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Abstract—Identifying codes in graphs are related to the
classical notion of dominating sets [1]. Since there first
introduction in 1998 [2], they have been widely studied and
extended to several application, such as: detection of faulty
processor in multiprocessor systems, locating danger or threats
in sensor networks.
Let G=(V,E) an unoriented connected graph. The minimum
identifying code in graphs is the smallest subset of vertices C,
such that every vertex in V have a unique set of neighbors in
C. In our work, we focus on finding minimum cardinality of an
identifying code in oriented paths and circuits.
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I. INTRODUCTION

After their introduction for modelize the problem of
detecting a failures in multiprocessors system[2], the notion
of identifying code have been also used in numerious
applications such as locating and detecting danger or threats
in indoor environments [3] and wireless Network Monitoring
[4]. Actually, the theories and the applications of identifying
code attracted the attention of many researchers. This led
to many results that have been obtained in hypercubes [5],
[6], grids [7], [8], paths and cycles [9], [10], [11], [12]. An
updated bibliography on the subject can be found in [13].

Let G = (V,E) a simple, connected and undirected graph,
where V is the set of vertices and E the set of edges. We
call a code any noempty subset of vertices and its elements
a codewords. We def ne Br(v), a ball of center v and radius
r by Br(v) = {u ∈ V |d(u, v) ≤ r}, where d(x, y) denotes
the length (number of edges) of the shortest path between the
vertices x and y.
Thus, an r-identifying code is any subset C ⊆ V such that:

1) ∀ v ∈ V,Br(v) ∩ C 6= ∅,
2) Br(u) ∩ C 6= Br(v) ∩ C, for all u, v ∈ V, u 6= v.

Therefore, the f rst condition ensures that every vertice of
the graph is covered by at least one codeword, and the second
one ensures that every pair of different vertices is separated.
In other words, each vertex of the graph G is covered by a
unique set of codewords. The set Br(v) ∩C, denoted also by
Ir(v), is called the r-identifying set of v (simply identifying
set when r = 1).
For an oriented graph G = (V,A), we just replace Br(v)∩C
by Γ−

r (v) ∩ C = I−r (v), where the set Γ−

r [x] = {y ∈ V |

d(y, x) ≤ r} contains all the predecessors at distance at most
r from x (x within).

The problem with identifying code is f nding one with the
fewest elements. This problem is known to be an NP-complete
problem [14].
Our work studies this problem in oriented graphs, particularly
in oriented paths and circuits. Thus, some partial results were
obtained.

II. IDENTIFYING CODE IN ORIENTED PATHS

As mentioned before, we are interested in f nding an
optimal identifying code in oriented paths and circuits.
First, we give some notations that will be used in the next
paragraphs.
We denote by Pn an oriented path of length n, ie it contains
exactly n + 1 vertices, and Cn a circuit of length n. Let
M−

r (G) denotes the minimum cardinality of an r-identifying
code in graph G.

First, we investigate the 1-identifying code (or simply
identifying code, if there’s no ambiguity) then the 2-identifying
code.

A. 1-Identifying Code

Lemma 1: A subset C ⊆ V is an identifying code in Pn

if and only if: 1.

1) The two vertices x0 and x1 belong to the code C,
2) For every pair of consecutive vertices xi and xi+1,

i ∈ {2, 3, . . . , n− 1}, xi or xi+1 is a codeword.
3) For every triplet of consecutive vertices xi, xi+1 and

xi+2, i ∈ {2, 3, . . . , n−2}, xi or xi+2 is a codeword.

Proof: For (1), x0 is covered by itself, then x0 must be
a codeword. In addition, x1 must belong to code to separate
the pairs of vertices (x0, x1).
For the second condition, suppose that xi /∈ C and xi+1 /∈ C.
Then I−(xi+1) = ∅ (xi+1 isn’t covered). Then either xi or
xi+1 must belong to the code.
For (3), suppose that neither xi nor xi+2 belong to the code.
Then we have two cases:

Case 1 If xi+1 ∈ C, then I−(xi+1) = I−(xi+2) =
{xi+1}, ie the two vertices xi+1 and xi+2 aren’t
seperated.
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Case 2: If xi+1 /∈ C, necesseraly the two vertices xi+1

and xi+2 will not be covered because I−(xi+1) =
I−(xi+2) = ∅.

