Riesz spaces using modulus function

Abdul Hamid Ganie College of science and Theoretical studies Saudi Electronic University Abha, Saudi Arabia

Abstract—The aim of this paper is to introduce the new techniques of modulus function involving the sequences of Riesz nature. Some of its basic properties has been established.

Index Terms—Modulus function, paranormed sequence, infinite matrices.

I. INTRODUCTION

We denote the set of all sequences with complex terms by ω . It is a routine verification that Ω is a linear space with respect to the coordinate wise addition and scalar multiplication of sequences which are defined, as usual, by

$$\zeta + \eta = (\zeta_k) + (\eta_k) = (\zeta_k + \eta_k)$$

and

$$\beta \zeta = \beta(\zeta_k) = (\beta \zeta_k),$$

respectively; with $\zeta = (\zeta_k)$, $\eta = (\eta_k) \in \Omega$ and $\beta \in \mathbb{C}$. By a *sequence space* we define a linear subspace of ω i.e., the sequence space is the set of scalar sequences(real or complex) which is closed under co-ordinate wise addition and scalar multiplication. Throughout the paper N and C denotes the set of non-negative integers and the set of complex numbers, respectively. Let ℓ_{∞} , c and c_0 , respectively, denotes the space of all bounded sequences , the space of convergent sequences and the sequences converging to zero. Also, by ℓ_1 , $\ell(p)$, cs and bs we denote the spaces of all absolutely, p-absolutely convergent, convergent and bounded series, respectively.

We call a sequence space is as a function space whose elements are functions from natural numbers \mathbb{N} to the field \mathbb{R} of real numbers or \mathbb{C} the complex numbers. The set of every sequences (real or complex) will be abbreviated by Ψ . The bounded sequences, *p*-absolutely sequence, convergent sequences and null sequences will be abbreviated by ℓ_{∞} , ℓ_p , *c* and c_0 respectively as defined in [8], [24].

For an infinite matrix $T = (t_{i,j})$ and $\nu = (\nu_k) \in \Psi$, the *T*-transform of ν is $T\nu = \{(T\nu)_i\}$ provided it exists $\forall i \in \mathbb{N}$, where $(T\nu)_i = \sum_{j=0}^{\infty} t_{i,j}\nu_j$.

For an infinite matrix $T = (t_{i,j})$, the set G_T , where

$$G_T = \{ \nu = (\nu_j) \in \Psi : T\nu \in G \},$$
(1)

is known as the matrix domain of T in G [13].

A infinite matrix $G = (\rho_{nk})$ is said to be regular if and only if the following conditions hold:

(i)
$$\lim_{n \to \infty} \sum_{k=0}^{\infty} \varrho_{nk} = 1,$$

(ii)
$$\lim_{n \to \infty} \varrho_{nk} = 0, \quad (k = 0, 1, 2, ...),$$

(iii)
$$\sum_{k=0}^{\infty} |\varrho_{nk}| < M, \quad (M > 0, \ n = 0, 1, 2, ...).$$

Let (q_k) be a sequence of positive numbers and let us write, $Q_n = \sum_{k=0}^n q_k$ for $n \in N$. Then the matrix $R^q = (r_{nk}^q)$ of the Riesz mean (R, q_n) is given by

$$r_{nk}^{q} = \begin{cases} \frac{q_{k}}{Q_{n}}, & \text{if } 0 \le k \le n \\\\ 0 & \text{if } k > n \end{cases}$$

The Riesz mean (R, q_n) is regular if and only if $Q_n \to \infty$ as $n \to \infty$ (see, [18], [22]).

Quite recently, in (see, [21]) the author has introduced the following:

$$r^{q}(u,p) = \left\{ \zeta = (\zeta_{k}) \in \omega : \sum_{k} \left| \frac{1}{Q_{k}} \sum_{j=0}^{k} u_{j} q_{j} \zeta_{j} \right|^{p_{k}} < \infty \right\}$$

where, $0 < p_k \leq H < \infty$.

