
 

   
 

  
Abstract—In this paper, a computational method is 

presented to solve potential-type Fredholm integral 

equations of the first kind, equations in which the 

unknown functions are singular at the endpoints of the 

integration domain, in addition to the weakly singular 

logarithmic kernels. This method provides a numerical 

solution based on the Newton interpolation technique via 

the Vandermonde matrix, which can accommodate an 

approximation of the unknown function, in such a manner 

that its singularity is easily removed, as well as the removal 

of kernel singularity. In addition, the Gauss–Legendre 

formula is adapted and applied for the computations of the 

obtained convergent integrals. Thus, the obtained 

numerical solution is equivalent to the solution of an 

algebraic equation in matrix form without applying the 

collocation method. The numerical solutions of the 

illustrated example are strongly converging to the exact 

solution for all values of 1x   including the end-points 1  

whereas the exact solution fails to find the functional 

values at these end-points; which ensures the powerful and 

high accuracy of the presented computational technique. 

 

Keywords—Electro-optics, electromagnetism, Fredholm 

integral equations, well-posed, singular, logarithmic 

kernel. 

I. INTRODUCTION 
     The solutions to the boundary value problems associated for 
example, with Laplace equations, Helmholtz equations, and 
others, which are subject to Dirichlet or Neumann conditions, 
often lead to the solution of an equivalent Fredholm boundary 
integral equation [1]-[3]. Fredholm integral equations of the 
first kind with singular logarithmic or Cauchy kernels arise in 
many fields such as electron-optics, potential theory, and 
electromagnetism in the case of the replacement of a harmonic 
function by single-layer potentials. In many cases, especially in 
open boundaries cases, a singular integral equivalent equation 
is obtained. The singularities are due to the singularity of the 
 
 

 

kernel, the singularity of the unknown function or both 
singularities [4]-[6].  

Many methods are published for the numerical and 
approximate solutions to Fredholm integral equations of the 
second kind which can be applied to solve the first kind 
equation [7]-[8]. There are other methods to solve Fredholm 
integral equations of the first kind with weakly logarithmic or 
Cauchy type singular integral equations [9]-[11]. The 
reformulating of the Dirichlet boundary value problem for the 
Laplace equation of mass distribution on an open contour in 
the plane give rise to an equivalent potential-type Fredholm 
integral equation of the first kind; with singular unknown 
function at the endpoints of the integration domain, in addition 
to the weakly singular logarithmic kernel. Methods for solving 
this class of equations have been published in [12]-[15], where 
the authors used orthogonal functions, the economized monic 
Chebyshev polynomials and monic Chebyshev polynomials. 
Seifi et al [10] presented an effective numerical method to 
solve Cauchy type singular Fredholm integral equations 
(CSFIEs) of the first kind by using the collocation technique 
based on Bernstein polynomials for the approximation of the 
solution of various cases of CSFIEs. Eshkuvatov et al [11] 
proposed a study of efficient approximate methods for solving 
Cauchy type singular integral equations (CSIEs) of the first 
kind, over a finite interval by using Chebyshev polynomials of 
the first, second, third, and fourth kinds. Shoukralla [12], the 
author presented a method based on the treatment of the 
singularity of the unknown function by changing the variables 
of the singular part and approximated the regular part by 
Chebyshev polynomials. The kernel was approximated twice 
by Chebyshev polynomials and by the change of variable. This 
complicated the procedure strikingly and failed to obtain the 
solution at the end-points of the open arc. Shoukralla et al [13] 
presented a method based on the economized Chebyshev 
polynomials with analytical treatments of the singularity. The 
method failed to obtain the solution at the end-points of the 
open arc.  Additionally, Shoukralla et al [14] solved the same 
problem by applying the monic Chebyshev polynomials and 
collocation method, but the solution failed to give functional 
values at the endpoints of the integration domain. Later, 
Shoukralla et al [15] solved the same problem using Newton 
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interpolation and collocation method, but the solution failed to 
give functional values at the endpoints of the integration 
domain as well as the exact solution. 

