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Abstract—In this article We establish moment inequality of
dependent random variables, furthermore some theorems of strong law
of large numbers and complete convergence for sequences of
dependent random variables. In particular, independent and identically
distributed Marcinkiewicz Law of large numbers are generalized to the

case of mo -dependent sequences..
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[. INTRODUCTION

et X,,X,, -, denote a sequence of random varibles

Ldeﬁned on a fixed probability space (€2,F,P) .The partial
sums of the random variables are

S, = Z:’Zl,\’i,for nx1and § =0,

Spu=2 XSG )= X, 1<i< ).

Definition 1.1 (cf. Fazekas and Klesov, 2000, p. 447)[1]. A

sequence of random variables {X  » >1} is said to have the

rth (7>0) moment function of superadditive structure if there

exists a non-negative function g(j, j) of two arguments such
that for all »>0 and 1<k<k+/

gb,k)+gb+k, < gbk+1)
E|[S,, "< g%(b,n),n>1forsome o >1.

)
2)
Definition 1.2. Let X be a real-valued random variable, we
call a Locally Generalized Gaussian, If there exists ¢ > 0 ,such
that
E(exp(uX)|F)<exp(u’a’/2)
for any u € R.
Definition 1.3. Given p>0, a sequence of real-valued random
variables {X ,n>1} is called a Lacunary System or an S,

)

a.s.

system, if there exists a positive constant K, such that
BISLCX K, (5 Ch"
for any sequence of real constant C; and all n>m.

Definition 1.4 The random variables X, X,,---, X, are
said to be negatively associated if for every n and every pair of
disjoint subsets 4, 4, of {1,2,...,n}

Cov(f(X,,i€ 4)), fZ(Xij €4,) <0,

Whenever f, and f, are coordinatewise increasing and this

covariance exists.
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Definition 1.5 A stationary sequence {X } is called m,
-dependent for a given fixed m, if (X, X,,---,X,) and
(X, X

J+12 :

Lemma 1.1 (Dini Theorem, Fikhtengolts, 1954, p. 286)[2].

©

-+,) are independent whenever j—i > m,.

Let ¢,,c,, - be non-negative numbers, y = Zk:n c,,if

©

4)

0<v, <o for n>1,then
Z c—’;<oo,0<§<l.

Lemma 1.2 (cf. Hu, 2005,Theorem 2.1.)[3] We assume that
{X,,n>1} has the rth moment function of superadditive

n=l1

structure, g(0,n)=g, and g non-decreases, {p } is a
non-decreasing unbounded sequence of positive numbers and

a a
© g, ~8u <o then
P s

n=1 b
lim 5, =0 a.s., (%)
n—o bn
and with the growth rate
i=O(ﬁ”) a.s., (6)
bl‘l bl‘l
where 5 _ sir _ o ap .. B,
P =t b0 <8 <Ly, =n3 [ Julimfr =0,
Lemma 1.3 (Hu, 2005,Lemmal.2)[3] Let b,b,,--- be a

non-decreasing unbounded sequence of positive numbers and
a,,a,,--- be nonnegative numbers. Let » and C be fixed

positive numbers. Assume that for each n>1
E(max [S, )" < Cy
n a[

Zl:l b/r

then (5) and (6) hold .
Lemma 1.4 (Yang, 2000, Corollary 3, Yang, 2001; Shao,

2000)[4][6][7]. Let X, X,,---

random variables with zero means and £ | X, | < oo, where 7>1.

(N
(®)

< 00.

be negatively associated

Then there exists a positive constant C, which does not depend
on n, such that

Y < n , <
E(ll’rél?g‘sk‘)_czl':lE|Xj‘a 1<r<2

E(max | S, ") < C[Zj_:lE | X, |+ (Z’j’_:] EX3)'? r>2
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In this paper, we assume that C,C,,--- are some positive

constants (not necessarily always the same) independent of n.

II. MAIN RESULTS
Theorem 2.1 Assume that {(X,,n>1} be a Lacunary

System, exists a positive constant K, and p>2 , such that
sup E | X, P < o0 ,then for every § >0,
5, =0 a.s )

()

lim -

>= [ (log n)"'? (log log n)"*'?
and for p, =~/n(log n)""? (log log n)™**'? . n > n,,
a,=K,n"?-K, (n-1)"?, p = max bv'",0<5 <1,

S (10)

—£ = O(&) a.s.,lim by =0.
b b n—» ph

Proof From definition 1.3 ,for any sequence of real constant

G

n n n

b+n b+n 2 /2
E|z CiXi |pSKP(Zi:b+1Cf)p ’
in particularly where C, =1,we have
EIY" CX,|’=E|S,, I"<K,n"",