In [10], the author had given the difference sequence spaces $W(\Delta)$ as follows

$$W(\triangle) = \{\zeta = (\zeta_k) \in \omega : (\triangle \zeta_k) \in W\}$$

where, $W \in \{\ell_{\infty}, c, c_0\}$ and $\Delta \zeta_k = \zeta_k - \zeta_{k+1}$.

In [2], the author has studied the sequence space as

$$bv_p = \left\{ \zeta = (\zeta_k) \in \omega : \sum_k |\Delta x_k|^p < \infty \right\},$$

where $1 \leq p < \infty$. With the notation of (1), the space bv_p can be redefined as

$$bv_p = (l_p)_{\triangle}, 1 \le p < \infty$$

where, \triangle denotes the matrix $\triangle = (\triangle_{nk})$ defined as

$$\triangle_{nk} = \begin{cases} (-1)^{n-k}, & \text{if } n-1 \le k \le n, \\ \\ 0, & \text{if } k < n-1 \text{ or } k > n. \end{cases}$$

In [14], the author introduced the concept of modulus function. We call a function $\mathcal{F}: [0,\infty) \to [0,\infty)$ to be

- (*ii*) $\mathcal{F}(\zeta + \eta) \leq \{(\zeta) + \{(\eta) \forall \zeta \geq 0, \eta \geq 0\}$
- (*iii*) \mathcal{F} is increasing, and
- (*iv*) \mathcal{F} is continuous from the right at 0.

One can easily see that if \mathcal{F}_1 and \mathcal{F}_2 are modulus functions then so is $\mathcal{F}_1 + \mathcal{F}_2$; and the function \mathcal{F}^j $(j \in \mathbf{N})$, the composition of a modulus function \mathcal{F} with itself j times is also modulus function.

Recently, in [19] the new space was introduced by using notion of modulus function as follows:

$$L(\mathcal{F}) = \left\{ \zeta = (\zeta_r) : \sum_r |\mathcal{F}(\zeta_r|)| < \infty \right\}$$

The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several authors. $(\ell_{\infty})_{N_q}$ and c_{N_q} (see, [23]), $\begin{aligned} &(\ell_p)_{C_1} = X_p \text{ and } (\ell_{\infty})_{C_1} = X_{\infty}(\text{see, [17]}), \ (\ell_{\infty})_{R^t} = r_{\infty}^t, \\ &(c)_{R^t} = r_c^t \text{ and } (c_o)_{R^t} = r_0^t(\text{see, [9]}), \ (\ell_p)_{R^t} = r_p^t \text{ (see, [1])}, \\ &(\ell_p)_{E^r} = e_p^r \text{ and } (l_{\infty})_{E^r} = e_{\infty}^r \text{ (see, [3])}, \ (c_0)_{A^r} = a_0^r \text{ and } \\ &c_{A^r} = a_c^r(\text{see, [4]}), \ (c_0(u, p)]_{A^r} = a_0^r(u, p) \text{ and } [c(u, p)]_{A^r} = r_{\infty}^r \end{aligned}$ $a_c^r(u,p)$ (see, [5], $r^q(u,p) = \{l(p)\}_{R_u^q}$ (see, [21])and etc.

II. The sequence space $r^q_{\mathcal{F}}(\triangle^p_g)$ of non-absolute TYPE

In this section, we define the Riesz sequence space $r_{\mathcal{F}}^q(\triangle_q^p)$, and prove that the space $r^q_{\mathcal{F}}(\triangle^p_q)$ is a complete paranormed linear space and show it is linearly isomorphic to the space $\ell(p).$

Let Λ be a real or complex linear space, define the function $\tau : \Lambda \to \mathbb{R}$ with \mathbb{R} as set of real numbers. Then, the paranormed space is a pair $(\Lambda; \tau)$ and τ is a paranorm for Λ , if the following axioms are satisfied for all ζ , $\eta \in \Lambda$ and for all scalars β :

(i)
$$\tau(\theta) = 0,$$

(*ii*)
$$\tau(-\zeta) = \tau(\zeta),$$

- (*iii*) $\tau(\zeta + \eta) \le \tau(\zeta) + \tau(\eta)$, and
- (iv) scalar multiplication is continuous, that is,