This paper is devoted to establishing a computational method 
for solving the same equation without employing the 
collocation method and is capable to obtain the solution values 
at the endpoints of the integration domain, in addition to 
isolating the singularities of both the kernel and the unknown 
function. The proposed method improves the traditional 
Newton interpolation via the Vandermond matrix in such a 
manner that the monomial basis functions are easily separated 
from all the interpolation functions and the kernel. This 
technique proficient not only in producing the interpolation 
unknown function in a simple matrix form but also in 
removing all the singularities of the integral equation. The 
implementation of this goal is accomplished by utilizing a 
matrix-based algebra technique that facilitates many 
abbreviations so that the solution steps are significantly 
reduced, and the round off error is minimized. The unknown 
function is factorized into two functions, the first is a badly- 
behaved function and the second is a regular unknown 
function. The regular unknown function and the given data 
function are then interpolated by Newton interpolating 
polynomials of the same degree in matrix forms, while the 
badly-behaved function is expanded into Maclaurin 
polynomial of the same degree. Furthermore, the weak 
singularity of the kernel is removed upon expanding its two 
parametric equations into their corresponding Taylor 
polynomials of the first degree about the singular parameter. 
The resulted integrals are computed using the given adapted 
Gauss–Legendre quadrature formula. Consequently, we have 
concluded that the required solution is equivalent to solve an 
algebraic equation. Solving this algebraic equation by the 
comparison of the coefficients gives the coefficients of the 
unknown function and thus the unknown function itself can be 
found. The obtained numerical solutions of the illustrated 
example are strongly converging to the exact solution and 
gives values to the solution at the endpoints of the integration 
domain. 

II. NEWTON INTERPOLATION METHOD VIA 
VANDERMONDE MATRIX 

     The density function of the solution of the Dirichlet open-
boundary value problem for two-dimensional Laplace equation 
of an electrostatic charged thin bar, which is symmetric about 
the y - axis is equal the solution of a certain potential-type 
Fredholm integral equation of the first kind with weakly 
singular logarithmic kernel and whose unknown function is 
singular at the endpoints of the integration domain [13]. A 
certain class of such equations can be defined as 

( ) ( ) ( ),  ; xx k x y ds f y y


=   (1) 

Here 2   is a simple open contour that satisfies the 

Hölder condition ( );  0 1H     , ( ),k x y  is the 

kernel such that ( ) ( )( ), ln 1 ,k x y d x y= ; where 

( ),d x y  denotes the distance between the two points ,  x y  

on  , ( )x   is the undetermined singular unknown function 

defined on  , and ( ) ( )f y C   is the known given 

potential function.  However,   is parameterized as 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

: ,  ;   ; 

0,  0;  ,

: ,  ;   ; 

0,  0;  ,

x x y a b

x y a b

y x y a b

x y a b

  

  

  

  

  


     


  
     

 (2) 

Therefore, integral Eq. (1) is transformed to 

( ) ( ) ( ) ( ),  ;  
b

a

J k d f a b       =    (3) 

Where ,     are the parameters of the two points ,  x y on 

 , ( )J   is the Jacobian of the parameterized open contour 

 , such that ( ) ( )( ) ( )( )
2 2

J x y   = + . For 

simplicity, let the integration domain be transformed to the 
normalized domain  1,  1−  by using the linear transform 

( )1
2

b a
a 

−
= + + . Hence Eq. (3), is transformed into 

( ) ( ) ( ) ( )
1

1
,  ;  1 1J k d f       

−

= −    (4) 

Let us first redefine the given function ( )f  as a data 

function defined by ( )i if f =  for  1i ih = − + , for some 

step-size 
2 0h
n

=   where  0,i n= . By ( )f   the Newton 

interpolation polynomial of degree n  that interpolates ( )f   

at the nodes  
1
0

n

i i


−

=
 such that ( )i if f = . In a matrix 

form, the Newton interpolation polynomial ( )nN   takes the 
form 

( ) ( )T Af    =   (5) 

where 
( )

( ) ( )( ) ( )0 0 1 1

T

1   .. n



        −

=

 − − − − 

 (6) 
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and the column matrix A  is defined by 

 
( )( )

( )

0
0

0
0 0 0

0

A ;  ;  
!

