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Abstract- Past studies have indicated that the
centroid solid angle is related to probabilities of
square prism dice rolls. We explain how it is
relevant to these probabilities and how to use
the spherical projection to calculate the centroid
solid angles for the faces on a square prism. These
values are then used in a statistical analysis in
the quest of constructing a mathematical prob-
ability model. The proposed model is based on
the principle that the probability of ending up
on a particular resting aspect is proportional to
the centroid solid angle of that aspect and in-
versely proportional to a power of the centroid
height in that aspect. Using a power of 2.427,
this proposed model fits our data of over 60,000
non-symmetrical square prism dice rolls of vari-
ous sizes (unequal heights and widths) with the
largest magnitude Z-score of 1.01. Different pow-
ers can potentially describe other situations; e.g.
different surfaces, larger dice, heavier dice, etc.

Keywords- Centroid Solid Angle, Dice Proba-
bility Model, Square Prism Dice, Unfair Dice.

I. Introduction

Dice rolling has appeared among the early works that
lay the foundation of probability theory. The dice

in that context typically have the same height and width
(the standard six sided die), which is widely regarded as
fair and symmetric. For more information on fair dice,
see [1]. What about dice whose width and height are
not equal? What do we know about probabilities involv-
ing non-symmetrical objects? [7] discussed the problem
of tossing a coin onto a substance that, on contact, im-
mediately dissipates all kinetic energy of the coin. The
proposed probabilities in the solution correspond to the
ratios of the centroid solid angles, which are calculated
by projecting the object’s resting aspect onto an enclos-
ing sphere whose center is the centroid and then dividing
these surface areas on the sphere by the square of the

sphere’s radius. There have been a few studies on a re-
lated topic, namely the orientation of assembly parts in
an automated manufacturing process. [2] and [3] intro-
duced the energy barrier concept and how it is related
to the relevant probabilities. If A and B are two resting
aspects of an object, it could require more energy for the
object to transition from A to B than from B to A. The
larger this difference, the more likely the object will fa-
vor natural resting aspect A when tossed onto a surface
where the object bounces or rolls. [9] hypothesizes that
the probability of a part ending up in a particular resting
aspect is directly proportional to that aspect’s centroid
solid angle and inversely proportional to the height of its
center of gravity in that aspect. [4] is a study involv-
ing dropping square prism-shaped parts into a vibratory
bowl. They propose using the height of the center of
mass in a particular resting aspect to adjust the centroid
solid angle and obtain what they call the critical solid
angle, which represents the corresponding probability of
that resting aspect.

We set out to find a probability model that describes
dropping dice onto a hard surface, such as a table. All
of the relevant work on this problem is relatively old.
However, because of 3D printing, robotics, and image
recognition, this type of study can be more easily and
consistently performed.

We used a 3D printer to make different sizes of dice
and we built a dice rolling machine. This allowed us to
obtain a relatively large amount of data. Our data did
not match up with any of these former studies. Perhaps
this is because our situation is different. However, we
hypothesized that the probability model would depend
on the centroid solid angle and the height of the center
of mass.

II. Centroid Solid Angles of Square Prism
Dice

A. Square Prism Dice
The square prism is a rectangular solid with two op-

posing faces being squares. The length of an edge of
either square will be referred to as the width and the
length of an edge not associated with a square will be
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referred to as the height. The two square faces will be
referred to as bases while the four remaining rectangu-
lar non-square faces will be referred to as sides. Each of
these six faces corresponds to the six resting aspects of
the die on a horizontal surface. If the height is not equal
to the width, then the die is not symmetric and not fair.

B. Projecting the Die onto the Surface of a Sphere

Fig. 1: Left to Right. A square prism, transparent to
show planes from the center of mass to the base edges,

the sphere segmented by the planes, and the solid
sphere segmented by those planes.

Other mathematicians have projected thick coins and
other objects onto sphere surfaces. For examples, see ref-
erences [2], [6], [7], and [8]. Projecting a square prism
onto a sphere can be visualized in figure 1. Consider
a square prism of uniform density. Construct a sphere
that encloses the entire square prism and whose center
is at the center of mass of the square prism. Consider a
random point on the surface of the sphere. With proba-
bility 1, the radius of the sphere through that point will
intersect a face of the square prism. The final resting as-
pect of the square prism corresponds to that face. If we
were tossing the square prism onto a soft sticky surface,
one could make a strong case that the probabilities of
the square prism landing on various sides are in propor-
tion to the corresponding projected areas (centroid solid
angles) on the surface of the sphere. Of course, this is
not the scenario we are after, since we are interested in
dropping a die onto a hard surface.