 $|\beta_n - \beta| \to 0$ and $h(\zeta_n - \zeta) \to 0$ imply $\tau(\beta_n \zeta_n - \beta \zeta) \to 0$ for all $\beta's$ in \mathbb{R} and $\zeta's$ in Λ , where θ is a zero vector in the linear space Λ . Assume here and after that (p_k) be a bounded sequence of strictly positive real numbers with $\sup p_k = H$ and $M = max\{1, H\}$. Then, the linear space $\ell_{\infty}(p)$ was defined by Maddox [13] as follows :

$$\ell_{\infty}(p) = \{\zeta = (\zeta_k) : \sup_k |\zeta_k|^{p_k} < \infty\}$$

which is complete space paranormed by

$$\tau_1(\zeta) = \left[\sup_k |\zeta_k|^{p_k}\right]^{1/M}$$

We shall assume throughout that $p_k^{-1} + \{p_k'\}^{-1}$ provided $1 < infp_k \leq H < \infty$, and we denote the collection of all finite subsets of N by F, where $N = \{0, 1, 2, \dots\}$.

Following Altay (see, [1]- [3]), Başarir and Öztürk (see, [6]), Choudhary and Mishra (see, [7]), Ganie and Neyaz (see, [8]), Mursaleen (see, [15]), Ganie [21], Ruckle [19], Sengönül [20], we define the difference sequence space $r_{\mathcal{F}}^q(\triangle_q^p)$ as follows:

$$r_{\mathcal{F}}^{q}(\triangle_{g}^{p}) = \left\{ \zeta = (\zeta_{k}) \in \omega : \sum_{k} \left| \mathcal{F}\left(\frac{1}{Q_{k}}\sum_{j=0}^{k} g_{k}q_{j} \triangle \zeta_{j}\right) \right|^{p_{k}} < \infty \right\}$$

where, $0 < p_k \leq H < \infty$.

By (1), it can be redefined as

$$r^q_{\mathcal{F}}(\triangle^p_q) = \{l(p)\}_{R^q_{\mathcal{T}}(\triangle_q)}.$$

Define the sequence $\xi = (\xi_k)$, which will be used, by the $R^q_{\mathcal{F}} \triangle_q$ -transform of a sequence $\zeta = (\zeta_k)$, i.e.,

$$\xi_k = f \frac{1}{Q_k} \sum_{j=0}^k g_j q_j \triangle \zeta_j.$$
⁽²⁾

Now, we begin with the following theorem which is essential in the text.

Theorem $r_{\mathcal{F}}^q(\triangle_q^p)$ is a complete linear metric space paranormed by h_{\triangle} , defined as

$$h_{\triangle}(\zeta) = \left[\sum_{k} \left| \mathcal{F}\left[\frac{1}{Q_k} \sum_{j=0}^{k-1} (g_j q_j - g_{j+1} q_{j+1}) \zeta_j + \frac{q_k g_k}{Q_k} \zeta_k \right] \right|^{p_k} \right]^{\frac{1}{M}}$$

with $0 < p_k \le H < \infty$.

Proof: The linearity of $r_{\mathcal{F}}^q(\triangle_q^p)$ with respect to the coordinatewise addition and scalar multiplication follows from from the inequalities which are satisfied for $\zeta, \xi \in r_{\mathcal{F}}^q(\triangle_q^p)$ see [14], p.30])

$$\sum_{k} \left| \mathcal{F} \left[\frac{1}{Q_{k}} \sum_{j=0}^{k-1} (g_{j}q_{j} - g_{j+1}q_{j+1})(\zeta_{j} + \eta_{j}) + \frac{q_{k}g_{k}}{Q_{k}}(\zeta_{k} + \eta_{k}) \right] \\
\leq \left[\sum_{k} \left| \mathcal{F} \left(\frac{1}{Q_{k}} \sum_{j=0}^{k-1} (g_{j}q_{j} - g_{j+1}q_{j+1})\zeta_{j} + \frac{q_{k}g_{k}}{Q_{k}}\zeta_{k} \right) \right|^{p_{k}} \right]^{\frac{1}{M}}$$

