
Abstract—We consider the algebraic affine and projective
curves of Edwards over the finite field Fpn . It is well known that
many modern cryptosystems can be naturally transformed into
elliptic curves. In this paper, we extend our previous research
into those Edwards algebraic curves over a finite field. We
propose a novel effective method of point counting for both
Edwards and elliptic curves. In addition to finding a specific
set of coefficients with corresponding field characteristics for
which these curves are supersingular, we also find a general
formula by which one can determine whether or not a curve
Ed[Fp] is supersingular over this field. The method proposed
has complexity O

(
p log22 p

)
. This is an improvement over both

Schoof’s basic algorithm and the variant which makes use of fast
arithmetic (suitable for only the Elkis or Atkin primes numbers)
with complexities O(log82 p

n) and O(log42 p
n) respectively. The

embedding degree of the supersingular curve of Edwards over
Fpn in a finite field is additionally investigated. Due existing
the birational isomorphism between twisted Edwards curve and
elliptic curve in Weierstrass normal form the result about order
of curve over finite field is extended on cubic in Weierstrass
normal form.

Keywords: finite field, elliptic curve, Edwards curve, group of
points of an elliptic curve

I. INTRODUCTION

In order to construct a cryptosystem based on an ellip-
tic curve, we need to firstly analyze the order of a group
of elliptic curve (EC) points. We provides an approach to
construct Edwards curves of determined order, which are
important within the cryptography and coding theory domains.
It should be noted that it was accepted in 1999 as an ANSI
standard and in 2000 as an IEEE and NIST standard. One
of the fundamental problems in EC cryptography regards the
generation of cryptographically secure ECs over prime fields,
suitable for use in various cryptographic applications. Because
supersingular elliptic curves are vulnerable to pairing-based
attacks, we find a criterion for Edwards curve supersingularity
[11]. The method of finding the order of an algebraic curve
over a finite field Fpn is of huge interest currently and is
at the center of many mathematical studies connected with
the use of groups of points of curves of genus 1. In this
article, this critical problem is solved. All proofs and analytical
results belong to Skuratovskii R. and computational examples,
confirming statements, are made by other authors.

Our algorithm has improved complexity for algebraic ex-
tensions with a large degree over finite fields. This is be-
cause upon choosing sufficiently large values n, we ob-

tain O(log82 p
n), which has a much larger complexity than

O
(
p log22 p

)
for some fixed p.

II. MATERIALS AND METHODS

The method of finding the order of an algebraic curve over
a finite field Fpn is clearly related with constructing curves of
a given order. We propose a method for counting points from
Edwards and elliptic curves in direct response to a paper by
Schoof [9]. To calculate the sum of the squares of binomial
coefficients in a finite modulus, we make use of the recursive
calculation of the factorial by multiplication. The method
we propose has improved complexity over both Schoof’s
basic algorithm and the variant which makes use of fast
arithmetic (suitable only for Elkis or Atkin primes numbers)
with complexities O(log82 p

n) and O(log42 p
n) respectively.

In particular, our method yields a vastly improved complex-
ity for algebraic extensions with large degree n of finite fields.
This occurs because when choosing sufficiently large values
n, Schoof’s algroithm has complexity O(log82 p

n) [9], which
clearly is much larger than O

(
p log22 p

)
for fixed p.

Let d denote some large number. The method of Karatsuba
multiplication is used to calculate all the values dj(mod p).
In this task, it is optimally applying recursive multiplication
dj−1 upon d and for this we utilise the Karatsuba multiplica-
tion method, which requires O(log

log23
2 p), rather than apply

the Barrett method of modular multiplication. The complexity
of computing the entire tuple of degrees dj , j = 1, . . . , n is
therefore O(p−1

2 log
log23
2 p).

III. REVIEW OF PREVIOUS RESULTS

It is known that the theoretical results of S. Stepanov [14]
and P. Deligne provide both upper and lower bounds for the
number of curve points, that is pn + 1 − ωn

1 − ωn
2 [23]. The

complexity of the fastest algorithms known are Schoof’s basic
algorithm [9], which yields O(log82 p

n), as well as a variant
that makes use of fast arithmetic (suitable only for Elkis or
Atkin primes), which has complexity O(log42 p

n). Our method
is faster than the approach to order curve determination by
counting of a longest chain of points using dividing of a point
on 2 [21].
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IV. SYSTEMATIC ALGEBRAIC ANALYSIS OF THE CURVE
AND CURVE ORDER CALCULATION METHOD

The twisted Edwards curve with coefficients a, d ∈ Fp
∗, is

the curve Ea,d :

ax2 + y2 = 1 + dx2y2,

where ad(a − d) ̸= 0, d ̸= 1, p ̸= 2 and a ̸= d. It should
be noted that a twisted Edwards curve is simply called an
Edwards curve when a = 1. By Ed, we denote the Edwards
curve with coefficient d ∈ Fp

∗ defined as

x2 + y2 = 1 + dx2y2,

over Fp. The projective curve has the form

F (x, y, z) = ax2z2 + y2z2 = z4 + dx2y2.

The special points are the infinitely distant points (1, 0, 0)
and (0, 1, 0) and we find its singularities at infinity in the
corresponding affine components A1 := az2+y2z2 = z4+dy2

and A2 := ax2z2 + z2 = z4 + dx2. These are entitled the
simple singularities.

We describe the structure of the local ring at the point
p1, whose elements are quotients of functions with the form
F (x, y, z) = f(x,y,z)

g(x,y,z) , where the denominator cannot take
value 0 at the singular point p1. In particular, it should be
noted that a local ring with two singularities consists of
those functions with denominators which are not divisible by
(x− 1)(y − 1).

We denote by δp = dim
Op

Op
, where Op denotes the local

ring at the singular point p generated by the relations of regular
functions

Op =

{
f

g
: (g, (x− 1)(y − 1)) = 1

}
and Op denotes the whole closure of the local ring at the
singular point p.

We find that δp = 1 is the dimension of the factor as a
vector space because the basis of extension Op

Op
consists of

just one element at each distinct point. We then calculate the
genus of the curve according to Fulton [4], namely

ρ∗(C) = ρα(C)−
∑
p∈E

δp =
(n− 1)(n− 2)

2
−
∑
p∈E

δp

ρ∗(C) = 3− 2 = 1,

where ρα(C) denotes the arithmetic genus of the curve C
with parameter n = deg(C) = 4. It should be noted for
completeness that the supersingular points were discovered in
[11]. Recall that the curve has a genus of 1 and in consequence,
it is known to be isomorphic to a flat cubic curve. Despite this,
the curve is importantly not elliptic because of its singularity
in the projective part.

Both the Edwards curve and the twisted Edwards curve are
isomorphic to some affine part of the elliptic curve.