B..1 Projected Surface Areas

Fig. 2:
Spherical
rectangle

bounded by
four geodesics

Projecting out from the centroid
through each edge of a face on the
square prism gives us a rectangular re-
gion on the surface of the sphere cor-
responding to that face. This spherical
rectangle’s area can be calculated from
the angles between the geodesics; see
figure 2. By Girard’s Theorem, if the
sphere has radius R the surface area
bounded by four geodesics is:

A = R2(α+ β + γ + δ − 2π) (1)

In the case where R = 1, A is the centroid solid an-
gle (CSA) corresponding to that face. Once the spheri-
cal rectangle area corresponding to the two bases of the
square prism is found from equation (1), the remaining
surface area of the sphere corresponds to the sides of the
square prism.

B..2 Angles Between the Planes Corresponding
to the Bases

Let the Centroid, O,
be positioned at (0, 0, 0)
in the xyz-coordinate
plane. Let w represent
the width, and h rep-
resent the height of the
square prism. The ver-
tices of the square prism
in the coordinate plane
are as follows:

Vertex x-coordinate y-coordinate z-coordinate
A w/2 w/2 h/2
B w/2 −w/2 h/2
C −w/2 −w/2 h/2
D −w/2 w/2 h/2
E w/2 w/2 −h/2
F w/2 −w/2 −h/2
G −w/2 −w/2 −h/2
H −w/2 w/2 −h/2

Lemma 1. Let w and h represent, respectively, the width
and height of a square prism. The angle between the
planes from the centroid out through consecutive base
edges is

cos−1

(
− w2

h2 + w2

)
Proof. For our ABCDEFGH square prism, let the
plane AOB be the plane projecting from the sphere’s
centroid, O, to the edge AB of the square prism. The
vector originating from O to A, called A, and the vector
from O to B, called B, both lie in the plane AOB. Since
O lies at the origin, we have:

A =

〈
w

2
,
w

2
,
h

2

〉
and B =

〈
w

2
,−w

2
,
h

2

〉

Fig. 3: Adjacent planes from O through base vertices
on the base.

The normal vector of the plane AOB, called nBA is
obtained from the cross product of A and B as follows:

nBA = A×B =

〈
wh

2
, 0,−w

2

2

〉
with length ‖nBA‖2 =

w

2

√
h2 + w2
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Similarly,

nAD = A×D =

〈
0,−wh

2
,
w2

2

〉

with length ‖nAD‖2 =
w

2

√
h2 + w2

Let θ be the angle between the planes AOB and
AOD, which is the angle between the corresponding
geodesics on the surface of the sphere. Using the two
normal vectors, nBA and nAD, we can calculate θ as
follows.

θ = cos−1

(
nBA · nAD

‖nBA‖2 ‖nAD‖2

)
= cos−1

(
− w2

h2 + w2

)
By symmetry, the other three angles of the spherical

rectangle corresponding to the base of the square prism
are also equal to θ.

Fig. 4: Transparent and cutout spheres showing the
enclosed square prism with planes from the centroid

through the top edges of the prism.

C. Theoretical Probability Calculation using Cen-
troid Solid Angles

Theorem 2. The ratio of the centroid solid angles cor-
responding to the bases of the square prism to the total
centroid solid angle of the entire enclosing sphere is

WB =

2 cos−1

(
− w2

h2 + w2

)
− π

π

where w and h represent, respectively, the width and
height of the square prism.

Proof. Using equation (1) from Girard’s Theorem and
the value of θ from Lemma 1, we calculate the area, AB ,
of the spherical rectangle that corresponds to a base of
the square prism:

AB = R2 (4θ − 2π) = R2

(
4 cos−1

(
− w2

h2 + w2

)
− 2π

)
There are two bases, and the surface area of sphere is

4πR2. Thus, the ratio is

2AB

4πR2
=

2R2

(
4 cos−1

(
− w2

h2 + w2

)
− 2π

)
4πR2

=

2 cos−1

(
− w2

h2 + w2

)
− π

π

If a point on the enclosing sphere is randomly chosen,
the probability that this point is projected out from a
point on one of the bases is

WB =

2 cos−1

(
− w2

h2 + w2

)
− π

π
(2)

Since the point corresponding to a base or a side are
two complementary events, the probability that the point
corresponds to a side is:

WS = 1−WB

= 1−
2 cos−1

(
− w2

h2 + w2

)
− π

π

=

2π − 2 cos−1

(
− w2

h2 + w2

)
π

III. Statistical Analysis to Evaluate the Use
of Centroid Solid Angles in Probability
Models for Square Prism Dice Rolls

As mentioned earlier, the centroid colid angle corre-
sponding to a particular resting aspect of a square prism
die seem to affect the probability of the die landing on
that aspect. To evaluate how the centroid solid angles
can be used in the probability model, we generate ex-
perimental data of square prism dice rolls and compare
how probability models using centroid solid angles fit the
data.