In Definition 1.1 take ¢ = o(h,n) = Kf)/”n,a = g,then

g(b,k)= Kf,/”k,g(b +k,l)= Kf)/"l )
gb,k)+gb+k,D) :Kf)/”(k +0)<gb,k+1),
E|S,,["<K,n"?*=g"*(b,n),n>1,p>2,
we know that { X n>1} has the pth moment function of
superadditive structure, and
pl2 pl2 K (nl’/z_(n_

zw g T & :zw )
n=n, b[) = p/2

! "= p?'*(log n)(log log n)
1
<C
Z” ™ n(log n)(log log n)”‘y
thus (9) follows from Lemmal.2.
We assume that ¢ > 0 for infinitely many n. By (8) and

")

1+

Lemma 1.3, we know that Z < o0, -t is easy to see that

n= lb’”vé

0< B, <B,,, fork=land

o O EY
Y g S Y <
n= r n 7(
ﬂﬂ ﬁn”

p,  max byl max b Vv max by
1<I<k ky<I<k 1<i<k 5
k < 1 + < 1 + VZ/r ,

E b k bk bk

from (8) and Jim b, = 0, We get |jm Lo B _ =0, Eq. (7) and

n—o0 n—0 b

Theorem 1.1 of F azekas and Klesov (2000) imply that

E(max \

1<i< ) < 4CZ! lﬂl ZI lﬂ] «©,

hence by monotone convergence theorem, we have
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)" —hmE(max \—|) <4C < oo,
nx1 ﬁn ﬂ Zn lﬂn
so that sup| 1< o0 » &5, and
nz1 n
OS\&Kﬂ sup | ” |_Oﬂ a.s.,
ﬁn bn nzl ﬁ n

this completes the proof.

Remark 1 Theorem 2.1 improve result of Ryozo,
Y.( Corollary 2) [8], and from strictly stationary strong
mixing sequence to S, system.

Theorem 2.2 Let(X ,F, ) be a Locally Generalized

Gaussian sequence, if sup X =k < oo, then for any r>2

Zi:aJrlE | CiXi |r < K’, (Zi:aH
Furthermore (9) and (10) hold
Proof Let A, Z‘M

CiZ)}‘/Z’ (11)

,u=x/k>A,.by lemma 1 in [9],

then

E(exp(uy. ™" C,X,))=E(exp(uS,)) < exp(u’k’4,/2),
where S = Z:_'::H C, X, for r>2, by Chebyshev's inequality,
we get

a+n
EIY
i=a+1

< 2rj0

CX, | _rj x'P(S, [> x)dx
x " exp(—x*/2k*A,)dx
:2”%*/1;’2[ x> exp(—x)dx

=K, (. CD"

where g - Zr/zrer‘O x"* " exp( —x)dx.

Therefore, Locally Generalized Gaussian sequence is a
Lacunary system, by Theorem 2.1, (9) and (10) hold.
Theorem 2.3 Let {X  »n >1} be a NA sequence, satisfying

sup | X, |”< oo »thenforany 0<p<2, gp>1,p/2<6 <1,
x>0,

D nUIPYS, 2 xn” ) < oo,
where § = Z_"ﬁl X,.

Proof From lemma 1.3, when C, =1 ,we have

(12)

E| z::;le ‘ps Kpnp 2’
By Markov's inequality we get

0 7(] 5) o0
D nTEIPYS, <y
ap—(1+6) _p/2
-p o N n
< pr Zn:l xp n ap

1
< PN -
—pr anl PRI <

Theorem 2.4 Let { X =1y be a m 0 dependent sequence

napf(Hé‘)E | S |p

xPn%
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with zero mean, if gyp | X | < oo,then for any 1<r<2,

n

=0, as., (13)
n
where § = '_“71Xl_‘
Proof forevery ¢=0,1,2,---,m, “LAX o b = 1,2,
be a independent sequence, and
n my—1
Z/ m C X Z Z t+m+mnk t+m+mok s
by C, inequality ,we get
n my—1
E(| z C X ‘ <m z E(z l+m+m0k [+m+m0k)
my—1
- m() z z t+m+mnkE(Xt+m+m0k )

=mon),  CIE(X,)’

n 2
<kmyp,  C1,
{X,,n>1} bea §, system, by Jensen's inequality , for 1<r<2,
EQY,CX, I <CX), ™,
in particular,when C,=1,we obtaned £ | S, I"'sCn 'z,
In Definition 1.1 take
,=gbn) =K "na
then
gb,ky=K*"k,gb+k,)=K""1,
g y+gb+k,D)=K*"(k+)<g(b,k+1),
E|S,, I'< Kn"*=g"*(b,n),n>11<r<2,
we know that {X  »n>1} has the pth moment function of

superadditive structure, and
rl2 rl2

" &, b_:g}H :Z

< Cz::] nr/2—] B CZ

thus (13) follows from Lemmal.z.
Remark 2 This result extends independent and identically
distributed Marcinkiewicz Law of large numbers for m,

» K" =(n-

n=1

l)r/Z)

©

n

2 r/2 0,

-dependent sequences.
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