$$+\left[\sum_{k}\left|\mathcal{F}\left(\frac{1}{Q_{k}}\sum_{j=0}^{k-1}(g_{j}q_{j}-g_{j+1}q_{j+1})\eta_{j}+\frac{q_{k}g_{k}}{Q_{k}}\eta_{k}\right)\right.$$
(3)

and for any $\alpha \in \mathbf{R}$ (see, [13])

$$|\alpha|^{p_k} \le max(1, |\alpha|^M). \tag{4}$$

It is clear that, $h_{\triangle}(\theta)=0$ and $h_{\triangle}(\zeta) = h_{\triangle}(-\zeta)$ for all $\zeta \in r_{\mathcal{F}}^q(\triangle_g^p)$. Again the inequality (3) and (4), yield the subadditivity of h_{\triangle} and

$$h_{\Delta}(\alpha\zeta) \le max(1, |\alpha|)h_{\Delta}(\zeta).$$

Let $\{\zeta^n\}$ be any sequence of points of the space $r_{\mathcal{F}}^q(\Delta_g^p)$ such that $h_{\Delta}(\zeta^n - \zeta) \to 0$ and (α_n) is a sequence of scalars such that $\alpha_n \to \alpha$. Then, since the inequality,

$$h_{\triangle}(x^n) \le h_{\triangle}(x) + h_{\triangle}(x^n - x)$$

holds by subadditivity of h_{\triangle} , $\{h_{\triangle}(\zeta^n)\}$ is bounded and we thus have

$$\begin{aligned} h_{\triangle}(\alpha_n \zeta^n - \alpha \zeta) \\ &= \left[\sum_k \left| \mathcal{F}\left(\frac{1}{Q_k} \sum_{j=0}^k (g_j q_j - g_{j+1} q_{j+1}) (\alpha_n \zeta_j^n - \alpha \zeta_j) \right) \right|^{p_k} \right] \\ &\leq |\alpha_n - \alpha|^{\frac{1}{M}} h_{\triangle}(\zeta^n) + |\alpha|^{\frac{1}{M}} h_{\triangle}(\zeta^n - \zeta) \end{aligned}$$

which tends to zero as $n \to \infty$. That is to say that the scalar multiplication is continuous. Hence, h_{\triangle} is paranorm on the space $r_{\mathcal{F}}^q(\triangle_a^p)$.

It remains to prove the completeness of the space $r_{\mathcal{F}}^q(\Delta_g^p)$. Let $\{\zeta^j\}$ be any Cauchy sequence in the space $r_{\mathcal{F}}^q(\Delta_g^p)$, where $\zeta^i = \{\zeta_0^i, \zeta_1^i, \ldots\}$. Then, for a given $\epsilon > 0$ there exists a positive integer $n_0(\epsilon)$ such that

$$h_{\triangle}(\zeta^i - \zeta^j) < \epsilon \tag{5}$$

for all $i, j \ge n_0(\epsilon)$. Using definition of h_{\triangle} and for each fixed $k \in \mathbf{N}$ that

$$\left| (R^{q}_{\mathcal{F}} \triangle_{g} \zeta^{i})_{k} - (R^{q}_{g} \triangle \zeta^{j})_{k} \right| \leq \left[\sum_{k} \left| (R^{q}_{\mathcal{F}} \triangle_{g} \zeta^{i})_{k} - (R^{q}_{\mathcal{F}} \triangle_{g} \zeta^{j})_{k} \right|^{p_{k}} \right]^{\frac{1}{p_{k}}} \int_{\mathbb{T}} \left[\frac{1}{p_{k}} \int_{$$