Koblitz [4], [6] tells us that one can detect if a curve is
supersingular using the search for the curve when that curve
has the same number of points as its torsion curve. In addition,
an elliptic curve E over Fq is called supersingular if for every
finite extension Fqr , there are no points in the group E(Fqr )
of order p [18]. It is known [1] that the transition from an
Edwards curve to the related torsion curve is determined by
the reflection (x, y) 7→ (x, y) =

(
x, 1y

)
.

We now recall an important result from Vinogradov [15]
which will act as criterion for supersingularity.

Lemma 1: Let k ∈ N and p ∈ P. Then

p−1∑
k=1

kn ≡
{

0 (mod p), n ̸ |(p− 1),
−1 (mod p), n|(p− 1),

where n|(p− 1) means that n is divisible by p− 1.

The order of a curve is precisely the number of its affine
points with a neutral element, where the group operation is
well defined.

We will now strengthen an existing result given in [11]–
[14], [22]. Let Nd[p] denote the number of points with a
neutral element of an affine Edwards curve over the finite
field Fp and let Nd[p] denote the number of points on the
projective curve over the same field.

Theorem 1: If p ≡ 3(mod 4) is prime and
p−1
2∑

j=0

(Cj
p−1
2

)
2
dj ≡ 0(mod p), (1)

is true, then the orders of the curves x2+y2 = 1+dx2y2 and
x2 + y2 = 1 + d−1x2y2 over Fp are equal to

Nd[p] = p+ 1,

if
(

d
p

)
= −1, and

Nd[p] = p− 3,

if
(

d
p

)
= 1.

Proof : Consider the Edwards curve Ed, namely

x2 + y2 = 1 + dx2y2. (2)

We transform (2) into the form y2(1 − dx2y2) = 1 − x2

and then we express y2 by applying a rational transformation,
which leads to y2 = 1−x2

1−dx2y2 . For technical reasons, we
transform this into the curve

y2 = (x2 − 1)(dx2 − 1). (3)

Let Md[p] denote the number of points from an affine Ed-
wards curve over the finite field Fp. The curve (3) has precisely
Md[p] = Nd[p] +

(
d
p

)
+ 1 points. This is exactly

(
d
p

)
+ 1

greater than the number of points of Ed, where
(

d
p

)
denote
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the Legendre Symbol. Let a0, a1, . . . , a2p−2 be the coefficients
of the polynomial a0 + a1x + · · · + a2p−2x

2p−2, which was

obtained from (x2 − 1)
p−1
2 (dx2 − 1)

p−1
2 after opening the

brackets.
Upon summing over all x, we yield that

Md[p] =

p−1∑
x=0

1 + ((x2 − 1)(dx2 − 1))
p−1
2 =

= p+

p−1∑
x=0

(x2 − 1)
p−1
2 (dx2 − 1)

p−1
2 ≡

≡
∑p−1

x=0
(x2 − 1)

p−1
2 (dx2 − 1)

p−1
2 (mod p).

By opening the brackets in (x2 − 1)
p−1
2 (dx2 − 1)

p−1
2 , we

have that a2p−2 = (−1)
p−1
2 · d

p−1
2 ≡

(
d
p

)
(mod p). In light

of Lemma IV, we have

Md[p] ≡ −
(
d

p

)
− ap−1(mod p). (4)

Recall that we need to prove that Md[p] ≡ 1(mod p) if
p ≡ 3(mod 8) and Md[p] ≡ −1(mod p) if p ≡ 7(mod 8).
Therefore, we have to show that Md[p] ≡ −(dp )− ap−1(mod

p) for p ≡ 3(mod 4) if
p−1
2∑

j=0

(Cj
p−1
2

)
2
dj ≡ 0(mod p). It

should be noted that if we prove that ap−1 ≡ 0(mod p),
then the result will follow from (3). We now determine ap−1

using Newton’s binomial formula. In particular, the coefficient
of xp−1 in the polynomial, namely ap−1, is obtained from

the product (x2 − 1)
p−1
2 (dx2 − 1)

p−1
2 . Therefore, ap−1 =

(−1)
p−1
2

p−1
2∑

j=0

dj(Cj
p−1
2

)
2
. Instead of this equality, we notice

that the following equality holds:

p−1
2∑

j=0

dj(C
p−1
2 −j

p−1
2

)(−1)
p−1
2 −( p−1

2 −j) · dj(Cj
p−1
2

)
2
(−1)

p−1
2 −j

= (−1)
p−1
2

p−1
2∑

j=0

djC
p−1
2 −j

p−1
2

· Cj
p−1
2

=(−1)
p−1
2

p−1
2∑

j=0

dj(Cj
p−1
2

)
2
.

Noting that ap−1 = −
p−1
2∑

j=0

(Cj
p−1
2

)
2
dj means that the exact

number of affine points on a non-supersingular curve is

Md[p] ≡ −a2p−2−ap−1 ≡ −
(
d

p

)
+

p−1
2∑

j=0

(Cj
p−1
2

)
2
dj( mod p).

(5)
In accordance with the condition of this theorem, we

have ap−1 = 0 and therefore Md[p] ≡ −a2p−2(mod p). In

consequence, if p is a prime such that p ≡ 3(mod 4) and
p−1
2∑

j=0

(Cj
p−1
2

)
2
dj ≡ 0(mod p) holds, then the curve Ed has

Nd[p] = p−
(
d

p

)
−
((d

p

)
+ 1
)
= p− 1− 2

(
d

p

)
affine points and a group of points of the curve completed by
singular points has p+ 1 points.

The exact number of the points yields an upper bound of
2p+ 1 since each x ̸= 0 corresponds two values of y, while,
for x = 0, we have only that y = 0. Taking into account that
x ∈ Fp, we have exactly p values of x. In addition, there
are 4 pairs (±1, 0) and (0,±1), which are points of Ed, thus
Nd[p] > 1. In consequence, Nd[p] = p + 1, which completes
the proof.

Corollary 1: The orders of the curves x2+ y2 = 1+dx2y2

and x2 + y2 = 1 + d−1x2y2 over Fp are equal to

Nd[p] = p+ 1 = Nd[p],

if (dp ) = −1, and

Nd[p] = p− 3 = Nd[p] − 4,

if (dp ) = 1, if and only if p is a prime with p ≡ 3(mod 4)
and

p−1
2∑

j=0

(Cj
p−1
2

)
2
dj ≡ 0(mod p).

Theorem 2: If the coefficient d = 2 or d = 2−1 and p ≡
3(mod 4), then

p−1
2∑

j=0

dj(Cj
p−1
d

)
2
≡ 0 (mod p) and Nd[p] = p+ 1.