1  ; 

i
n

i i ii

i
i si

s
s

f
a a

i h

i
f f f f

s

=

−

=


= = 




  
 = −  =  

  


 (7) 

Furthermore, the interpolation polynomial of ( )f  can then 

be rewritten via the Vandermonde matrix T  in the following 
form 

( ) ( ) 1T Ff   −=   (8) 

where F  is the known functional values column matrix 

  0F n

iif
=

= , while the row matrix ( )  and the 

Vandermonde square matrix T  are defined by 

( ) 00, 00
T= ;  ,  1,  i

n j

ij iji j

n
i

i
    

==
= =    =     (9) 

Now, the unknown function ( )   is replaced by the product  

( ) ( ) ( )v u   =  (10) 

where ( )u   is a regular unknown function, and 

( )
2

1

1
v 


=

−
 expresses the singular behavior of the 

unknown function ( )    near and at the end-points of the 

integration domain when 1x → . Suppose that ( )u   is 

given as a tabulated function ( )i iu u =  for the set of n  

knots ( ) 
1

0
,  n

i i i
u 

−

=
 . Then, similar to the interpolation of 

( )f  , ( )u   this may be replaced by its interpolation 

polynomial ( )u   in the matrix form 

( ) ( ) 1T Uu   −=     (11) 

where   0U n

i i
u

=
=  is the unknown coefficient column matrix 

to be determined. Now, the singular function ( )v   is 
expanded in Maclurin polynomial of the same degree n  in the 
matrix form 

( ) ( )=V Tv      (12) 

where the row coefficient matrix V is defined by 

 
( ) ( )

0

0
V ;  ;  0,  

!

i
n

i ii

v
v v i n

i=
= = =  (13) 

Substituting Eqs. (11), (12) into Eq. (10) gives 

( ) ( ) 1V T U   −=   (14) 

where the square matrix  is given by 

( )

( ) ( ) ( )
, 0

 ;  
nT i j

ij iji j



      +

=

 =

   = = 

 (15) 

Moreover, the logarithmic singular kernel 

( ) ( )( ), ln 1 ,k x y d x y= , where ( ),d x y  is the 

distance from the parametric point ( ) ( )( ),x x y   to the 

parametric point ( ) ( )( ),y x y  , can be rewritten in the 
form 

( )

( ) ( )( ) ( ) ( )( )
2 2

,

ln 1  ;

 1 , 1

k

x x y y

 

   

 

= 

 

− + −  
  

−   

 (16) 

From Eq. (16) it turns out that the singularities of ( ),k x y  

occurs when  → . To isolate this singular behavior, both 

( ) ( ),  x y   are approximated using Taylor polynomial of 
the first degree about the singular parameter  . Thus, we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

 x x x

y y y

    

    

= + − 


= + − 

 (17) 

  By substituting Eq. (17) into Eq. (16), we obtain 

( ) ( )

( )( ) ( )( )
2 2

, ln 1  ;  1 , 1,  k

x y

      

  

= − −  



 = + 


 (18) 

Finally, substituting Eqs. (8), (14), and (18) into Eq. (4), gives 

( ) ( )1 1V T U T F ;  1 1  − − =  −    (19) 

Here 

( ) ( )

( )

( ) ( )

, 0

1

1

= ;  

ln 1 ;  , 0,n

n

ij i j

ij

i jJ d i j

  

 

     

=

+

−


    


= 

− =





 (20) 

By applying the apdative m − nodes Gauss-Legendre formula 

( )
1

( )  =
b m

s s
sa

f x dx f 
=

  (21) 

where the weights s , and the nodes s  are given by 

( ) ( )( )
22

1

 ,  
1

  1,  ;  2
2 2

s

s m s

m

s s s
s

b a

P

b a b a
s m


 

  
=

− 
= 

− 


− + 
= +  = = 




 (22) 
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and s  are the roots of Legendre polynomial of degree m  

defined on  1,  1− , the integrals ( )ij   can be easily 
computed since they became proper integrals. By solving the 
matrix equation (19) using the undetermined coefficients 
method, the unknown matrix U can be found, and thereby, the 
unknown function ( )   of Fredholm integral equation (4) 
can be obtained.  