Thus, in the two cases either xi or xi+2 must be a codeword.
One can see the necessity and the suff ciency of the three
conditions to cover all the vertices of Pn, this comes from
the fact that every semi-ball contains exactly two consecutive
vertices.
Now, let’s show the suff ciency of the three conditions for the
separation.
Let xi and xj be two vertices, then we have two cases:

Case 1 The vertices are neighbours. Without loss of gen-
erality, we put j = i+ 1. Above, we have shown
that Condition (1) separates the vertices x0 and
x1. Therefore, by Condition (3), we known that
xi−1 ∈ C or xi+1 ∈ C, then we have I−(xi) 6=
I−(xj). Thus, xi and xj were separated.

Case 2 xi et xj are not neighbours, ie the distance
d(xi, xj) ≥ 2.
Suppose, without loss of generality, that j =
i + 2. Then, we have Γ−

1 [xi] = {xi−1, xi} and
Γ−

1 [xj ] = {xi+1, xi+2}, but by Condition (2),
we have I−(xi) 6= I−(xj). Then xi and xj are
separated.

This completes the proof of the lemma.

By the following theorem we give a minimum cardinality
of an identifying code in oriented paths.

Theorem 1: For an oriented path Pn, we have:

M−

1 (Pn) =







2p if n=3p,
2p+ 1 if n=3p+1,
2p+ 2 if n=3p+2.

Proof: Let V the set vertices of Pn. If we denote by L
the set of vertices identif ed by one codeword (or covered by
one codeword). Then, the other vertices (|V |−|L|) are covered
by at least two codewords. In other words, C double covers
these vertices. Thus, using the fact that |L| ≤ |C| (at most |C|
vertices are covered by one codeword), therefore we have the
following inequality

2(|V | − |L|) + |L| ≤
∑

xi∈C

|Γ−

1 [xi]| ≤ 2.|C|

so
2|V | − |L| ≤ 2|C| ⇔ 2|V | − |C| ≤ 2|C|

⇔ 2
3 |V | ≤ |C|

which leads to
|C| ≥

⌈

2n

3

⌉

Let n = 3p+ q, with q ∈ {0, 1, 2}. Thus we obtain:
⌈

2n

3

⌉

=

⌈

2(3p+ q)

3

⌉

= 2p+

⌈

2q

3

⌉

Therefore: If q = 0, then ⌈ 2q
3 ⌉ = 0. If q = 1, then ⌈ 2q

3 ⌉ = 1.
And f naly, if q = 2, then ⌈ 2q

3 ⌉ = 2.

n=10== 1[3]

8 n=9== 0[3]

n=8== 2[3]1 2 3 5 74 60

1 2 3 5 74 60

81 2 3 5 74 60 9

Fig. 1 – An Example of identifying code in oriented paths of
length 7,8 and 9

To conclude, we exhibit an identifying code which reaches
the bound for each case. Thus, we can choose C = {xi|i ≡
0[3] and i ≡ 1[3]} for all cases (see f gure 1).

B. 2-Identifying Code

Before proceding to the proof of our results we need the
following result:
Let Pn = {x0, x1, . . . , xn} an oriented path of length n, and
C a code in Pn.

Lemma 2: A subset C is a 2-identifying code in Pn if and
only if the following three conditions are satisf ed: 1.

1) The vertices x0,x1 and x2 must belong to C,
2) For every group of three consecutive vertices,

xi, xi+1, xi+2, i ∈ {3, 4, . . . , n − 2}, at least one
belong to the code C,

3) For every group of four consecutive vertices,
xi, xi+1, xi+2, xi+3, i ∈ {3, 4, . . . , n − 3}, we can’t
have xi /∈ C and xi+3 /∈ C.