P roof : When p ≡ 3(mod4), we firstly

shall show that
p−1
2∑

j=0

dj(Cj
p−1
d

)
2
≡ 0 (mod p). We

multiply each binomial coefficient in this sum by
(p−1

2 )! to obtain after some algebraic manipulation

(p−1
2 )!Cj

p−1
2

=
( p−1

2 )( p−1
2 −1)···( p−1

2 −j+1)( p−1
2 )!

1·2···j =

= (p−1
2 )(p−1

2 −1) · · · (p−1
2 −j+1)[(p−1

2 )(p−1
2 −1) · · · (j+1)].

After applying the congruence (p−1
2 − k)

2 ≡
(p−1

2 + 1 + k)
2
( mod p) with 0 ≤ k ≤ p−1

2 to the multipliers
in previous parentheses, we obtain [(p−1

2 )(p−1
2 −1) · · · (j+1)].

It yields(p− 1

2

)(p− 1

2
− 1
)
· · ·
(p− 1

2
− j + 1

)[(p− 1

2
+ 1
)
· · ·

· · ·
(p− 1

2
+
p− 1

2
− j
)]

(−1)
p−1
2 −j

.

Thus, as a result of squaring, we have:((p− 1

2

)
!Cj

p−1
2

)2
≡
(p− 1

2
− j + 1

)2
· (6)
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·
(p− 1

2
− j + 2

)2
· · ·
(
p− j − 1

)2
(mod p)

It remains to prove that
p−1
2∑

j=0

(Cj
p−1
2

)
2
2j ≡ 0(mod p),

if p ≡ 3(mod 4).
Consider the auxillary polynomial

P (t) = (
p− 1

2
!)
2∑ p−1

2

j=0
(Cj

p−1
2

)
2
tj .

We are going to show that P (2) = 0 and therefore
ap−1 ≡ 0(modp). Using (6) it can be shown that

ap−1 = P (t) = (p−1
2 !)

2∑ p−1
2

j=0 (Cj
p−1
2

)
2
tj ≡∑ p−1

2
j=0 (k + 1)2(k + 2)2 · · · (p−1

2 + k)2tk(mod p) over Fp.

We replace d by t in (1) such that we can research
a more generalised problem. It should be noted
that P (t) = ∂

p−1
2

(
∂

p−1
2

(
Q(t) t

p−1
2

)
t
p−1
2

)
over

Fp, where Q(t) = tp−1 + · · · + t + 1 and ∂
p−1
2

denotes the p−1
2 -th derivative by t, where t is new

variable but not a coordinate of curve. Observe that
Q(t) = tp−1

t−1 ≡ (t−1)p

t−1 ≡ (t− 1)
p−1

(mod p) and therefore
the following equality

P (t) =
((

(t− 1)
p−1

t
p−1
2

)( p−1
2 )
t
p−1
2

)( p−1
2 )

holds over Fp.
In order to simplify notation we let θ = t− 1 and R(θ) =

P (θ + 1). For the case t = 2 we have θ = 1. Performing this
substitution leads the polynomial P (t) of 2 to the polynomial
R(t − 1) of 1. Taking into account the linear nature of the
substitution θ = t − 1, it can be seen that that derivation by
θ and t coincide. Derivation leads us to the transformation of
polynomial R(θ) to form where it has the necessary coefficient
ap−1. Then

R(θ) = P (θ + 1) =

= ∂
p−1
2

(
∂

p−1
2

(
θp−1(θ + 1)

p−1
2
)
(θ + 1)

p−1
2

)
=

= ∂
p−1
2

(
(p−1)!

((p−1)/2)!θ
p−1
2 (θ + 1)

p−1
2

)
.

In order to prove that ap−1 ≡ 0(mod p), it is now suffi-
cient to s how that R(θ) = 0 if θ = 1 over Fp. We obtain

R(1) = (p−1)!

( p−1
2 )!

∑ p−1
2

j=0 C
j
p−1
2

(j + 1) · · · (j + p−1
2 ). (7)

We now will manipulate with the expression (p−1
2 − j +

1)(p−1
2 − j+2) · · · (p−1

2 − j+ p−1
2 ). In order to illustrate the

simplification we now consider the scenario when p = 11 and
hence p−1

2 = 5. The expression gets the form (5−j+1)(5−j+
2) · · · (5−j+5) = (6−j)(7−j) · · · (10−j) ≡

(
(−5−j)(−4−

j) · · · (−1−j)
)
≡ (−1)5

(
(j+1)(j+2) · · · (j+5)

)
( mod 11).

Therefore, for a prime p, we can rewrite the expression as
(p−1

2 −j+1)(p−1
2 −j+2) · · · (p−1

2 −j+ p−1
2 ) ≡ (−1)

p−1
2 (j+

1) · · · (j + p−1
2 ) ≡ −1(j + 1) · · · (j + p−1

2 )(mod p).

As a result, the symmetrical terms in (7) can be re-
duced yielding ap−1 ≡ 0(mod p). It should be noted that
(−1)

p−1
2 = −1 since p =Mk+3 and p−1

2 = 2k+1. Conse-
quently, we have P (2) = R(1) = 0 and hence ap−1 ≡ 0( mod

p) as required. Thus,
∑ p−1

2
j=0 (Cj

p−1
2

)
2
≡ 0(mod p), complet-

ing the proof of the theorem.
Corollary 2: The curve Ed is supersingular iff Ed−1 is

supersingular.
Proof : Let us recall the proved fact in Theorem IV that

Nd[p] ≡ −a2p−2 − ap−1 ≡ −
(

d
p

)
+

p−1
2∑

j=0

(Cj
p−1
2

)
2
dj(mod p).

Since (Cj
p−1
2

)
2
dj ≡ 0(mod p) by condition, and the congru-

ence (dp ) ≡ (d
−1

p ) holds, then Nd[p] ≡ Nd−1[p].
Now we estimate the number of points on the curve (3). Let

Md[p] denote the number of solutions to equation (3) over the
field Fp. It should be observed that for x = 1 and x = −1, the
right side of (3) is equal to 0. Due to this the number Md[p]

can therefore be bounded by

2 ≤Md[p] ≤ 2p− 2, (8)

where if ap−1 ≡ 0(mod p) we have Nd[p] ≡ −
(
d
p

)
(mod p).

Note that the number of solutions is bounded by Nd[p] ≤ 2p−2
because if x = 1 and x = −1 we only have one value of
y, namely y = 0. For different values of x, we will have
no more than two solutions for y because the equation (3)
is quadratic relative to y. Thus, the only possible number is
Md[p] ≡ p−

(
d
p

)
(mod p).

Corollary 3: If p ≡ 3(mod 4), is prime then there exists

some T such that T ≡
p−1
2∑

j=0

(Cj
p−1
2

)
2
dj ≤ 2

√
q and Nd[p] =

p− 1− 2
(

d
p

)
+ T .

