified selectivity and 
steepness is the elliptic type filter (both in digital and analog 
versions). It is known to result of a lower order than other 
common approximations, like Butterworth or Chebyshev. 

Next, consider a digital elliptic filter with specifications: 
order 6N  , peak-to-peak ripple 0.15dBPR  , minimum 

stop-band attenuation 39dBSR   and normalized pass-band 

edge frequency 0.5P   (the value 1 corresponding to half 
the sample rate). Using MATLAB, these specifications yield 
the following transfer function in complex frequency z: 
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which has the factored expression (where 0.089079k  ): 
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Therefore, the 1D elliptic digital filter transfer function in z is 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 13, 2019

ISSN: 1998-0140 149



 
Fig. 1.    Magnitude of the elliptic filter frequency response

factored into three so-called bi-quad functions 1( )BH z , 

2 ( )BH z  and 3 ( )BH z . However, the factors of the nominator 
and denominator in (2) can be coupled in pairs in several 
ways. In Fig.1, the magnitude of the transfer function (1) is 
shown for [0, ]  ; as can be noticed, it has a steep 
transition and very small ripple in the pass-band and stop-band 
as well. 

III. DESIGN METHOD FOR LOW-PASS 2D FILTERS WITH 

ELLIPTICALLY-SHAPED FREQUENCY RESPONSE 

 In this section we derive the frequency transformation 
which leads from the chosen low-pass prototype to the desired 
elliptically-shaped filter. The filter transfer function in matrix 
form is derived, then some design examples are presented. 

A. Frequency Transformation for Elliptically-Shaped Filters 

In this paragraph a 2D LP filter with elliptical symmetry is 
obtained, starting from an usual digital prototype with a 
transfer function in variable z. This 2D filter will be specified 
by imposing the values of the ellipse semi-axes, and the 
orientation is given by the angle of the large axis with respect 
to 2  axis. Starting from the frequency response of a 1D 
filter given by (2), we derive a 2D elliptically-shaped filter 
using the frequency mapping 2

1 2( , )E   , where: 
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The following linear transformation of the spatial frequencies 
describes how an elliptically shaped filter can be obtained 
from a circular filter: 
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where usually we take E F ; in (4) , 1 2( , )   are the current 

variables and ' '
1 2( , )   are the former (rotated) variables. 

Thus, the unit circle is stretched along the axes 1  and 2  

with the factors E and F respectively, then rotated counter-
clockwise with angle  , thus becoming an oriented ellipse.    

Therefore, starting from a 1D prototype filter, a corresponding 
2D filter with elliptical support results, specified by 
parameters E, F and   which impose the orientation and 

shape, using the mapping 1 2( , )E   , also written: 
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we find another expression for 1 2( , )E   :  
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Here we have used the notations:  
2 21 1p E F  , 2 21 1q E F                   (8) 

 The next step in the design of the 2D elliptically-shaped 
filter is applying the frequency mapping (6) to the digital 
prototype ( )PH z  from (2). Thus we substitute exp ( )z j  

by    1 2 1 2exp ( , ) exp ( , )j E E       . In order to 

derive more efficient 2D filters, we use the following first-

order rational approximation for exp   on frequency range 

[0, ]  : 
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 (9) 

This approximation is accurate enough for our purpose, and 
practically reduces twice the filter order, while maintaining the 
correct frequency response shape, with very low distortions. 
The real and imaginary part and their approximations are 
plotted comparatively in Fig.2. The approximation (9) can be 
made scalable of frequency axis, i.e. substituting the current 
variable   by k   ( 0k  ), it remains valid for a certain 
range of the scaling parameter k (which means stretching for 

1k   or shrinking for 1k  ). Therefore, in order to obtain a 
parametric filter, the above approximation is written as [21]: 
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(10)  

A generic bi-quad function ( )BiH z  in variable z has the form:        
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To obtain a 2D filter with elliptical symmetry, we simply 

make the substitution (frequency mapping) 2
1 2( , )E    

and the following frequency transformation results:  
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where 1 2( , )E    is substituted by its expression (6).  Using 

Chebyshev-Padé method, the following rational trigonometric 

approximation is obtained for the square function 2 : 

   2 2.35753 1 0.946216 cos 1 0.46301 cos       
  

(13) 

displayed in Fig. 3. This is obviously a very efficient and 
accurate approximation on the frequency range [ , ]    , 
having a small distortion only at the margins of the specified 
interval.       
Using the approximation (13) for the variables 1  and 2  

respectively, expressions of 2
1  and 2

2  are then substituted  

into the mapping (12). Next, a matrix form of this mapping 
results, for the parameter value 1k  .          
Using identities 1
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transformation (12) may be finally written in the matrix form: 
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(a) (b) 

Fig. 2.   (a) Plot of the function cos   and the real part of the approximation 

 Re ( )F  ; (b) Plot of the function sin   and the imaginary part of the 

approximation,  Im ( )F  . 