Proof: For the condition (1), if x0 /∈ C, then we have
Γ−

2 [x0] = ∅ (the vertex is not covered). Thus x0 must be a
codeword.
For (2), we can see that if any of the three vertices
xi, xi+1, xi+2, for all i ∈ {3, 4, . . . , n− 2}, is not a codeword
then I−(xi+2) = ∅ which contradicts the fact that C is a
covering code.
Finaly for the condition (3), suppose that neither xi nor xi+3 is
in C then the two vertices xi+2 and xi+3 will not be separated
because I−

2 (xi+2) = I−

2 (xi+3) = {xi+1, xi+2}. Thus xi ∈ C
or xi+3 ∈ C, for all i ∈ {3, 4, . . . , n− 2}.
We remark that the condition (1) and (2) are necessary and
suff cient for the condition that Γ−

2 [xi] ∩ C 6= ∅ for all
i ∈ {0, 1, . . . , n}.
We need to show that the three conditions of the previous
lemma are suff cient for the separation. Let xi and xj be two
distinct vertices. Thus, two cases appear:

Case 1 The two vertices are neighbours, j = i+1. In this
case, by (1) we have the pairs (x0, x1), (x1, x2),
(x2, x3) seperated, and by the condition (3), we
have xi−3 ∈ C and xi ∈ C for all pairs (xi, xi+1),
where i ∈ {3, 4, . . . , n− 1}. We can observe that
I−

2 (xi) 6= I−

2 (xi+1) for all pairs of consecutive
vertices. Thus, the vertices xi and xj are separated
by the code C.

Case 2 The two vertices xi and xj are at distance at least
2, ie d(xi, xj) ≥ 2. In this case, if d(xi, xj) > 2
(j > i + 2), then by (2) we have I−

2 (xi) 6=
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I−

2 (xj), and if d(xi, xj) = 2, then by the condi-
tions (2) and (3) we have also I−

2 (xi) 6= I−

2 (xj).
Thus, in this case, also xi and xj are separated
by the code C.

For more clearness, we will denote each vertex xi by its
subscript i.
We know that each 2-identifying code is 2-separator in Pn.
Also, we know that for each vertex i ∈ Pn (i ≥ 2) we have
Γ−

2 [i]∆Γ−

2 [i + 1] = {i − 2, i + 1}1, then ∀ i ∈ Pn one of
the vertices i − 2 and i + 1 must belong to C (condition
(3) of lemma 2). Thus, we have i − 2 ∈ C or i + 1 ∈ C
for each vertex i ∈ {2, n − 1} from Pn (see f gure 2).
Such disjunction will be called (ie i − 2 ∈ C or i + 1 ∈ C)
Elementary Constraint (EC), so it is abbreviated as i−2∨i+1.

Fig. 2 – One of the two vertices i or i + 3 belong to a code
to separate i+ 2 and i+ 3

Next, we introduce an example which clear up some
notations that we will use in the rest of this paper.

Example 1: Let P10 = x0, x1, . . . , x9, an oriented path of
length 9. To obtain a 2-identifying code we have to separate
nine pairs of consecutive vertices. Thus, we have nine ECs
to satisfy those we enumerate as follows : 0 ∨ 3, 3 ∨ 6, 6 ∨
9, 1 ∨ 4, 4 ∨ 7, 2 ∨ 5, 5 ∨ 8. Note that we omit the two
ECs which separate the pairs (0,1) et (1,2), because they
are separated (condition (1) of lemma 2). The set of these
constraints will be called General Constraint (GC). This set of
elementary constraints (or GC) can partitioned in three subsets
of constraints, called Partial Constraints (PC), such as :

0 ∨ 3, 3 ∨ 6, 6 ∨ 9
1 ∨ 4, 4 ∨ 7
2 ∨ 5, 5 ∨ 8

However, in order to get a general formulation, we give some
adaptation for this notation. Thus, we can write the above PCs
as follows:

0 ∨ 0 + 1× 3, 0 + 1× 3 ∨ 0 + 2× 3, 0 + 2× 3 ∨ 0 + 3× 3 (C0)
1 ∨ 1 + 1× 3, 1 + 1× 3 ∨ 1 + 2× 3 (C1)
2 ∨ 2 + 1× 3, 2 + 1× 3 ∨ 2 + 2× 3 (C2)

we call Ci, i = 0, 1, 2, the partial constraint i.