Proof : Due to equality (5) and the bounds (8) as well as
according to generalized Hasse-Weil theorem |Nd[p] − (p +

1) − 2
(

d
p

)
| ≤ 2g

√
p, where g is genus of curve, we obtain

exact number Nd[p]. As we showed, g = 1. From Theorem

IV as well as from Corollary 2 we get, that
p−1
2∑

j=0

(Cj
p−1
2

)
2
dj ≡

−Nd[p] − (p + 1) − 2
(

d
p

)
so there exists T ∈ Z, such that

T < 2
√
p and Nd[p] = p− 1− 2

(
d
p

)
+ T .

Example1: If p = 13, d = 2 gives N2[13] = 8 and p = 13,
d−1 = 7 gives that the number of points of E7 is N7[13] =
20. Moreover, if p ≡ 7(mod 8), then the order of torsion
subgroup of curve is N2 = N2−1 = p − 3, which is clearly
different to p+ 1.

For instance p = 31, then N2[31] = N2−1[31] = 28 =
31 − 3, which is clearly not equal to p + 1. If p = 7, d =
2−1 ≡ (4 mod 7) then the curve E2−1 has four points,
namely (0, 1); (0, 6); (1, 0); (6, 0), and the in case p = 7
with d = 2(mod 7), the curve E2−1 also has four points:
(0, 1); (0, 6); (1, 0); (6, 0), demonstrating the order in this sce-
nario is p− 3.
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The following theorem shows that the total number of affine
points upon the Edwards curves Ed and Ed−1 are equal under
certain assumptions. This theorem additionally provides us
with a formula for enumerating the number of affine points
upon the birationally isomorphic Montgomery curve NM .

Theorem 3: Let d satisfy the condition of supersingularity
(1). If n ≡ 1(mod 2) and p is prime, then

Nd[pn] = pn + 1,

and the order of curve is equal to

Nd[pn] = pn − 1− 2

(
d

p

)
.

If n ≡ 0(mod 2) and p is prime, then the order of curve

Nd[pn] = pn − 3− 2(−p)n
2 ,

and the order of projective curve is equal to

Nd[pn] = pn + 1− 2(−p)n
2 .

P roof : We consider the extension of the base field Fp to
Fpn in order to determine the number of the points on the
curve x2 + y2 = 1 + dx2y2. Let P (x) denotes a polynomial
with degree m > 2 whose coefficients are from Fp. To make
the proof, we take into account that it is known [14] that the
number of solutions to y2 = P (x) over Fpn will have the
form pn + 1 − ωn

1 − · · · − ωn
m−1 where ω1, . . . , ωm−1 ∈ C,

|ωi| = p
1
2 .

In case of our supersingular curve, if n ≡ 1(mod 2) the
number of points on projective curve over Fpn is determined
by the expression pn + 1 − ωn

1 − ωn
2 , where ωn

i ∈ C and
ω1 = −ω2, |ωi| =

√
p that’s why ω1 = i

√
p, ω2 = −i√p

with i ∈ {1, 2}. In the general case, it is known [7], [14]
that |ωi| = p

1
2 . The order of the projective curve is therefore

pn + 1.
If p ≡ 7(mod 8), then it is known from a result of

Skuratovskii [11] that Ed has in its projective closure of the
curve singular points which are not affine and therefore

Nd[p] = pn − 3.

If p ≡ 3(mod 8), then there are no singular points, hence

Nd[p] = Nd[p] = pn + 1.

Consequently the number of points on the Edwards curve
depends on

(
d
p

)
and is equal to Nd[p] = pn− 3 if p ≡ 7(mod

8) and Nd[p] = pn + 1 if p ≡ 3(mod 8) where n ≡ 1(mod
2). We note that this is because the transformation of (3) in
Ed depends upon the denominator (dx2 − 1).

If n ≡ 1(mod 2) then, with respect to the sum of root of
of the characteristic equation for the Frobenius endomorphism
ωn
1 + ωn

2 , which in this case have the same signs, we obtain
that the number of points in the group of the curve is pn +
1− ωn

1 − ωn
2 [25].

For n ≡ 0(mod 2) we always have, that every d ∈ Fp is a
quadratic residue in Fpn . Consequently, because of (dp ) = 1
four singular points appear on the curve. Thus, the number

of affine points is less by 4, i.e. Nd[pn] = pn − 1 − 2
(

d
p

)
−

2(−p)n
2 = pn − 3 − 2(−p)n

2 . In more details ω1, ω2 are
eigen values of the Frobenius operator F endomorphism on
etale cohomology over the finite field Fpn , where F acts of
Hi(X). The number of points, in general case, are determined
by Lefshitz formula:

#X (Fpn) =
∑

(−1)
i
tr(Fn

∣∣Hi(X) ),

where #X (Fpn) is a number of points in the manifold X over
Fpn , Fn is composition of Frobenius operator. In our case, Ed

is considered as the manifold X over Fpn .
Lemma 2:There exists birational isomorphism of Ed with

EM and with elliptic curve in canonical Weierstrass form Ea,b,
which is determined by correspondent mappings x = 1+u

1−u ,
y = 2u

v and Velu formulas [24], over finite field Fpn .
Proof : To verify this statement in both the supersingular

case and the non-supersingular case and in also for both
values of the quadratic residue d

p we the birational equivalence
(u, v) 7→ (2u/v, (u − 1)/(u + 1)) = (x, y) between EM and
Ed. In supersingular case we suppose that the curve

x2 + y2 = 1 + dx2y2

contains p − 1 − 2
(

d
p

)
points (x, y), with coordinates over

prime field Fp.
In non-supersingular case the curve Ed has order

Nd[pn] = pn − 1− 2

(
d

p

)
.

if n ≡ 1(mod 2) and p is prime and the order of curve is
equal to If n ≡ 0(mod 2) and p is prime, then the order of
curve

Nd[pn] = pn − 3− 2(−p)n
2 .

Consider the transformation of the curve x2 + y2 = 1 +
dx2y2 into the following form y2(dx2 − 1) = x2 − 1. Make
the substitutions x = 1+u

1−u and y = 2u
v . We will call the

special points of this transformations the point in which these
transformations or inverse transformations are not determined.

As a result the equation of curve the equation of the curve
takes the form

4u2

v2
· (d− 1)u2 + 2(d+ 1)u+ (d− 1)

(1− u)
2 =

4u

(1− u)
2 .

Multiply the equation of the curve by

v2(1− u)
2

4u
.

As a result of the reduction, we obtain the equation

v2 = (d− 1)u3 + 2(d+ 1)u2 + (d− 1)u.

We analyze what new solutions appeared in the resulting
equation in comparing with y2(dx2 − 1) = x2 − 1.