A. Data Generation Methodology

Fig. 5: Four different sizes of square prism dice

For variety, four different sizes of dice were made us-
ing a 3D printer. All sizes have roughly the same volume
as each other. By adjusting the printer settings, the dice
were made to be solid and of uniform density.1 See fig-
ure 5. We printed four dice of each size. The actual

1Dice were printed in PLA using a 5th generation MakerbotTM

Replicator+ with 100% infill density and the floor set higher than
the full height of the dice.
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Table 1: Observed Data from the Dice Rolling Machine

Width
(mm)

Height
(mm)

Volume
(mm3)

Ratio
w/h

Base
Count

n
Base

Prop.(p̂)

95%
Margin
Error

A 16.6225 8.195 2264 2.028 13881 15593 0.89021 0.0049
B 15.09 10.01 2279 1.507 11382 15756 0.72239 0.0070
Fair 13.1 13.1 2248 1 ∞ ∞ 0.3̄ 0
C 11.805 15.74 2193 0.75 1976 14633 0.13504 0.0055
D 11.235 17.953 2266 0.62582 939 14571 0.06444 0.0040

dimensions of the printed dice varied slightly from the
intended dimensions. However, the four dice of each size
were identical to each other. To get more accurate mea-
surements of the true dimensions, we placed the four dice
consecutively, took total measurements and divided by
four.

Dice are typically used in games. Multiple dice are
rolled simultaneously onto a hard surface, such as a table
top. The dice bounce and spin before coming to a rest.
We decided to mimic this situation. A machine was built
to automate the process. The dice fall through a series of
ramps, similar to what is inside dice rolling towers. The
dice then land on a hard surface.2 We had the machine
roll two or three dice at a time. After the dice come to
a rest, a picture is taken. See the footnotes for a link to
a video of the process.3

B. Data

We obtained about 15,000 results for each dice size.4

The results were recorded and are given in Table 1. Mar-
gins of error for 95% confidence level are given. The
column ‘n’ is the number of rolls for each size. In addi-
tion to the 4 sizes of custom printed dice, the third row
represents fair dice, where all sides are equally likely.

C. Conditions for an Acceptable Probability Model

As we analyzed models to fit the data for the four
dice sizes, we considered the following conditions:

1) When the height and the width of the die are equal,
the probability of base is 0.3̄. This represents the
fair die.

2) Since the number of rolls for each dice size is con-
siderably large, we can use the Normal approxima-

tion N ∼
(
p0,

p0(1−p0)
n

)
to evaluate how well the

model fits the data for each dice size, where p0 is
the predicted proportion of bases from the model

being evaluated, and p0(1−p0)
n is the square of the

standard error. Because we have four dice sizes, we
would have four comparisons, and according to the
Bonferroni correction, to get the overall significance
level of α = 0.05, an adjusted α = 0.05

4 = 0.0125
is applied for each comparison. This means that

2All Purpose White Shelf bought from Ace Hardware
3A video of the machine in action can be found at

www.youtube.com/watch?v=OIzivrHaPfY&
4Images of the sample rolls can be found here.

the Z-scores for all four comparisons should satisfy
−2.50 ≤ Z ≤ 2.50.

D. Comparison with Centroid Solid Angle Ratios

As seen in the following table, the data is sig-
nificantly different than the centroid solid angle ra-
tios calculated from equation (2). The largest Z-score(
Z = p̂−p0√

p0(1−p0)
n

)
is greater than 75, which indicates

that if the model were correct, then the chance of getting
a result at least as extreme as that has a probability of
less than 10−300. Furthermore, none of the Z-scores sat-
isfy the second condition for an acceptable model, where
we needed ALL of them to satisfy this condition. Thus,
we can safely conclude that simply using the ratios of
the centroid solid angles does not give us the correct
probabilities. We can see that when the width is greater
than the height, the proportion of bases in the sample
is significantly higher than the centroid solid angle ratio.
Conversely, when the width is less than the height, the
proportion of bases in the sample is significantly lower.