In general, if the number of vertices is n, then we suppose
that n = 3p + q, with p ∈ {1, 2, . . . , [n3 ]} and q ∈ {0, 1, 2}.
Thus the PC i has the following form:

i∨ i+1×3, i+1×3∨ i+2×3, . . . , i+(si−1)×3∨ i+si×3

1A∆B = A ∪ B \A ∩B, called symmetric difference

where si is the greatest integer for which the following
inequality checked:

i+ si × 3 ≤ n.

In the above example, we have s0 = 3 for the PC C0, .

Let Vi be the set of vertices in the PC i. We remark that
Vi ∩ Vj = ∅, for all i 6= j|i, j ∈ {0, 1, 2}. In other word, all
the PCs have disjoint sets of vertices.
Thus, satisfying the GC, to obtain an 2-identifying code,
amounts to satisfy all PCs.
Using this notation, we get the following result:

Theorem 2: Given an oriented path Pn of length n, where
n = 3p+ q and q ∈ {0, 1, 2}. If C is an 2-identifying code in
Pn. Then:

(1) If p = 0, then M−

2 (Pn) = q + 1
(2) If q = 0, p ≥ 1, M−

2 (Pn) =
{

3p
2 + 1 if p is even
3(p+1)

2 if p is odd

(3) If q = 1, p ≥ 1, M−

2 (Pn) =
{

3p
2 + 2 if p is even
3(p+1)

2 otherwise

(4) If q = 2, p ≥ 1, M−

2 (Pn) =
{

3p
2 + 2 if p is even
3(p+1)

2 + 1 otherwise

Proof: If p = 0 (n ≤ 2) the minimum cardinality of
a 2-identifying code in Pn is deduced from the f rst condition
of lemma 2.

For the second case, ie p ≥ 1 and q = 0, we know, by the
condition (1) of lemma 2, that the vertices 0, 1 and 2 belong
to the code, which satisf es the f rst EC of the PCs 0,1 and 2.
On the other hand, we have, by condition (2) of lemma 2,
necessary at least one codeword between 3, 4 and 5, thus we
have one EC between the PCs 0,1 and 2 for which two vertices
are a codeword. Without loss of generality, let 3 this vertex,
then this satisf es two ECs in the PC 0. In this case, we need to
satisfy (p− 3) ECs, then at least ⌈p−3

2 ⌉ codeword are needed
to satisfy the rest of ECs in PC 0.
In addition, for each of the partial constraints 1 and 2 we
have one elementary constraint satisf ed (since 1, 2 ∈ C), then
(p− 2) ECs aren’t satisf ed for each one. Thus, at least ⌈p−2

2 ⌉
codewords are needed to satify the rest of ECs for PCs 1 and
2.
We conclude that we need, totally, at least:

4 + 2

⌈

p− 2

2

⌉

+

⌈

p− 3

2

⌉

codewords to satisfy the general constraint.

If p is even, then M−

2 (Pn) ≥ 3p
2 + 1. Else, M−

2 (Pn) ≥
3(p+1)

2 .
Finally, we construct a 2-identifying code that reaches the
bound to conclude. Indeed, we use the following construction:
We take all vertices i ∈ V , where i is even and adding vertices
0 and 1.

The proof of the case p ≥ 1 and q = 1 is similar. Indeed,
concerning the f rst EC of CP 0, we have (p−1) ECs to satisfy,
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0 1 2 4 63 5 7 8

Fig. 3 – 2-identifying code (C = {2, 4, 6, 8} ∪ {0, 1}) for an
oriented path of length 8 (n = 3× 3 + 0 vertices)

since 0 ∈ C. Thus, we need at least ⌈p−1
2 ⌉ codewords. For the

PCs 1 and 2 we need, respectively, at least ⌈p−3
2 ⌉ and ⌈p−2

2 ⌉
codewords to satisfy the rest of elementary constraints. Thus,
we need at least :

4 +

⌈

p− 3

2

⌉

+

⌈

p− 2

2

⌉

+

⌈

p− 1

2

⌉

codeword.
Then, if p is even, then M−

2 (Pn) ≥ 3p
2 + 2. Else,

M−

2 (Pn) ≥ 3(p+1)
2 .