First, there is an additional solution (u, v) = (0, 0). Second,
if d is a quadratic residue by modulo p, then the solutions
appear
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(u1, v1) =

(
−(d+ 1)− 2

√
d

d− 1
, 0

)
,

(u2, v2) =

(
−(d+ 1) + 2

√
d

d− 1
, 0

)
.

If
(

d
p

)
= −1 then as it was shown above the order of

Ed is equal to p + 1. Therefore, in case
(

d
p

)
= −1 order

of Ed appears one additional solution of from (u, 0) more
exact it is point with coordinates (0, 0) also two points
((−1; 0), (1; 0)) of Ed have not images on EM in result of
action of birational map on EM . Thus, in this case, number
of affine points on EM is equal to p + 1 − 2 + 1 = p. The
table of correspondence between points is the following.

Special points of EM Special points of Ed

(0, 0) -

(
−(d+1)−2

√
d

d−1
, 0) -

(
−(d+1)+2

√
d

d−1
, 0) -

(1,−2
√
d) -

(1, 2
√
d) -

- (−1, 0)
- (1, 0)

TABLE I
SPECIAL POINTS OF BIRATIONAL MAPING

If x = −1 then equality x = 1+u
1−u transforms to form −1+

u = 1 + u, or −1 = 1 that is impossible for p > 2. therefore
point (−1, 0) have not an image on EM .

Consider the case x = 1. As a result of the substitutions x =
(1+u)/(1−u), y = 2u/v we get the pair (x, y) corresponding
to the pair (u, v) for which v2 = (d − 1)u3 + 2(d + 1)u2 +
(d− 1)u.

If it occurs that y = 0, then the preimage having coordinates
u = 0 and v is not equal to 0 is suitable for the birational map
y = 2u

v which implies that u = 0 and v ̸= 0. But pair (u, v)
of such form do not satisfies the equation of obtained in result
of mapping equation of Montgomery curve v2 = (d− 1)u3+
2 (d+ 1)u2 + (d − 1)u. Therefore the corresponding point
(u, v) will not be a solution to the equation v2 = (d− 1)u3+
2(d+ 1)u2 + (d− 1)u, since there will be an element on the
left side, different from 0, and on the right will be 0. That
is a contradiction as required, therefore (x, y) = (1, 0) is the
special point having not image on EM .

If y = 0 then in equality y = 2u
v appear zeros in numerator

and denominator and transformation is not correct.
The points (−(d+1)−2

√
d

d−1 , 0), (−(d+1)+2
√
d

d−1 , 0), (1,−2
√
d),

(1, 2
√
d) exist on EM only when (dp ) = 1. These points are

elements of group which can be presented on Riemann sphere
over Fq . The points (1,−2

√
d), (1, 2

√
d) have not images on

Ed because of in denominator of transformations x = 1+u
1−u

appears zero. By the same reason points (−(d+1)−2
√
d

d−1 , 0),

(−(d+1)+2
√
d

d−1 , 0) have not an images on Ed.

If
(

d
p

)
= 1 then as it was shown above the order of Ed is

equal to p−3. Therefore order of EM is equal to p because of
5 additional solutions of equation of EM appears but 2 points
((−1; 0), (1; 0)) of Ed have not images on EM . These are
5 additional points appointed in tableau above. Also it exists
one infinitely distant point on an Montgomery curve. Thus,
the order of EM is equal p + 1 in this case as supersingular
curve has.

It should be noted that the supersingular curve Ed is
birationally equivalent to the supersingular elliptic curve which
may be presented in Montgomery form v2 = (d−1)u3+2(d+
1)u2+(d−1)u. As well as exceptional points [1] for the bira-
tional equivalence (u, v) 7→ (2u/v, (u− 1)/(u+ 1)) = (x, y)
are in one to one correspondence to the affine point of order
2 on Ed and to the points in projective closure of Ed. Since
the formula for number of affine points on EM can be applied
to counting Nd[p]. In such way we apply this result [8], [14],
to the case y2 = P (x), where degP (x) = m, m = 3. The
order NM [pn] of the curve EM over Fpk can be evaluated
due to Stepanov [14]. The research tells us that the order is
NM [pn] = pn +1−ωn

1 −ωn
2 , where ωn

i ∈ C and ωn
1 = −ωn

2 ,
|ωi| =

√
p with i ∈ {1, 2}. Therefore, we conclude when

n ≡ 1(mod 2), we know the order of Montgomery curve
is precisely NM [pn] = pn + 1. This result leads us to the
conclusion that the number of solutions of x2+y2 = 1+dx2y2

as well as v2 = (d−1)u3+2(d+1)u2+(d−1)u over the finite
field Fpn are determined by the expression pn +1−ωn

1 −ωn
2

if n ≡ 1(mod 2).
Consider a more general case, namely the transition from a

twisted Edwards curve to EM .
Firstly the Edwards curve by a rational transformation

ψ1(x, y) = ((a− d) 1+u
1−v , (a− d) 2uy ) =

((a− d)x, (a− d)y) = (u, v).
(9)

is transformed into the birationally equivalent Montgomery
form

v2 = u3 − 2(a+ d)u2 + (a− d)u. (10)

The point (0.0) is the second-order point of this curve,
which, together with the point at infinity as a neutral element
of the group, forms the kernel of the 2-isogeny. It is required to
find parameters ā and d̄ of the isogenous curve with equation
(10) and the rational function 2(x, y) = (X,Y ). For the
Montgomery curve in the general form

Mcb : y
2 = x3 + cx2 + bx, (11)

finding 2-isogeny is well known [24]. Based on the Velu
formulas, using the laws of the addition of the points of the
curve in the general Weierstrass form, for the curve (11) one
can obtain the 2-isogeny ( [24]. the example 12.4)

ψ2(u, v) = (u
2+cu+b

u , u
2−b
u2 v) = (X,Y ) (12)

as a resul the equation of the isogenous curve is the
following:
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Y 2 = X3 − 2cX2 + (c2 − 4b)X. (13)

The discriminant of the quadratic equation on the right-
hand side of ( 13) is δ = 16b, and depending on the meaning
of (b), the curve (11) has one or three points of the 2nd

order. In the first case, one can construct one 2-isogeny. in
the two-three points (for three kernels as subgroups of the
second-order). The main aim of this work is the goal of the
existence of correspondece of orders via birational equivalence
in two classes of Edwards curves where values of the quadratic
residue (dp ) 1 and -1.