for $i,j \geq n_0(\epsilon)$, which leads us to the fact that

 $\begin{cases} \left[\frac{1}{R_{\mathcal{F}}} \Delta_g \zeta^0 \right]_k, (R_{\mathcal{F}}^q \Delta_g \zeta^1)_k, \dots \right] & \text{is a Cauchy sequence} \\ \text{of real numbers for every fixed } k \in \mathbb{N}. \text{ Since } R \text{ is complete,} \\ \text{it converges,say, } (R_{\mathcal{F}}^q \Delta_g \zeta^i)_k \to ((R_{\mathcal{F}}^q \Delta_g \zeta)_k \text{ as } i \to \infty. \\ \text{Using these infinitely many limits } (R_{\mathcal{F}}^q \Delta_g \zeta)_0, (R_g^q \Delta \zeta)_1, \dots, \\ \text{we define the sequence } \{(R_{\mathcal{F}}^q \Delta_g \zeta)_0, (R_{\mathcal{F}}^q \Delta_g \zeta)_1, \dots \}. \\ \text{From} \\ (5) \text{ for each } m \in \mathbb{N} \text{ and } i, j \ge n_0(\epsilon), \end{cases}$

$$\left|\sum_{k=0}^{p_{k}}\right|^{\frac{1}{M}} \left| (R_{\mathcal{F}}^{q} \triangle_{g} \zeta^{i})_{k} - (R_{\mathcal{F}}^{q} \triangle_{g} \zeta^{j})_{k} \right|^{p_{k}} \leq h_{\triangle} (\zeta^{i} - \zeta^{j})^{M} < \epsilon^{M}.$$
(6)

Take any $i,j\geq n_0(\epsilon).$ First, let $j\to\infty$ in (6) and then $m\to\infty$, we obtain

$$h_{\Delta}(\zeta^i - \zeta) \le \epsilon.$$

Finally, taking $\epsilon = 1$ in (6) and letting $i \ge n_0(1)$. we have by Minkowski's inequality for each $m \in N$ that

$$\sum_{k=0}^{m} \left| (R_{\mathcal{F}}^{q} \triangle_{g} \zeta)_{k} \right|^{p_{k}} \right]^{\frac{1}{M}} \leq h_{\triangle}(\zeta^{i} - \zeta) + h_{\triangle}(\zeta^{i}) \leq 1 + h_{\triangle}(\zeta^{i})$$

which implies that $\zeta \in r^q_{\mathcal{F}}(\Delta^p_g)$. Since $h_{\triangle}(\zeta - \zeta^i) \leq \epsilon$ for all $i \geq n_0(\epsilon)$, it follows that $\zeta^i \to \zeta$ as $i \to \infty$, hence we have shown that $r^q_{\mathcal{F}}(\Delta^p_g)$ is complete, hence the proof.

Note that one can easily see the absolute property does not hold on the spaces $r_{\mathcal{F}}^q(\triangle_g^p)$, that is $h_{\triangle}(\zeta) \neq h_{\triangle}(|\zeta|)$ for atleast one sequence in the space $r_{\mathcal{F}}^q(\triangle_g^p)$ and this says that $r_{\mathcal{F}}^q(\triangle_g^p)$ is a sequence space of non-absolute type.

III. INCLUSION RELATIONS

In this section, we investigate some of its inclusions properties .

Theorem If p_k and t_k are bounded sequences of positive real numbers with $0 < p_k \le t_k < \infty$ for each $k \in \mathbf{N}$, then for any modulus function \mathcal{F} , $r_{\mathcal{F}}^q(\triangle_g^p) \subseteq r_{\mathcal{F}}^q(\triangle_g^t)$

Proof: For $\zeta \in r^q_{\mathcal{F}}(\triangle^p_q)$ it is obvious that

$$\sum_{k} \left| \mathcal{F}\left(\frac{1}{Q_k} \sum_{j=0}^{k-1} (g_j q_j - g_{j+1} q_{j+1}) \zeta_j + \frac{q_k g_k}{Q_k} \zeta_k \right) \right|^{p_k} < \infty.$$

Consequently, for sufficiently large values of k say $k \ge k_0$ for some fixed $k_0 \in \mathbf{N}$.

$$\left\| \frac{1}{M} \left(\frac{1}{Q_k} \sum_{j=0}^{k-1} (g_j q_j - g_{j+1} q_{j+1}) \zeta_j + \frac{q_k g_k}{Q_k} \zeta_k \right) \right\| < \infty$$