0 1 4 65 92 3 7 8

Fig. 4 – A 2-identifying in an oriented path having n = 3 ×
3 + 1 vertices (p = 3, q = 1)

To conclude, we exhibit a code reaching these bound.
Indeed, we remark that for the code C = {i|i is even}∪{0, 1}
the bound is attained (see f gure 4).

Finally, the proof for the last case (p ≥ 1 and q = 2)
is also similar, we have (p − 1) ECs to satisfy for the PCs
0 and 1, and we need respectivey at least ⌈p−1

2 ⌉ and ⌈p−2
2 ⌉

codewords. For the PC 2 we have (p−1) EC, since 2 ∈ C then
we have (p− 2) ECs to satisfy, then at least ⌈p−2

2 ⌉ codewords
are needed. Thus, we need at least :

4 + 2

⌈

p− 2

2

⌉

+

⌈

p− 1

2

⌉

codewords to satisfy the GC.
If p is even, then M−

2 (Pn) ≥ 3p
2 + 2. If p is odd, then

M−

2 (Pn) ≥ 3(p+1)
2 . To conclude, we just consider the same

construction as the previous cases to exhibit a 2-identifying
code reaching the bound.

0 1 4 65 92 3 7 8 10

Fig. 5 – An Example of 2-identifying code in an oriented
path with 3× 3 + 2 = 11 vertices (p = 3, q = 2)

III. IDENTIFYING CODE IN CIRCUITS

In circuits we give an optimal 2-identifying code.

A. 2-Identifying Code

In the case of circuit, the two conditions of the lemma 2
are still valid. Then:

Lemma 3: Let Cn = {1, 2, . . . , n, 1} a circuit of length n.
C is a 2-identifying code for Cn if and only if the following
conditions are satisf ed:

1) For all group of three consecutive vertices xi, xi+1

and xi+2 at least one of them is a codeword,
2) For all group of four consecutive vertices

xi, . . . , xi+3 we could not have xi /∈ C and
xi+3 /∈ C.

Proof: The proof is similar to lemma 2. Except adding the
condition that the distance between i and j isn’t greater than
that between j and i to show the suff ciency and the necessity
of the conditions (1) and (2).

In the case of circuit, Although the reasoning is similar as
in oriented path, there is, however, some differences. Thus, we
def ne a partial constraint i (i ∈ {1, 2, 3}) as follow:

i∨i+1×3, i+1×3∨i+2×3, . . . , i+(si−1)×3∨i+si×3, i+si×3∨hi

where si is the greatest integer such:

i+ si × 3 ≤ n

and hi is such that i + (si + 1) × 3 ≡ hi( mod [n]), (ie
hi ∈ {1, 2, 3}).

Example 2: Let Cn = {1, 2, . . . , n, 1} be a circuit of length
n. Suppose that n = 10, thus p = 3 and q = 1. Then the PCs,
1,2 et 3, can be written as follows:

1 ∨ 4, 4 ∨ 7, 7 ∨ 10, 10 ∨ 3, (i = 1)
2 ∨ 5, 5 ∨ 8, 8 ∨ 1 (i = 2)
3 ∨ 6, 6 ∨ 9, 9 ∨ 2 (i = 3)

denoting by i|j the elementary constraint i ∨ j. Then the GC
is written:

1|4|7|10|3|6|9|2|5|8|1
If, for example, n = 12, then the GC will be:

1|4|7|10|1, 2|5|8|11|2, 3|6|9|12|3

Thus, we have determined the optimal 2-identifying code.
The result is given by the following theorem:

Theorem 3: Let Cn be a circuit of length n. Then:

M−

2 (Cn) =















∅ if n ≤ 3, (1)

3 if n = 4, (2)

k if n = 2k, k ≥ 3, (3)

k + 1 if n = 2k + 1, k ≥ 2, (4)

Proof: For (1), it is clear that, if n ≤ 3, then Cn can’t
admit a 2-identifying code because there are twin vertices2.