For twisted Edwards curve Ea,d as follows from equations
of EM and Ea,b, only those curves Ea,d of general (canonical)
form can be reduced to the Montgomery form (1) (and,
accordingly, to the Edwards form), the parameter b of which
is the quadratis square ( bp ) = 1). This is connected with the
existence on the curve canonical elliptic curve Ea,b the points
of the 4th order F = (u1, v1), such that
2F = (0, 0). Then, taking b = u21, equation (11) after
replacement c→ Cu1 is reduced to the form

v2 = u3 + Cu1u
2 + u21u. (14)

The inverse transformation of isogenous curves after the
substitution c → Cx1 in Ea,d in the Montgomery form
into the Edwards form Ea,ad is performed based on ra-
tional functions this Lemma taking into account different
values of coordinates of points of the 4th order ±X1 ∈
4a

√
d, 4a

√
1− d, 4a

√
d(d− 1) or ±X1 = ā − d̄ with the

help of rational function.
Example: The elliptic curve presented in the form of

Montgomery EM : v2 = u3 + 6u2 + u, is birationally
equivalent [1] to the curve x2 + y2 = 1 + 2x2y2 over the
field Fpk .

Corollary 4:: If d = 2, n ≡ 1(mod 2) and p ≡ 3(mod
8), then the order of curve Ed and order of the projective

curve are the following:

Nd[pn] = pn + 1.

If d = 2, n ≡ 1(mod 2) and p ≡ 7(mod 8), then the
number of points of projective curve is

Nd[pn] = pn + 1,

and the number of points on affine curve Ed is also

Nd[pn] = pn − 3.

In case d = 2, n ≡ 0(mod 2), p ≡ 3(mod 4), the general
formula of the curves order is

Nd[pn] = pn − 3− 2(−p)n
2 .

The general formula for n ≡ 0(mod 2) and d = 2 for the
number of points on projective curve for the supersingular case
is

Nd[pn] = pn + 1− 2(−p)n
2 .

P roof : We denote by NM [pn] the order of the curve EM

over Fpn . The order NM [pn] of EM over Fpn can be evaluated
[7] as NM [pn] = pn + 1 − ωn

1 − ωn
2 , where ωn

i ∈ C and
ωn
1 = −ωn

2 , |ωi| =
√
p with i ∈ {1, 2}. For the finite algebraic

extension of degree n, we will consider pn−ωn
1 −ωn

2 = pn if
n ≡ 1(mod 2). Therefore, for n ≡ 1(mod 2), the order of
the Montgomery curve is precisely given by NM [pn] = pn+1.
Here’s one infinitely remote point as a neutral element of the
group of points of the curve.

Considering now an elliptic curve, we have ω1 = ω̄2 by
[6], which leads to ω1 + ω2 = 0. For n = 1, it is clear that
NM = p. When n is odd, we have ωn

1 +ω
n
2 = 0 and therefore

NM,n = pn + 1. Because n is even by initial assumption, we
shall show that NM [pn] = pn+1−2(−p)

n
2 holds as required.

Note that for n = 2 we can express the number as Nd[p2] =

p2+1+2p = (p+ 1)
2 with respect to Lagrange theorem have

to be divisible on N̄d[p]. Because a group of Ed(Fp2) over
square extension of Fp contains the group Ed(Fp) as a proper
subgroup. In fact, according to Theorem 1 the order Ed(Fp)
is p+ 1 therefore divisibility of order Ed(Fp2) holds because
in our case p = 7 thus NEd

= 82 and p+1 = 8 = Nd[7] [17].
The following two examples exemplify Corollary 4.
Example: If p ≡ 3(mod 8) and n = 2k then we have

when d = 2, n = 2, p = 3 that the number of affine points
equals to

N2[3] = pn − 3− 2(−p)
n
2 = 32 − 3− 2 · (−3) = 12,

and the number of projective points is equal to

N2[3] = pn + 1− 2(−p)
n
2 = 32 + 1− 2 · (−3) = 16.

Example: If p ≡ 7(mod 8) and n = 2k then we have
when d = 2, n = 2, p = 7 that the number of affine points
equals to

N2[7] = pn − 3− 2(−p)
n
2 = 72 − 3− 2 · (−7) = 60,

and the number of projective points is equal to

N2[7] = pn + 1− 2(−p)
n
2 = 72 + 1− 2 · (−7) = 64.

Proposition 1:The group of points of the supersingular
curve Ed contains p− 1− 2

(
d
p

)
affine points and the affine

singular points whose number is 2
(

d
p

)
+ 2.

Proof : The singular points were discovered in [11] and
hence if the curve is free of singular points then the group
order is p+ 1.
Example: The number of curve points over finite field

when d = 2 and p = 31 is equal to N2[31] = N2−1[31] =
p− 3 = 28.

Theorem 4: The order of projective Edwards curve over
Fp is congruent to

Nd[p] ≡
(
p− 1− 2

(
d

p

)
+ (−1)

p+1
2

p−1
2∑

j=0

(
Cj

p−1
2

)2
dj
)
≡
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≡
(
(−1)

p+1
2

p−1
2∑

j=0

(
Cj

p−1
2

)2
dj − 1− 2

(
d

p

))
(mod p).

The true value of Nd[p] lies in [4; 2p] and is even.
Proof : This result follows from the number of solutions

of the equation
y2 = (dx2 − 1)(x2 − 1) over Fp which equals to

p−1∑
x=0

(
(x2 − 1)(dx2 − 1)

p
) + 1

)
≡

≡
p−1∑
x=0

(
(x2 − 1)(dx2 − 1)

p
)) + p ≡

≡ (

p−1
2∑

j=0

(x2 − 1)
p−1
2 (dx2 − 1)

p−1
2 ) (mod p) ≡

≡ ((−1)
p+1
2

p−1
2∑

j=0

(Cj
p−1
2

)
2
dj − (

d

p
)) (mod p) .

The quantity of solutions for x2 + y2 = 1 + dx2y2 differs
from the quantity of y2 = (dx2−1)(x2−1) by (dp )+1 due to
new solutions in the from (

√
d, 0), (−

√
d, 0). So this quantity

is such
p−1∑
x=0

(
(x2 − 1)(dx2 − 1)

p
) + 1

)
−
(
(
d

p
) + 1

)
≡

p−1∑
x=0

(
(x2 − 1)(dx2 − 1)

p
)) + p−

(
(
d

p
)− 1

)
≡

≡ (

p−1
2∑

j=0

(x2 − 1)
p−1
2 (dx2 − 1)

p−1
2 − (

d

p
) + 1) (mod p) ≡

≡ (−1)
p+1
2

p−1
2∑

j=0

(Cj
p−1
2

)
2
dj − (2(

d

p
) + 1) (mod p) .

According to Lemma 1, the last sum

(

p−1
2∑

j=0

(x2 − 1)
p−1
2 (dx2 − 1)

p−1
2 ) (mod p) is congruent to

−ap−1 − a2p−2(mod p), where ai are the coefficients from

(x2 − 1)
p−1
2 (dx2 − 1)

p−1
2 = a0 + a1x+ · · ·+ a2p−2x

2p−2.