Table 2: Comparison of the CSA Model (p0) and the
Observed Data (p̂) for the Proportion of Bases

p0
(CSA)

p̂
Standard
Devia-

tion
Z-score

A 0.5951 0.8902 0.00393 75.07
B 0.4887 0.7224 0.00398 58.69

Fair 0.3333 0 0.00385 0
C 0.2344 0.1350 0.00350 -28.38
D 0.1816 0.0644 0.00319 -36.69

We suspect that if the dice had been thrown onto
an absorbent surface, such as sand, or a sticky surface,
then the results would have been significantly closer. The
significant difference is due to the energy barrier concept,
which most research on this topic mentions. Refer to
[2] and [3]. As a die bounces on a hard surface, the
amount of kinetic energy is decreasing. Consider a die
with h < w in such a situation. If the die has the base
facing down, its centroid is lower than if it has one of the
sides facing down. Thus, it requires more energy for the
die to transition from having the base down to having a
side down than is required to flip the other way. As the
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kinetic energy decreases, there is a window where the die
has enough energy to transition from side down to base
down, but doesn’t have enough energy to transition from
base down to side down. This accounts for the difference
between the theoretical and empirical.

IV. A Model Based on the Centroid Solid
Angle and Height that Fits the Data

A. Modifications Based on Centroid Height

Aspects that have higher centroid height have more
potential energy than aspects with lower centroid height.
This indicates that an adjustment similar to the Boltz-
mann factor can help describe the situation better.
Other researchers have also proposed that the probabili-
ties are also related to centroid height [5]. Based on the
assumption that the probability of resting in a particular
aspect is directly proportional to the centroid solid angle
and inversely proportional to the height of the centroid,
[9] proposed a method for calculating the probabilities.
It gives probabilities equivalent to the following formula:

P (base) =
WB/hB

WB/hB +WS/hS
, P (side) = 1− P (base)

(3)
where hB and hS are the heights of the centroids in the
corresponding resting aspects, WB is as derived in equa-
tion (2) and WS = 1 − WB . As seen in the following
table, the probabilities are all closer than the centroid
solid angle ratios. However, the largest Z-score is over
40, and none of the Z-scores satisfy the second condi-
tion for an acceptable model. We can safely conclude
this method does not fit our situation of rolling dice on
a hard surface.

Table 3: Comparison of the modified CSA Model (p0)
and the Observed Data (p̂) for the Proportion of Bases

p0
(CSA/h)

p̂
Standard
Devia-

tion
Z-score

A 0.7488 0.8902 0.00347 40.71
B 0.5903 0.7224 0.00392 33.72

Fair 0.3333 0.3333 N/A 0
C 0.1868 0.1350 0.00322 -16.06
D 0.1219 0.0644 0.00271 -21.21

We found that if we divide by a power (p = 2.427)
of the centroid height instead of just the centroid height,
the model fits our data better than any other models
covered in this paper. Here is the modification;

P (base) =
WB/(hB)2.427

WB/(hB)2.427 +WS/(hS)2.427

With this modification, the largest Z-score has abso-
lute value 1.01, and all of the Z-scores satisfy the second
condition for an acceptable model, as seen in Table 4 and
graph. This means that the model could be the correct
representation for our situation. In fact, we consider this
a spectacular result. Combining geometrical properties
with just one parameter, p, the model is simultaneously
close to all 5 of the data points. Furthermore, by us-
ing different values of this one parameter, the model can
possibly predict other situations.

Fig. 6: P
(
Base | x = ln w

h

)
=

y−π
2

y−π
2 + π−y

e2.427x

where y = cos−1
(
− e2x

1+e2x

)
Other studies use the ratio x = w

h as the independent
variable. However, this yields the domain (0,∞), with
(0, 1) representing tall dice and (1,∞) representing short
wide dice. To attain more symmetry, note that we in-
stead use x = ln

(
w
h

)
as the independent variable. This

expands the domain to R where (−∞, 0) represents tall
dice and (0,∞) represents short wide dice.