III. COMPUTATIONAL RESULTS 

     Example (1): The unknown density function ( )f x  of a 
charged wire of length 2, which is symmetric about y-axis in 
the plane with constant data function equal to 1, can be found 
by solving the weakly singular Fredholm integral equation of 
the first kind.  

( )
1

1

1ln 1 ;  1 1 f x dx y
x y−

= −  
−

  (23) 

whose exact solution [13] is given by  

( )
( ) 2

1  ;  1 1 
ln 2 1

f x x
x

= −  
−

 (24) 

Using the presented method, the numerical solutions of Eq. 
(23) are obtained. The computations were made using 
MATLAB and the CPU time was equal to 1.59 second for 

4n= . Moreover, the solution at the end-points 1x =   had 
been computed to be as follows: ( )1f  = 1.2969, 1.2742 

and 1.2491 for 2,  3n = , and 4 respectively.  In Table I, a 
comparison is made between the exact solution denoted 
by ( )iE x  and the obtained numerical solutions ( )n ix  for 

2,  3n =  and 4 respectively, where n  denotes the degree of 
the Newton interpolation polynomial. The number of Gauss–
Legendre’s nodes are chosen 20m= . In table II the absolute 
error estimations ( )n iR x  for 2,  3n =  and 4 respectively 
are given. In figures 1, 2, and 3 plotted are the graph of the 
exact solution ( )iE x  with the graphs of the obtained 

numerical solutions ( )n ix  for 2,  3n =  and 4 
respectively. 
 

Table 1. A comparison of the numerical solutions ( )n ix with 

the exact solution ( )iE x . 

i  ix  ( )iE x  ( )2 ix  ( )3 ix  
 

( )4 ix

 
0 
1 
2 
3 
4 
5 

-0.9000 
-0.8000 
-0.7000 
-0.6000 
-0.5000 
-0.4000 

1.0535 
0.7654 
0.6430 
0.5740 
0.5303 
0.5011 

1.0557 
0.7670 
0.6444 
0.5752 
0.5314 
0.5021 

1.0543 
0.7660 
0.6435 
0.5745 
0.5307 
0.5014 

1.0438 
0.7583 
0.6371 
0.5687 
0.5254 
0.4964 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

-0.3000 
-0.2000 
-0.1000 
0.0000 
0.1000 
0.2000 
0.3000 
0.4000 
0.5000 
0.6000 
0.7000 
0.8000 
0.9000 

0.4814 
0.4687 
0.4615 
0.4592 
0.4615 
0.4687 
0.4814 
0.5011 
0.5303 
0.5740 
0.6430 
0.7654 
1.0535 

0.4824 
0.4697 
0.4625 
0.4602 
0.4625 
0.4697 
0.4824 
0.5021 
0.5314 
0.5752 
0.6444 
0.7670 
1.0557 

0.4818 
0.4691 
0.4619 
0.4596 
0.4619 
0.4691 
0.4818 
0.5014 
0.5307 
0.5745 
0.6435 
0.7660 
1.0543 

0.4769 
0.4644 
0.4573 
0.4550 
0.4573 
0.4644 
0.4769 
0.4964 
0.5254 
0.5687 
0.6371 
0.7583 
1.0438 

 

Table 2. The absolute error estimations ( )n iR x . 

i  ix  ( )2 iR x  ( )3 iR x  ( )4 iR x  
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.0000 
0.1000 
0.2000 
0.3000 
0.4000 
0.5000 
0.6000 
0.7000 
0.8000 
0.9000 

9.5569e-4 
9.6051e-4 
9.7540e-4 
1.0018e-3 
1.0427e-3 
1.1035e-3 
1.1946e-3 
1.3382e-3 
1.5928e-3 
2.1925e-3 

3.4983e-4 
3.5154e-4 
3.5699e-4 
3.6667e-4 
3.8164e-4 
4.0389e-4 
4.3722e-4 
4.8989e-4 
5.8307e-4 
8.0255e-4 