Last presentation was obtained due to
transformation (x2 − 1)

p−1
2 (dx2 − 1)

p−1
2 =

(
p−1∑
x=0

Ck
p−1
2

x2k(−1)
p−1
2 −k

) (
p−1∑
x=0

Cj
p−1
2

djx2j(−1)
p−1
2 −j

).

Therefore a2p−2 is equal to d
p−1
2 ≡ (dp )(modp) and

ap−1 =
∑ p−1

2
j=0 (Cj

p−1
2

)
2
dj(−1)

p−1
2 .

According to Newton’s binomial formula ap−1 equal to the
coefficient at xp−1 in the product of two brackets and when
substituting it d instead of 2 is such

(−1)
p−1
2

p−1
2∑

j=0

dj(Cj
p−1
2

)
2
,

that is, it has the form of the polynomial with inverse order
of coefficients.

Indeed, we have equality
p−1
2∑

j=0

dj(C
p−1
2 −j

p−1
2

)(−1)
p−1
2 −( p−1

2 −j) · (Cj
p−1
2

)
2
(−1)

p−1
2 −j

=

= (−1)
p−1
2

p−1
2∑

j=0

djC
p−1
2 −j

p−1
2

· Cj
p−1
2

=(−1)
p−1
2

p−1
2∑

j=0

dj(Cj
p−1
2

)
2
.

In form of a sum it is the following
p−1
2∑

j=0

2j(C
p−1
2 −j

p−1
2

)(−1)
p−1
2 −( p−1

2 −j) · 2j(Cj
p−1
2

)
2
(−1)

p−1
2 −j

=

= (−1)
p−1
2

p−1
2∑

j=0

2jC
p−1
2 −j

p−1
2

· Cj
p−1
2

=(−1)
p−1
2

p−1
2∑

j=0

2j(Cj
p−1
2

)
2
.

Now, if

ap−1 =
∑ p−1

2

j=0
(Cj

p−1
2

)
2
dj(−1)

p−1
2 ≡ 0(mod p),

then as it is was shown by the author in that the curve is
supersingular and the number of solutions of the

y2 = (dx2 − 1)(x2 − 1)

over Fp equals to

p− 1− 2

(
d

p

)
+

(
1 + (

d

p
)

)
= p−

(
d

p

)
and differs from the quantity of solutions of

x2 + y2 = 1 + dx2y2

by (dp ) + 1 due to new solutions of

y2 = (dx2 − 1)(x2 − 1).

Thus, in general case if

ap−1 =
∑ p−1

2

j=0
(Cj

p−1
2

)
2
dj(−1)

p−1
2 ̸= 0,

we have

NEd
= (p− (

d

p
)− ((

d

p
) + 1)− (−1)

p−1
2 ·
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·

p−1
2∑

j=0

(C
p−1
2 −j

p−1
2

Cj
p−1
2

)
2

dj) ≡

≡ (p− 1− (−1)
p−1
2

p−1
2∑

j=0

(Cj
p−1
2

)
2
dj − 2(

d

p
)) ≡

≡ ((−1)
p+1
2

p−1
2∑

j=0

(Cj
p−1
2

)
2
dj − 1− 2(

d

p
)) (mod p) .

The exact order is not less than 4 because cofactor of this
curve is 4. To determine the order is uniquely enough to take
into account that p and 2p have different parity. Taking into
account that the order is even we chose a term p or 2p, for
the sum which define the order.

Let us analyze the complexity of calculating the value of
p−1
2∑

j=0

(Cj
p−1
2

)
2
dj .

Binomial coefficients of the form Cl
p−1
2

we calculate recur-

sively having Cl
p−1
2

we get Cl+1
p−1
2

. Such a transformation can
be done by one multiplication of one division. But division
can be avoided by applying the Legendre formula to count
the number of occurrences of all prime factors from 2 to
(p − 1) : 2. In both cases, the complexity of calculating all
the coefficients from the sum (3) is equal to O(p−1

2 log22 p).
Squaring the calculated binomial coefficient Cj

p−1
2

also does

not exceed O
(
log22 p

)
.

Calculate all values of dj mod p optimally applying re-
cursive multiplication dj−1 on d. For this we make use
of the Karatsuba multiplication method, which requires
O(log

log23
2 p), rather than applying the Barrett method of

modular multiplication. Therefore, the complexity of com-
puting the entire tuple of degrees dj , j = 1, . . . , n is
O(p−1

2 log
log23
2 p). Therefore, we obtain O(p−1

2 log22 p).
Example: Number of curve points for d = 2 and p = 31

equals N2[p] = N2−1[p] = p− 3 = 28.

Theorem 5: If
(

d
p

)
= 1, then the orders of the curves Ed

and Ed−1 , satisfies to the following equality

|Ed| = |Ed−1 | .

If
(

d
p

)
= −1, then Ed and Ed−1 are pair of twisted curves

i.e. orders of curves Ed and Ed−1 satisfies to the following
relation of duality

|Ed|+ |Ed−1 | = 2p+ 2.

P roof : Let the curve be defined by x2 + y2 = 1 +
dx2y2(mod p), then we can express y2 in such way:

y2 ≡ x2 − 1

dx2 − 1
(mod p.) (15)

For x2 + y2 = 1 + d−1x2y2(mod p) we could obtain that

y2 ≡ x2 − 1

d−1x2 − 1
(mod p) (16)

Consider the case when
(

d
p

)
= 1 the case

(
d
p

)
=

−1 proves analogously. if
(

d
p

)
= 1, then for the

fixed x0 a quantity of y over Fp can be calculated by

the formula (
x2−1

d−1x2−1

p ) + 1 for x such that d−1x2 +
1 ≡ 0(mod p). For solution (x0, y0) to ( 2), we have
the equality y20 ≡ x2

0−1

dx2
0−1

(mod p) and we express

y20 ≡
1− 1

x2
0

1− 1

dx2
0

d −1 ≡
(

1
x0

)2
− 1

1
d

(
1
x0

)2
− 1

d −1 ≡
(

1
x0

)2
− 1

d−1
(

1
x0

)2
− 1

d−1.

Observe that

y2 =
x2 − 1

d−1x2 − 1
=

1− x2

1− d−1x2
=

( 1
x2 − 1)x2

(( d
x2 )− 1)d−1x2

=

(17)

=
( 1
x2 − 1)

(( d
x2 )− 1)

d.