B. Generalized Probability Model using Centroid
Solid Angle and Height

All three previous models can be considered as special
cases of this generalized model:

P (base) =
WB/(hB)p

WB/(hB)p +WS/(hS)p

Table 4: Comparison Between Modified CSA(p0) and Observed Data(p̂) with parameter p = 2.427

ln
(
w
h

)
n

p0
(CSA/h2.427)

p̂
Residuals
(p̂− p0)

Standard
Deviation

Z-score

A 0.7072 15593 0.8911 0.8902 -0.0008 0.00250 -0.34
B 0.4105 15756 0.7213 0.7224 0.0011 0.00357 0.31

Fair 0 ∞ 0.3333 0.3333 0 0.00385 0
C -0.2877 14633 0.1322 0.1350 0.0028 0.00280 1.01
D -0.4687 14571 0.0664 0.0644 -0.0020 0.00206 -0.96
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p = 0 represents the centroid solid angle ratio, which has
a good chance of working if the die is dropped into sand
or onto a sticky surface. p = 1 represents equation (3),
and might work if the die is dropped onto a soft surface.
p = 2.427 works well in our situation of dropping the die
onto a hard surface. In general, p is a parameter that
depends on how fast the energy of the die dissipates rel-
ative to the energy required to change resting aspects.
A slower dissipation of energy means that the window
where the die has enough energy to go from an aspect
with higher centroid height to lower centroid height but
can’t go from lower to higher will be longer. This means
that the die will end up in the aspect with lower cen-
troid height more often. A larger value of p in the model
can account for this change. Thus, larger values of p are
associated with slower energy dissipation rates and vice-
versa. The energy dissipation rate depends on various
factors, including the hardness, or coefficient of restitu-
tion, of the surface and the die. In particular, a larger
coefficient of restitution means that less kinetic energy
is lost with each bounce of the die, leading to a slower
dissipation rate and hence a larger value of p. The dissi-
pation rate may also depend on the weight and volume
of the dice. By adjusting the power p, the model has a
chance to work under varying conditions.

Fig. 7: P
(
Base | x = ln w

h

)
=

y−π
2

y−π
2 +π−y

epx
where

y = cos−1
(
− e2x

1+e2x

)
, and with p = 0, 1, 2.427

V. A Model based on the Four Parameter
Logistic Function that fits the Data

The situation is similar to a logistic function. In par-
ticular, the data points fit the following four parameter
logistic model fairly well.

f(x) = 1.001− 1.0106

1 + .5157e3.9477x
where x = ln

(w
h

)
As seen in the following table, with this model the
largest Z-score absolute value is 1.02. The weighted error
summed over the five data points is

∑5
i=1 ni(p̂i − pi)2 ≈

0.262.

p0
(4PL)

p̂
Standard
Devia-

tion
Z-score

A 0.8927 0.8902 0.00248 -1.02
B 0.7199 0.7224 0.00358 0.70

Fair 0.3333 0.3333 0.00385 0
C 0.1331 0.1350 0.00281 0.69
D 0.0653 0.0644 0.00205 -0.41

The following is a graph of the function with the data
points. Of course, we are not allowed to extrapolate be-
yond where we have data. However, such an extrapola-
tion has a reasonable chance of working. Note that the
graph goes above 1 and below 0. This is seemingly a vi-
olation of the laws of probability. However, as the width
is increased, the height will eventually become so thin
that tiny vibrations on the rolling surface will cause the
probability of landing on a base to be 1. Conversely, as
the width is decreased, the probability of landing on the
base eventually becomes 0.

VI. Conclusion

This paper introduces a way to calculate centroid
solid angles for square prisms, using only the width and
height of the prism. We also propose a non empiri-
cal probability model for square prism dice rolls using
the centroid solid angle and a power, p, of the centroid
height. The parameter p depends on the energy dissi-
pation rate as the die bounces. By varying the value
of p, this model could potentially work for various situ-
ations. When p = 2.427, this theoretical model agrees
well with our collection of over 60,000 dice rolls on a hard
surface (largest Z-score is 1.01). Before coming up with
this model, we experimented with other models that also
involved adjustments to the centroid solid angle. How-
ever, all previous attempts had to be ruled out because
the Z-scores were excessively large in magnitude.

The scenario that we tried to achieve is that of rolling
or dropping dice onto a table with a wood or hard lami-
nate surface. Unlike a table, the dice machine has walls
around the platform with which the dice collide. It is
unclear what effect, if any, this has on the probabilities.
The study can be improved by printing out a few other
sizes of dice.

Other convex shapes of dice should be tested. Sug-
gested shapes include right circular cylinders of vary-
ing thicknesses (thick coins), general rectangular solids,
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tetrahedra, triangular prisms and other prisms. Larger
or smaller sizes should be tested. Perhaps a generalized
probability model the covers a significantly larger variety
of convex shaped dice can be obtained. Our initial test-
ing indicates that the geometry of the triangular prism
and the thick coin have a significant effect on the prob-
abilities, in addition to the effects of the center of mass
and centroid solid angle. Since 3D printers can make
loaded dice, that is an additional avenue that can be
explored.
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