4.2461e-3 
4.2675e-3 
4.3336e-3 
4.4511e-3 
4.6328e-3 
4.9029e-3 
5.3076e-3 
5.9457e-3 
7.0768e-3 
9.7412e-3 
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Fig. 1. The graphs of ( )2 ix  and ( )iE x . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES 
DOI: 10.46300/9101.2020.14.12 Volume 14, 2020

ISSN: 1998-0140 51



 

   
 

 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

E
x

a
c

t,
 N

u
m

e
ri

c
a

l 
s

o
lu

ti
o

n

 

 

Exact

Numerical 

 
Fig. 2. The graphs of ( )3 ix  and ( )iE x . 
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Fig. 3. The graphs of ( )4 ix  and ( )iE x . 

 
Fig. 1, Fig. 2, and Fig. 3 give a comparison between the exact 
solutions denoted by ( )i iE x with the numerical solutions for 

2,  3n =  and 4 respectively, which ensures a superior 
accuracy of the given numerical solutions. 

 
 

Example (2): Consider the weakly singular Fredholm integral 
equation of the first kind with singular logarithmic kernel. 
 

( ) ( )
2

0

*
2 cos 2 *

2 2
t t

t ln a sin dt t
   − 

 = −   
  

  (25) 

 
     Here, the arc  , defined in Eq. (1) is a circle with radius 
a , ( )cosx a t= , ( )siny a t= , 0 2t   . The exact 

solution is ( ) ( )cos 2t t = [16]. In general, this solution is 

unique, while for 1a =  (a unit circle) the solution is 

( ) ( ) 0cos 2t t a = + , where 0a is an arbitrary constant. In 
table III, the obtained numerical solutions by using Newton 
interpolation polynomial for  18 n = and 20 respectively are 

compared with the exact solution denoted by ( )i iE x . In 
Figure 4, plotted the graph of the exact solution and Newton 
interpolation polynomial numerical solutions for 20n =  and 

20m = .  
 
Table 3. A comparison between the exact solution denoted by 

( )i iE x with the Newton interpolation polynomial numerical 
solutions for  18 n = and 20 respectively. 

i
 

ix  ( )i iE x  18n =  20n =  

0 
1 
2 
3 
4 
5 
6 
7 
8 
 

0 
/ 4  

/ 2  

3 / 4
  

5 / 4

3 / 2

7 / 4

2  

1.0000 
0.0000 
-1.0000 
0.0000 
1.0000 
0.0000 
-1.0000 
0.0000 
1.0000 

1.0000 
0.0000 
-0.9998 
-0.0002 
0.9998 
0.0003 
-0.9998 
-0.0005 
0.9998 

1.0000 
0.0000 
-0.9999 
0.0000 
0.9999 
0.0000 
-0.9999 
0.0000 
0.9999 
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Fig. 4. A comparison between the exact solutions with the 

Newton interpolation polynomial numerical solution 
for 20n = . 

IV. CONCLUSION 
     A computational method has been investigated for the 
numerical solution of a certain potential-type Fredholm 
integral equation of the first kind with a singular unknown 
function at the end-points of the integration domain and has a 
weakly singular logarithmic kernel. The presented method is 
based on Newton interpolation in a matrix form, in addition to 
the analytical treatment of the singularities of both the kernel 
and the unknown function without changing the variables. The 
singularity of the singular unknown function was treated by 
considering it as a product of two functions. The first was 
given in a closed form that expresses its singular behavior, 
while the second, which is a regular function, was interpolated 
using Newton interpolation in a matrix form. The singularity 
of the kernel was treated analytically by expanding the two 
parametric functions of the parameterized kernel via Taylor 
polynomial of the first degree about the singular parameter. 
Furthermore, an adaptive Gauss–Legendre formula was 
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applied, and matrix algebra was utilized, in such a manner that 
the unknown function was found by solving a linear algebraic 
equation in a matrix form. The advantage of this method is an 
inevitable result of adapting a matrix-based algebra technique, 
where we were able to obtain a monomial basis matrix that 
facilitated the solution, reduced the steps of the solution and 
led to its superior accuracy compared with the other methods. 
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