Thus, if (x0, y0) is solution of (2), then
(

1
x0
, y0√

d

)
is a

solution to (16) because last transformations determines that
y20
d ≡

d−1
(

1
x0

)2
− 1(

1
x0

)2
− 1

modp. Therefore last transformations

(x0, y0) → ( 1
x0
, y0√

d
) = (x, y) determines isomorphism

and bijection.
Example: The number of points on Ed for d = 2 and

d−1 = 2 with p = 31 is equal to N2[31] = NE−1
2 [31] = p−3 =

28.
Example: If p = 7 and d = 2−1 ≡ 4(mod 7), then we

have (dp ) = 1 and the curve E2−1 has four points which
are (0, 1); (0, 6); (1, 0); (6, 0), and the in case p = 7 for
d = 2(mod 7), the curve E2−1 also has four points which
are (0, 1); (0, 6); (1, 0); (6, 0).
Definition We call the embedding degree a minimal power

k of a finite field extension such that the group of points of
the curve can be embedded in the multiplicative group of Fpk .

Let us obtain conditions of embedding [16] for the group
of supersingular curves Ed[Fp] of order p in the multiplicative
group of field Fpk whose embedding degree is k = 12 [16].
We now utilise the Zsigmondy theorem which implies that
a suitable characteristic of field Fp is an arbitrary prime p
which do not divide 12 and satisfies the condition q |P12(p) ,
where P12(x) is the cyclotomic polynomial. This p will satisfy
the necessary conditions (xn − 1) ̸ | p for an arbitrary n =
1, . . . , 11.

Proposition 2:The degree of embedding for the group of a
supersingular curve Ed is equal to 2.

The proof is based on the fact that the order of the group
of a supersingular curve Ed is equal to pk + 1 and will be
detailed in our next article.

Consider E2 over Fp2 , for instance we assume p = 3. We
define F9 as F3(α), where α is a root of x2 + 1 = 0 over F9.
Therefore elements of F9 have form: a+bα, where a, b ∈ F3.
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So we assume that x ∈ {±(α + 1), ±(α − 1), ±α} and
check its belonging to E2. For instance if x = ±(α+ 1) then
x2 = α2 + 2α + 1 = 2α = −α. Also in this case y2 =
2α−1
α−1 = (2α−1)(α+1)

(α−1)(α+1) = (2α−1)(α+1)
(α−1)(α+1) = α

−2 = α. Therefore
the correspondent second coordinate is y = ±(α− 1). The
similar computations lead us to full the following list of curves
points.

x ±1 0 ±(α+ 1) ±(α− 1)
y 0 ±1 ±(α− 1) ±(α+ 1)

TABLE II
POINTS OF EDWARDS CURVE OVER SQUARE EXTENSION.

The total amount is 12 affine points that confirms Corollary
IV and Theorem IV because of pn − 3− 2(−p)n

2 = 32 − 3−
2(−3) = 12.

V. RESULTS

Our method for determining the order of a curve is valuable
in itself and, in addition, provides a way to solve the inverse
problem, that is, construct a curve of a given order. The
conditions on a coefficients determining pairs of twisted curves
of Edwards was found by us. We found a degree of embedding
for the group of a supersingular curve in finite field with a
minimal degree of extension. Due to Theorem 5. we obtain
method to calculate the order of twisted curve for any Edwards
curve. Let the first number denotes the quotient p (i.e.
mod p). The second number is the number of points for
d = 2 and the third number is the number solution for
d = 2−1 = (p+ 1)/2.

According to GlobalSign, elliptical curve cryptography
(ECC) can be used on most of today’s modern browsers
and operating systems. The list below shows which OS and
browser versions are known to be compatible with ECC: Apple
OS X, OS X 10.6, Google Android 4.0 Microsoft Windows
and many other. One of the fundamental problems in EC
cryptography is the generation of cryptographically secure ECs
over prime fields, suitable for use in various cryptographic
applications is solved due our method. A typical requirement
of all such applications is that the order of the EC [6], [8],
[16], [20]. One of essential requirement for EC is its order
(number of elements in the algebraic structure induced by
the EC) possesses certain properties (e.g., robustness against
known attacks [6, 16], small prime factors [6], [16], etc), which

3: 4, 4 47: 44, 44 103: 100, 100 167: 164, 164
5: 8, 4 53: 40, 68 107: 108, 108 173: 200, 148

11: 12, 12 59: 60, 60 109: 104, 116 179: 180, 180
13: 8, 20 61: 72, 52 113: 124, 124 181: 200, 164

17: 12, 12 67: 68, 68 127: 124, 124 191: 188, 188
19: 20, 20 71: 68, 68 131: 132, 132 193: 204, 204
23: 20, 20 73: 76, 76 137: 156, 156 197: 200, 196
29: 40, 20 79: 76, 76 139: 140, 140 199: 196, 196
31: 28, 28 83: 84, 84 149: 136, 164 211: 212, 212
37: 40, 36 89: 76, 76 151: 148, 148 223: 220, 220
41: 28, 28 97: 76, 76 157: 136, 180 227: 228, 228
43: 44, 44 101: 104, 100 163: 164, 164 229: 200, 260

TABLE III
THE TWISTED PAIRS OF EDWARDS CURVES

gives rise to the problem of how such EC can be generated.
One of good decision of this tusk is a curve of big prime
order [6], [16], [18]. Our method of determination of elliptic
and Edwards curve order give one of possible decisions of
these problems by analytic expression for the of curves order
over a finite field Fpn .

It is very important to avoid of curves of order p+1 because
of it is tractable to the pairingbased attacks [6]. Our Theorems
IV and IV establish criterion and sufficient conditions for such
curves with order p + 1 therefore, it completely solves this
problem. Additionally conditions of embedding of such curves
was obtained. That is give rise to using the Edwards curve in
the methods of zero knowledge proof such as Zk-Snark and
Zk-Stark.

VI. DISCUSSIONS

The complexity of the discrete logarithm problem in the
group of points of an elliptic curve depends on the order of
this curve. Therefore, for intelligent control of the security
level in the system, it is important to apply our method of
determining the order [8], [9], [14],[19] of the curve providing
the necessary level of cryptographic stability of the system.

VII. CONCLUSIONS

In this paper we have found a new effective algorithm for
the elliptic and Edwards curves order over a finite field. In
addition, the criterion for supersingularity of these curves has
been was obtained as a result of this the using of groups
of points of curves of genus 1 in cryptography which is
intractable to MOV attacks. We have investigated the number
of affine and projective points. It should be noted that our
results provide a possibility to determine the number of such
points in a constructive way, which provides a way for some
intelligent control of the security level in the cryptosystem
based on EC. The embedding degree for the Edwards and
Montgomery curves have also been determined.

We proved using existence of the birational isomorphism
between twisted Edwards curve and elliptic curve in Weier-
strass normal form that the result about order of curve over
finite field can be applied to cubic in Weierstrass normal form.
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