2We call twin vertices every two vertices u, v such that Γ−

r (u) = Γ−

r (v)
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For (2), we show that there is no 2-identifying code of
cardinality 2 in a circuit of length 4. Indeed, suppose
that there are only two vertices as codeword. Without
loss of generality, let 1 and 3 be these vertices, then
I−2 (1) = I−2 (3) = {1, 3}. Therefore at least three vertices
must belong to a code. Finally, it suff ces to exhibit a code
with cardinality 3 to conclude (see f gure 6).

Fig. 6 – Exemple de code 2-identifiant dans C4

Concerning (3), ie the case where the length of the circuit
is even (n = 2k), we know that there is n

2 = k ECs to satisfy,
therefore we need at least k codewords.
It suff ces to exhibit a 2-identifying code of cardinality k
to conclude. Thus, we can take as a code the set C =
{i|i even, 1 ≤ i ≤ n} (see the f gure 7) hence the result.

1
2

3

4

5

6

7
8

9

10

11

12

Fig. 7 – An example of 2-identifying code in circuit of length
12. Six codewords are needed to cover and sepa-
rate all the vertices of the circuit.

Similarly to the previous case, when n = 2k+1 (n is odd)
we need at least k + 1 codewords to satisfy all the ECs.
Thus, there is at least one EC which has its vertices belong
to the code. We want to show that |C| > k + 1. To do it, we
suppose that we can f nd a 2-identifying code C of cardinality
k + 1 in a circuit of length n, and we get to a contradiction.
Since we have k + 1 vertices as codewords, then necessarily
two codewords are adjacent. Without loss of generality, let 1
and 2 these two vertices, or one of the two vertices n and 3
must be a codeword by the condition (2) of lemma 3. Thus,
for every 2-identifying code at least three consecutive vertices
are codewords.
Now, there are two cases:

Case 1: Suppose that the length of the circuit is equal to
n = 4p + 3 (k = 2p + 1). Since at least three
consecutive vertices are codewords ( as mentioned
previously), then we need to cover and separate 4p
vertices. But by conditions (1) and (2) of lemma 3,
we know that for every four consecutive vertices,
at least two of them are codewords. Thus, we
need at least 2p vertices as codeword, therefore
2p+3 = k+2 vertices belong to a code (see the
example of the f gure 8). Hence the contradiction.

Fig. 8 – An example of optimal 2-identifying code of cardi-
nality 2× 2 + 3 in circuit of length 4× 2 + 3

Case 2: In this case, we have n = 4p + 1 (k = 2p).
Observing this case, we see that it’s similar to
the f rst one. We have n = 4p+ 1 = [4(p− 1) +
3] + 2 (k = 2p). Thus, 2(p − 1) + 3 = k + 1
vertices are codewords among the 4(p − 1) + 3
vertices that a circuit contains (by condition (2)
of lemma 3) adding the three consecutive vertices
belong to the code.

1
2

n
n-1

n-2

n-3

n-4

n-5

1
2

n
n-1

n-2

n-3

n-4

n-5

Fig. 9 – An example of two optimal 2-identifying code

In the case where the remaining two vertices don’t
belong to the code, saying, without loss of gener-
ality, n− 1 and n− 2, then necessarely the three
vertices n− 3,n− 4 and n− 5 belong to the code
(see the left representation in f gure 9). Thereby,
we have 4(p − 2) vertices that are couvered and
separated by 2(p− 2) codewords plus n− 3,n− 4
et n−5 and the three consecutive vertices. In total
there is 2(p−2)+6 = 2p+2 = k+2 codewords.
If, either n− 1 or n− 2 belong to the code then,
we will need 2(p − 1) codewords for covering
and separating the 4(p − 1) vertices (conditions
of lemma 3) adding the three consecutive vertices
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(see the left representation in f gure 9). Thus, in
total, we will have 1+2(p−1)+3 = 2p+2 = k+2
codewords.

Therefore, in the two cases, we will have at least k + 2
codewords.
We conclude by exhibiting a 2-identifying code reaching this
bound. The latter, constituted of the set of vertices C =
{2} ∪ {i ≡ 1[2], 1 ≤ i ≤ n}.

IV. CONCLUSION

In this work we gave some results about identifying code
in oriented paths and circuits. It remains to determine the
minimum cardinality for the case of a 1-identifying code in
circuit. In addition, the question of the general case, ie r-
identifying code is also an open problem.
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