But \mathcal{F} being increasing and $p_k \leq t_k$, we have

\ 1t1

$$\sum_{k\geq k_{0}} \left| \mathcal{F}\left(\frac{1}{Q_{k}} \sum_{j=0}^{k-1} (g_{j}q_{j} - g_{j+1}q_{j+1})\zeta_{j} + \frac{q_{k}g_{k}}{Q_{k}}\zeta_{k}\right) \right|^{p_{k}} \leq \sum_{k\geq k_{0}} \left| \mathcal{F}\left(\frac{1}{Q_{k}} \sum_{j=0}^{k-1} (g_{j}q_{j} - g_{j+1}q_{j+1})\zeta_{j} + \frac{q_{k}g_{k}}{Q_{k}}\zeta_{k}\right) \right|^{p_{k}} < \infty.$$

From this, it is clear that $\zeta \in r^q_{\mathcal{F}}(\triangle^t_g)$ and the result follows. \diamond

. .

REFERENCES

- B. Altay and F. Başar, On the paranormed Riesz sequence space of nonabsolute type, Southeast Asian Bull. Math., 26 (2002), pp. 701-715.
- [2] B. Altay, and F. Başar, On the space of sequences of *p*-bounded variation and related matrix mappings, Ukarnian Math. J., 1(1) (2003), pp. 136-147.
- [3] B. Altay, F. Başar, and M. Mursaleen, On the Euler sequence spaces which include the spaces l_p and l_∞ -II, Nonlinear Anal., 176 (2006), pp. 1465-1462.
- [4] C. Aydin and F. Başar, On the new sequence spaces which include the spaces c_o and c, Hokkaido Math. J., 33 (2002), pp. 383-398.
- [5] C. Aydin and F. Başar, Some new paranormed sequence spaces, Inf. Sci., 160 (2004), 27-40.
- [6] M. Başarir and M. Öztürk, On the Riesz difference sequence space, Rendiconti del Cirocolo di Palermo, 57 (2008), 377-389.
- [7] B. Choudhary and S. K. Mishra, On Köthe Toeplitz Duals of certain sequence spaces and matrix Transformations, Indian, J. Pure Appl. Math., 24(4) (1993), pp. 291-301.
- [8] A. H. Ganie and N. A. Sheikh, On some new sequence spaces of nonabsolute type and matrix transformations, J. Egyp. Math. Soc., (2013)(in Press).
- [9] K. G. Gross Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180 (1993), pp. 223-238.
- [10] H. Kizmaz, On certain sequence, Canad, Math. Bull., 24(2) (1981), pp.169-176.
- [11] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc., 68 (1970), pp.99-104.
- [12] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64 (1968), pp. 335-340.
- [13] I. J. Maddox, Elements of Functional Analysis, 2nded., The University Press, Cambridge, (1988).
- [14] N. Nakano, Cancave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
- [15] M. Mursaleen, F. Basàr, and B. Altay, On the Euler sequence spaces which include the spaces l_p and l_{∞} -II, Nonlinear Anal., 65 (2006), pp. 707-717.
- [16] M. Mursaleen, and A. K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Mod., 52 (2010), pp. 603-617.
- [17] P.-N. Ng and P.-Y. Lee, Cesáro sequences spaces of non-absolute type, Comment. Math. Prace Mat. 20(2) (1978), pp. 429-433.
- [18] G. M. Petersen, Regular matrix transformations, Mc Graw-Hill, London, (1966).
- [19] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canand. J. Math., 25(1973), 973-978.
- [20] M. Sengönül and F. Basar, Some new Cesáro sequences spaces of non-absolute type, which include the spaces c_o and c Soochow J. Math., 1 (2005), pp. 107-119.
- [21] N. A. Sheikh and A. H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paedago. Nygr., 28 (2012), pp. 47-58.
- [22] Ö. Toeplitz, Über allegemeine Lineare mittelbildungen, Prace Math. Fiz., 22 (1991), pp.113-119.
- [23] C.-S. Wang , On Nörlund sequence spaces, Tamkang J. Math., 9 (1978), pp. 269-274.
- [24] A. Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, Amsterdam - New York - Oxford, (1984).