 
Fig. 3.   The parabolic function (in blue) and its first-order rational trigonometric 
approximation (in red) 

where   is inner product and where the vectors 1z and 2z are: 
2 3 4 2 3 4

1 1 1 1 2 2 2 21  ;  1z z z z z z z z       1 2z z    (15) 

The matrices A and B with complex elements corresponding 
to the numerator and denominator are expressed as: 
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where the component matrices are given by:  
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The matrices RA , IA , RB , IB  from (17) are linear 

combinations of 5 5  matrices 1A , 2A , 3A and 1B , having 
the generic form: 
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The 5 5 matrices 1A , 2A and 3A  are centrally-symmetric and 

their elements have the values 2.237977  , 0.287569  , 
0.989016   , 0.258214   , 0.059778   , 0.126352  . 

Matrix 1B  of size 5 5  has the diagonally symmetric form: 
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The numerator 1 2( , )B z z  and denominator 1 2( , )A z z   in (14) 

are in fact the Discrete Space Fourier Transforms of the 
corresponding matrices B and A with complex elements. Next, 
substituting z in (11) by the 1D to 2D mapping (14), we find 
the factor corresponding to the bi-quad function ( )BiH z :  
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Applying this mapping to all three bi-quad factors of prototype 
(2), we finally derive the factored transfer function in 1z

 
and 

2z for the overall 2D elliptically-shaped filter. 
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B. Design Examples of Elliptically-Shaped Filters 

 Some design examples are presented for elliptically-
shaped filters specified by the values of scale parameter k, the 
semi-axes E and F, and orientation angle  . The frequency 
response magnitudes and contour plots given in Fig.4 show a 
relatively accurate elliptical shape in the frequency plane, a 
maximally flat top and a small ripple in the stop band. Since 
applications of elliptically-shaped filters in image processing 
are relatively well known, simulation results were not included 
here. The aim of this paper was limited to presenting this 
analytic design method and to highlight its advantages over a 
completely numerical optimization method. 

 
(a) (b) 

  
(c)             (d) 

  
(e)     (f) 

Fig. 4.   Frequency response magnitudes and contour plots of elliptically-
shaped filter for parameters: (a), (b) 0.1k  , 8  , 0.4E  , 0.2F  ; (c), (d) 

0.1k  , 8  , 0.6E  , 0.2F  ;(e), (f) 0.1k  , 6  , 0.6E  , 0.14F   
 

C. Design of Circular Filters as a Particular Case 

Using the proposed method, we can also obtain 2D filters with 
circular symmetry as a particular case. Indeed, if in (3) we set 
equal semi-axes 1E F  , the mapping 2

1 2( , )E    

takes the simpler form corresponding to a circular filter: 
2 2 2

1 2                                      (21) 

In this particular case, the mapping (12) written for the general  

case of an elliptically-shaped filter, takes the simpler form:  
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Using again in mapping (22) the approximation given by (13),  
 

   
(a) (b)

  
(c) (d)

  
(e) (f)

  
(g) (h)

Fig. 5.   Frequency response magnitude and contour plot of the circular filter for 
parameter values: (a), (b) 0.5k  ; (c), (d) 1k  ; (e), (f) 2k  ; (g), (h) 4k  . 
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we obtain a frequency transformation in matrix form similar to 
(14), but somewhat simpler, in which the component matrices 
are of size 3 3  instead of 5 5 . Thus, the order of the 
designed circular filter (or the size of filter matrices) results 
half compared to the order of the elliptically-shaped filter. 
 As in the previous case of an elliptically shaped filter, 
some design examples are shown to illustrate the design 
procedure. In Fig.5 the frequency response magnitudes and 
corresponding contour plots are displayed for given values of 
the scale parameter k; we notice that they generally have an 
accurate circular shape in the frequency plane, a maximally 
flat top and a small ripple in the stop band. 
The stability of the designed 2D filters was not investigated in 
this paper, but it will be studied in detail in further work on 
this subject. As is well known, to analyze and ensure the 
stability of 2D systems is generally much more complicated 
than in the case of 1D systems.  If the prototype filter is stable, 
and if the frequency transformations used in design preserve 
stability, the derived 2D filters should also result stable. There 
exist various criteria to test and ensure stability [22] and also 
stabilization procedures which can be applied [23]. Moreover, 
it is known that some unstable filters, with poles both inside 
and outside the unit circle, have transfer functions that can be 
separated into one stable part and one unstable part. In specific 
cases, the latter can be implemented using so-called backward 
filtering. The input sequence is first filtered in the forward 
direction by the stable part, then the inverted sequence is 
filtered backwards by the unstable part. The applicability of 
such technique for the designed filters will be studied in 
further work.                   

IV. CONCLUSION 

    An efficient analytical design technique was proposed for 
2D recursive filters with elliptically or circularly shaped  
frequency response, having adjustable orientation and 
bandwidth. This method starts from a low-pass prototype 
filter, to which a specific frequency transformation is applied, 
thereby obtaining directly the desired 2D transfer function in a 
factored form. The derived filters are parametric, since their 
frequency response depends explicitly on the specified 
parameters giving the orientation angle and selectivity. The 
filters also have an accurate elliptical or circular shape, with 
low shape distortions. The main advantage of the introduced 
method is that the 2D filter is designed in a closed form and is 
adjustable. Changing the specifications, the 2D filter matrices 
result directly, without the need to resume the entire design 
procedure from the start. Further research envisages an 
efficient implementation of these filters and testing them on 
various real-life images.  
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